Compositness tests

additional material for Lecture on December 5th, 2008

Tanja Lange

Algorithm 1 (Solovay-Strassen compositeness test)
IN: Oddn €N, ke N
1 »

OUT: “n 1s composite” or “n is prime with probability at least 1 — 5

1. for 1=11to k

(a) choose a € Z randomly with 1 < a <n
(b) if ged(a,n) # 1 return “n is composite”
(c) else
0. c— (%) (computed using Lemma 4.2 repeatedly)
ii. de—a"7 mod n (using a representative in —n/2 < d < n/2)
iti. if ¢ # d return ‘n is composite”

1 »

2. return “n is prime with probability at least 1 — 5

Example 2 Let n = 711. Like before we choose a = 2 and compute
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since 711 = —1 mod 8 using Lemma 4.2. Next we compute 23" = 569 mod 711 and so
d = 569. Since ¢ # d we see that n is composite.
As a second example we consider n = 341 and again choose the basis a = 2. We have
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since 341 = —3 mod 8. At the same time, 2'° = 1 mod 341 and so ¢ # d and already
a = 2 detects n as composite.
For the Carmichael number n = 561 we have

= i _ (_1)(5612—1)/8 -1
561 ’
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since 561 = 1 mod 8. Also 2?%° = 1 mod 561; so n is a pseudo-prime under the Solovay-
Strassen test to the basis a = 2.

For a =5 we obtain:
5 561 1
CcC = _— = _— = — = 1

and 5?%° = 67 mod 561; and so n is detected as composite.

Lemma 3 Let n be a composite odd integer.
For at least half of all possible bases a with ged(a,n) = 1 we have that the Solovay-Strassen

test fails, i.e.
a

(—) =z a"z mod n.

n

Proof. Let A ={ay,...,ax} be the set of a; for which (%) = a:il mod nwith1l <a; <n
and ged(a;,n) = 1.

If there exists an integer 1 < b < n with ged(b,n) = 1 and (2) # b7 mod n then we
have by the first property in Lemma that

()= () ()

n—1 n—1 n—1

(b.ai)T:bT.a,2

while

and so

<b.nai> Z(b- ai)nT_l mod n.

Therefore, the Solovay-Strassen test detects compositeness with at least 50% of all values
a if such a number b exists.

Now we show that such a number b exists. Note, that this proof uses the factorization of
n, so it does not help in the actual test.

Let n factor as n = pi"*,...,po, where the p; are distinct primes and the exponents «;
are positive integers. We consider two cases.

Let first one of the the exponents a; be larger than 1, e.g. p? | n, and put n’ = n/p?.
Forbzl—l—p%zl—i-pln’wehave

bY _ (Ltpn'\ _ (Ltpn'\* (Lp’\ _ (Ltpn’\ _ (1) _

n) n B p? n' B n' )
To show that b"z" # 1 mod n we consider powers of b using the binomial formula. Let
7 € IN. We have

¥ = (1+pn') = z]: (;) (pn)!

i=0
2
= 1+jpn + <]> (pn')? + ...

1+ jpin’ mod n,
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because (pin')? = n'n = 0 mod n and the same holds for higher powers. This implies
that o/ = 1 mod n if and only if jp;n’ = 0 mod n, i.e. if and only if p; | j. Because p;
divides n it does not divide n — 1 and therefore also not (n —1)/2. Accordingly

b n—
(—) e b"z mod n.
n

We now consider the case that all the exponents equal 1, i.e. n = p;---p, is product of
distinct primes. Let 1 < a < p; be a quadratic non-residue modulo p;. Put n’ = n/p;.
By the Chinese remainder theorem there exists an integer b in 1 < b < n which solves
the system of equivalences

= a mod pq,
= 1modn'
For this b we have ) ) ) .
N=(2)(Z2) =1 (=) =1
n D1 n' n'
but we cannot have b"3" = —1 mod n since n’ divides n by construction and

b"5 =1 mod n'.
So for both cases we have constructed a number b which fails the test. O

The Fermat test and the Solovay-Strassen test both have probability 1/2 of detecting a
composite number for each iteration. The Fermat test needs one modular exponentiation
per iteration while the Solovay-Strassen test needs one modular exponentiation and the
computation of one Jacobi symbol per iteration. In return there are no exceptions to the
Solovay-Strassen test while the Carmichael numbers are pseudo-prime for any basis in
the Fermat test in spite of being composite.

The compositeness test of Miller and Rabin has probability of detecting a composite
number at least 3/4 per iteration. It uses the observation that modulo a prime p there
are only two solutions of #2 = 1 mod p for —p/2 < a < p/2. Let p — 1 = 2"t, where t is
an odd integer and let b € Z with 1 < b < p. Then either o' = 1 mod p or there exists
an 1’ < r so that b2 * = —1 mod p.

If n is composite then there are more than two solutions of 22> = 1 mod n. Let e.g. n = pg
with p, ¢ prime then the Chinese remainder theorem leads to one solution for each of the
4 choices of sign in

a = =1 mod p,
a = =1 mod q,

and so there are 4 solutions. If n has more factors then there are more solutions.

Let n split as n — 1 = 2"t, where ¢ is an odd integer. Let b € Z with ged(b,n) = 1. If n
is pseudo-prime to the basis b then "~ = 1 mod n but this does not imply that either
b = 1 mod n or that there exists an v’ < r so that 5"t = —1 mod n because there are
more elements a which are equivalent to 1 modulo n when squared. So if a subsequent



squaring of b' reaches 1 without having reached —1 we know that n is composite. On top
of that we detect compositeness of n if it is not pseudo-prime for a chosen basis, namely
if bt # 1 mod n.

This motivates the definition of strong pseudo-primes.

Definition 4 (Strong pseudo-prime)
Let n be an odd composite integer and let n — 1 = 2"t, with r odd.
Let b € Z with ged(b,n). If either b = 1 mod n or if there exists 0 < 1’ < r so that

b2t = —1 mod n then n is a strong pseudo-prime to the basis b.

The above considerations have motivated the following lemma which we present without
proof. The interested reader is referred to Koblitz’ book.

Lemma 5 Let n be an odd composite integer. It is a strong pseudo-prime to at most one
quarter of all possible bases b.

Algorithm 6 (Miller-Rabin compositeness test)
IN: Oddn € N, withn—1=2"t and t odd and k € N OUT: “n is composite” or “n is

prime with probability at least 1 — 4% 7

1. for i=1to k

(a) choose a € Z randomly with 1 < a <n
(b) if ged(a,n) # 1 return “n is composite”
(c) else if a' # +1 mod n

i je1

#. while a¥' % +1mod n and j <r

J—j+1
ii. if ot =1mod n return “n is composite”
w. if j =r return “n is composite”

1 »
1k

2. return ‘“n is prime with probability at least 1 —

Example 7 Let n = 711. We have n — 1 = 710 = 2! - 355, sor = 1 and t = 355. We
choose again a = 2.
We have a' = 23 = 458 # 1 mod 711, so the iteration starts. However, j = 1 = r is
reached immediately and we obtain n is composite as answer. Note that it is correct to
stop the test here because either the next squaring leads to a value # 1 in which case the
Fermat test detects n as composite orn is pseudo-prime to the basis a but reaches the value
1 without having reached —1 which we identified as another criterion for compositeness.
Now consider n = 341 withn — 1 = 340 = 22 -85, sor = 2 and t = 85. For the basis
a = 2 we have

28 = 32 # 1 mod 341, 2**° =1 mod 341,

and so n is detected as composite since 1 was reached as square of 85 % —1 mod 341.
Finally, let n =561 with n —1 = 560 = 16 - 35. We have

2% = 263 mod 561, 223 = 166 mod 561, 2% = 67 mod 561, 22" = 1 mod 561,

which in the last round on the first basis a detects n as composite.
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Exercise 8 1. Let ny = 717. Check compositeness of ny using the Fermat test.
7001
2. Compute (m)

3. Prove Lemma 4.2 (the properties of the Jacobi symbol) using the properties of the
Legendre symbol. Hint: study how remainders modulo 8 and 16 behave under mul-

tiplication and squaring.

4. Let ng = 709 and n3 = 721. Use the Miller-Rabin test to check compositeness of ns
and ng for k = 2.



