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Algorithm 1 (Solovay-Strassen compositeness test)
IN: Odd n ∈ IN, k ∈ IN
OUT: “n is composite” or “n is prime with probability at least 1− 1

2k ”

1. for i = 1 to k

(a) choose a ∈ ZZ randomly with 1 < a < n

(b) if gcd(a, n) 6= 1 return “n is composite”

(c) else

i. c←
(

a
n

)
(computed using Lemma 4.2 repeatedly)

ii. d←a
n−1

2 mod n (using a representative in −n/2 < d < n/2)

iii. if c 6= d return “n is composite”

2. return “n is prime with probability at least 1− 1
2k ”

Example 2 Let n = 711. Like before we choose a = 2 and compute

c =

(
2

711

)
= (−1)(7112−1)/8 = 1

since 711 ≡ −1 mod 8 using Lemma 4.2. Next we compute 2
710
2 ≡ 569 mod 711 and so

d = 569. Since c 6= d we see that n is composite.
As a second example we consider n = 341 and again choose the basis a = 2. We have

c =

(
2

341

)
= (−1)(3412−1)/8 = −1,

since 341 ≡ −3 mod 8. At the same time, 2170 ≡ 1 mod 341 and so c 6= d and already
a = 2 detects n as composite.
For the Carmichael number n = 561 we have

c =

(
2

561

)
= (−1)(5612−1)/8 = 1,
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since 561 ≡ 1 mod 8. Also 2280 ≡ 1 mod 561; so n is a pseudo-prime under the Solovay-
Strassen test to the basis a = 2.
For a = 5 we obtain:

c =

(
5

561

)
=

(
561

5

)
=

(
1

5

)
= 1

and 5280 ≡ 67 mod 561; and so n is detected as composite.

Lemma 3 Let n be a composite odd integer.
For at least half of all possible bases a with gcd(a, n) = 1 we have that the Solovay-Strassen
test fails, i.e. (a

n

)
6≡ a

n−1
2 mod n.

Proof. Let A = {a1, . . . , ak} be the set of ai for which
(

ai

n

)
≡ a

n−1
2

i mod n with 1 ≤ ai < n
and gcd(ai, n) = 1.

If there exists an integer 1 ≤ b ≤ n with gcd(b, n) = 1 and
(

b
n

)
6≡ b

n−1
2 mod n then we

have by the first property in Lemma that(
b · ai

n

)
=

(
b

n

)
·
(ai

n

)
while

(b · ai)
n−1

2 = b
n−1

2 · a
n−1

2
i

and so (
b · ai

n

)
6≡ (b · ai)

n−1
2 mod n.

Therefore, the Solovay-Strassen test detects compositeness with at least 50% of all values
a if such a number b exists.
Now we show that such a number b exists. Note, that this proof uses the factorization of
n, so it does not help in the actual test.
Let n factor as n = pα1

1 , . . . , pαr
r , where the pi are distinct primes and the exponents αi

are positive integers. We consider two cases.
Let first one of the the exponents αi be larger than 1, e.g. p2

1 | n, and put n′ = n/p2
1.

For b = 1 + n
p1

= 1 + p1n
′ we have(

b

n

)
=

(
1 + p1n

′

n

)
=

(
1 + p1n

′

p2
1

)2 (
1 + p1n

′

n′

)
=

(
1 + p1n

′

n′

)
=

(
1

n′

)
= 1.

To show that b
n−1

2 6≡ 1 mod n we consider powers of b using the binomial formula. Let
j ∈ IN. We have

bj = (1 + p1n
′)

j
=

j∑
i=0

(
i

j

)
(p1n

′)i

≡ 1 + jp1n
′ +

(
2

j

)
(p1n

′)2 + . . .

≡ 1 + jp1n
′ mod n,
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because (p1n
′)2 = n′n ≡ 0 mod n and the same holds for higher powers. This implies

that bj ≡ 1 mod n if and only if jp1n
′ ≡ 0 mod n, i.e. if and only if p1 | j. Because p1

divides n it does not divide n− 1 and therefore also not (n− 1)/2. Accordingly(
b

n

)
6≡ b

n−1
2 mod n.

We now consider the case that all the exponents equal 1, i.e. n = p1 · · · pr is product of
distinct primes. Let 1 ≤ a < p1 be a quadratic non-residue modulo p1. Put n′ = n/p1.
By the Chinese remainder theorem there exists an integer b in 1 ≤ b < n which solves
the system of equivalences

b ≡ a mod p1,

b ≡ 1 mod n′.

For this b we have (
b

n

)
=

(
b

p1

) (
b

n′

)
= (−1)

(
1

n′

)
= −1

but we cannot have b
n−1

2 ≡ −1 mod n since n′ divides n by construction and

b
n−1

2 ≡ 1 mod n′.

So for both cases we have constructed a number b which fails the test. 2

The Fermat test and the Solovay-Strassen test both have probability 1/2 of detecting a
composite number for each iteration. The Fermat test needs one modular exponentiation
per iteration while the Solovay-Strassen test needs one modular exponentiation and the
computation of one Jacobi symbol per iteration. In return there are no exceptions to the
Solovay-Strassen test while the Carmichael numbers are pseudo-prime for any basis in
the Fermat test in spite of being composite.
The compositeness test of Miller and Rabin has probability of detecting a composite
number at least 3/4 per iteration. It uses the observation that modulo a prime p there
are only two solutions of x2 ≡ 1 mod p for −p/2 < a < p/2. Let p − 1 = 2rt, where t is
an odd integer and let b ∈ ZZ with 1 ≤ b < p. Then either bt ≡ 1 mod p or there exists

an r′ < r so that b2r′ t ≡ −1 mod p.
If n is composite then there are more than two solutions of x2 ≡ 1 mod n. Let e.g. n = pq
with p, q prime then the Chinese remainder theorem leads to one solution for each of the
4 choices of sign in

a ≡ ±1 mod p,

a ≡ ±1 mod q,

and so there are 4 solutions. If n has more factors then there are more solutions.
Let n split as n− 1 = 2rt, where t is an odd integer. Let b ∈ ZZ with gcd(b, n) = 1. If n
is pseudo-prime to the basis b then bn−1 ≡ 1 mod n but this does not imply that either

bt ≡ 1 mod n or that there exists an r′ < r so that b2r′ t ≡ −1 mod n because there are
more elements a which are equivalent to 1 modulo n when squared. So if a subsequent
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squaring of bt reaches 1 without having reached −1 we know that n is composite. On top
of that we detect compositeness of n if it is not pseudo-prime for a chosen basis, namely
if b2rt 6≡ 1 mod n.
This motivates the definition of strong pseudo-primes.

Definition 4 (Strong pseudo-prime)
Let n be an odd composite integer and let n− 1 = 2rt, with r odd.
Let b ∈ ZZ with gcd(b, n). If either bt ≡ 1 mod n or if there exists 0 ≤ r′ < r so that

b2r′ t ≡ −1 mod n then n is a strong pseudo-prime to the basis b.

The above considerations have motivated the following lemma which we present without
proof. The interested reader is referred to Koblitz’ book.

Lemma 5 Let n be an odd composite integer. It is a strong pseudo-prime to at most one
quarter of all possible bases b.

Algorithm 6 (Miller-Rabin compositeness test)
IN: Odd n ∈ IN, with n− 1 = 2rt and t odd and k ∈ IN OUT: “n is composite” or “n is
prime with probability at least 1− 1

4k ”

1. for i = 1 to k

(a) choose a ∈ ZZ randomly with 1 < a < n

(b) if gcd(a, n) 6= 1 return “n is composite”

(c) else if at 6≡ ±1 mod n

i. j←1

ii. while a2j ·t 6≡ ±1 mod n and j < r
j←j + 1

iii. if a2j ·t ≡ 1 mod n return “n is composite”

iv. if j = r return “n is composite”

2. return “n is prime with probability at least 1− 1
4k ”

Example 7 Let n = 711. We have n − 1 = 710 = 21 · 355, so r = 1 and t = 355. We
choose again a = 2.
We have at = 2355 ≡ 458 6≡ 1 mod 711, so the iteration starts. However, j = 1 = r is
reached immediately and we obtain n is composite as answer. Note that it is correct to
stop the test here because either the next squaring leads to a value 6= 1 in which case the
Fermat test detects n as composite or n is pseudo-prime to the basis a but reaches the value
1 without having reached −1 which we identified as another criterion for compositeness.
Now consider n = 341 with n − 1 = 340 = 22 · 85, so r = 2 and t = 85. For the basis
a = 2 we have

285 ≡ 32 6≡ 1 mod 341, 22·85 ≡ 1 mod 341,

and so n is detected as composite since 1 was reached as square of 85 6≡ −1 mod 341.
Finally, let n = 561 with n− 1 = 560 = 16 · 35. We have

235 ≡ 263 mod 561, 22·35 ≡ 166 mod 561, 222·35 ≡ 67 mod 561, 223·35 ≡ 1 mod 561,

which in the last round on the first basis a detects n as composite.
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Exercise 8 1. Let n1 = 717. Check compositeness of n1 using the Fermat test.

2. Compute
(

7001
14175

)
.

3. Prove Lemma 4.2 (the properties of the Jacobi symbol) using the properties of the
Legendre symbol. Hint: study how remainders modulo 8 and 16 behave under mul-
tiplication and squaring.

4. Let n2 = 709 and n3 = 721. Use the Miller-Rabin test to check compositeness of n2

and n3 for k = 2.
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