Scalar Multiplication and Weierstrass Curves

Tanja Lange

28.11.2008

Tanja Lange

Notation

lf

$$n = \sum_{i=0}^{l-1} n_i 2^i$$

we write n in binary representation

E.g.

$$n = (n_{l-1} \dots n_0)_2.$$

$$n = 35 = 32 + 2 + 1 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0,$$
then $35 = (100011)_2.$

The following algorithms are stated in some group (G, \oplus) with neutral element O. Scalar multiplication is denoted by $[n]P = P \oplus P \oplus \cdots \oplus P$ (*n* terms).

Right-to-Left Binary

IN: An element $P \in G$ and a positive integer $n = (n_{l-1} \dots n_0)_2$. OUT: The element $[n]P \in G$.

1.
$$R \leftarrow O, Q \leftarrow P$$
,
2. for $i = 0$ to $l - 2$ do
(a) if $n_i = 1$ then $R \leftarrow P \oplus Q$
(b) $Q \leftarrow [2]Q$
3. if $n_{l-1} = 1$ then $R \leftarrow P \oplus Q$

4. return R

This algorithm computes $[35]P = [2^5]P \oplus [2^1]P \oplus P$. For i = j, at the end of step 2, Q holds $[2^{j+1}]P$ and R holds $[(n_j \dots n_0)_2]P$.

Left-to-Right Binary

IN: An element $P \in G$ and a positive integer $n = (n_{l-1} \dots n_0)_2, n_{l-1} = 1.$ OUT: The element $[n]P \in G$.

1. $R \leftarrow P$

2. for
$$i = l - 2$$
 to 0 do

(a)
$$R \leftarrow [2]R$$

(b) if $n_i = 1$ then $R \leftarrow P \oplus R$

3. return R

This algorithm computes

 $[35]P = [2]([2]([2]([2]([2]P))) \oplus P) \oplus P.$ For i = j the intermediate variable R holds $[(n_{l-1} \dots n_j)_2]P.$

Number of additions

- For each 1 in the binary representation of n we compute an addition. On average there are l/2 non-zero coefficients.
- In some groups (e.g. elliptic curves) $P \oplus Q$ has the same cost as $P \oplus Q$), so it makes sense to use negative coefficients. This gives signed binary expansions.

• Note that
$$31 = 2^4 + 2^3 + 2^2 + 2 + 1 = 2^5 - 1$$
 and so

 $[31]P = [2]([2]([2]([2]P \oplus P) \oplus P) \oplus P) \oplus P) \oplus P) = [2]([2]([2]([2]([2]P)))) \oplus P)$

• Can always replace two adjacent 1's in the binary expansion by $10\overline{1}$ since $(11)_2 = (10\overline{1})_s$. ($\overline{1}$ denotes -1).

Examples

- By systematically replacing runs of 1's we can achieve that there are no two adjacent bits that are non-zero.
- A representation fulfilling this is called a "non-adjacent form" (NAF).
- NAF's have the lowest density among all signed binary expansions (with coefficients in $\{0, 1, -1\}$).
- $\begin{array}{l} \bullet & (10010100110111010\underline{11}0)_2 = \\ & (100101001101110\underline{11}0\overline{10})_2 = \\ & (10010100110\underline{1111}0\overline{10}\overline{10})_2 = \\ & (10010100\underline{111}000\overline{10}\overline{10}\overline{10}\overline{10})_2 = \\ & (10010100\underline{101}00\overline{10}\overline{10}\overline{10}\overline{10})_2 \end{array}$
- Results no worse, but not necessarily better $35 = (100011)_2 = (10010\overline{1})_s$.

Non-Adjacent Form

IN: Positive integer $n = (n_l n_{l-1} \dots n_0)_2, n_l = n_{l-1} = 0.$ OUT: NAF of n, $(n'_{l-1} \dots n'_0)_s$. 1. $c_0 \leftarrow 0$ 2. for i = 0 to l - 1 do (a) $c_{i+1} \leftarrow \lfloor (c_i + n_i + n_{i+1})/2 \rfloor$ (b) $n'_i \leftarrow c_i + n_i - 2c_{i+1}$ 3. return $(n'_{l-1} \dots n'_0)_s$

Resulting signed binary expansion has length at most l + 1, so longer by at most 1 bit. On average there are l/3 non-zero coefficients.

Also possible to get a representation with the same density from left to right.

NAF – example

1.
$$c_0 \leftarrow 0$$

2. for $i = 0$ to $l - 1$ do
(a) $c_{i+1} \leftarrow \lfloor (c_i + n_i + n_{i+1})/2 \rfloor$
(b) $n'_i \leftarrow c_i + n_i - 2c_{i+1}$
3. return $(n'_{l-1} \dots n'_0)_s$
 $35 = (00100011)_2, c_0 = 0$
 $c_1 = \lfloor (0 + 1 + 1)/2 \rfloor = 1, n_0 = 0 + 1 - 2 = -1$
 $c_2 = \lfloor (1 + 1 + 0)/2 \rfloor = 1, n_1 = 1 + 1 - 2 = 0$
 $c_3 = \lfloor (1 + 0 + 0)/2 \rfloor = 0, n_2 = 1 + 0 - 0 = 1$
 $c_4 = \lfloor (0 + 0 + 0)/2 \rfloor = 0, n_3 = 0 + 0 - 0 = 0$
 $c_5 = \lfloor (0 + 0 + 1)/2 \rfloor = 0, n_4 = 0 + 0 - 0 = 0$
 $c_6 = \lfloor (0 + 1 + 0)/2 \rfloor = 0, n_5 = 0 + 1 - 0 = 1$
 $c_7 = \lfloor (0 + 0 + 0)/2 \rfloor = 0, n_6 = 0 + 0 - 0 = 0 \Rightarrow 35 = (10010\overline{1})_s$

Tanja Lange

Generalizations

- So far all expansions in base 2 (signed or unsigned).
- Generalize to larger base; often 2^w (w > 1). Then the coefficients are in $[0, 2^w 1]$. Also fractional windows have been suggested.
- w is called window width.
- Assume that [m]P for $m \in [0, 2^w 1]$ are precomputed.
- Easiest way: just group w bits.
- Sliding windows: Group w bits and skip forward if LSB is 0 (requires only odd integers in [0, 2^w − 1]) as coefficients and leads to l/(w + 1) additions).
- If \ominus is cheap, use signed sliding windows; this leads to l/(w+2) additions.

Sliding windows

- $(1001010011011101010)_2 =$ $(02010100030103010102)_2 = (2110313112)_4,$ needs 8 additions and precomputed [2]P and [3]P
- (10010100<u>11</u>01<u>11</u>010<u>11</u>0)₂ = $(1001010003 0103010030)_2,$ needs 7 additions and only precomputed [3]P
- $(10010100110111010110)_2 =$ $(1001010011100030030)_2 =$ $(10010101001000030030)_2 =$ $(10011003001000030030)_2 =$ $(10003003001000030030)_2$ needs 5 additions and precomputed [3]*P*, assuming that \ominus is available.

Weierstrass curves

$$E: y^{2} + \underbrace{(a_{1}x + a_{3})}_{h(x)} y = \underbrace{x^{3} + a_{2}x^{2} + a_{4}x + a_{6}}_{f(x)}, \ h, f \in \mathbb{F}_{q}[x].$$

Group: $E(\mathbb{F}_{q}) = \{ (x, y) \in \mathbb{F}_{q}^{2} : y^{2} + h(x)y = f(x) \} \cup \{ P_{\infty} \}$

Often $q = 2^r$ or q = p, prime. Isomorphic transformations lead to

$$y^2 = f(x)$$
 q odd,
for
 $y^2 + xy = x^3 + a_2x^2 + a_6$
 $y^2 + y = x^3 + a_4x + a_6$ $q = 2^r$, curve non-supersingular

Restrict to fields of odd characteristic or characteristic 0.

Tanja Lange

Group Law in $E(\mathbb{R}), h = 0$

Group Law in $E(\mathbb{R}), h = 0$

Group Law in $E(\mathbb{R}), h = 0$

Notation

This equation has 3 solutions, the *x*-coordinates of P, Q and S, thus

$$(x - x_P)(x - x_Q)(x - x_S) = x^3 - \lambda^2 x^2 + (a_4 - 2\lambda\mu)x + a_6 - \mu^2$$

$$x_S = \lambda^2 - x_P - x_Q$$

Tanja Lange

Point $P \oplus Q$ has the same *x*-coordinate as *S* but negative *y*-coordinate:

$$x_{P\oplus Q} = \lambda^2 - x_P - x_Q, \quad y_{P\oplus Q} = \lambda(x_P - x_{P\oplus Q}) - y_P$$

Tanja Lange

Group Law (q **odd**)

$$E: y^2 = x^3 + a_4x + a_6, \ a_i \in \mathbb{F}_q$$

When doubling, use tangent at P. Compute slope λ via partial derivatives of curve equation:

$$\lambda = \frac{3x_P^2 + a_4}{2y_P}.$$

Remaining computation identical to addition.

$$x_{[2]P} = \lambda^2 - 2x_P, \quad y_{[2]P} = \lambda(x_P - x_{[2]P}) - y_P$$

Tanja Lange

Group Law (q odd)

⇒ Addition and Doubling need 1 I, 2M, 1S and 1 I, 2M, 2S, respectively. Note that -(x, y) = (x, -y).

Tanja Lange

Long Weierstrass equation

$$E: y^{2} + \underbrace{(a_{1}x + a_{3})}_{h(x)} y = \underbrace{x^{3} + a_{2}x^{2} + a_{4}x + a_{6}}_{f(x)}, \ h, f \in \mathbb{F}_{q}[x].$$

$$\lambda = \begin{cases} (y_Q - y_P) / (x_Q - x_P) & \text{if } x_P \neq x_Q, \\ \frac{3x_P^2 + 2a_2x_P + a_4 - a_1y_P}{2y_P + a_1x_P + a_3} & \text{if } P = Q \text{ and } P \neq -Q \end{cases}$$

•
$$P \oplus (-P) = P_{\infty}$$
.
• $P \oplus P_{\infty} = P_{\infty} \oplus P = P$.

Tanja Lange

Relationship between Weierstrass and Edwar

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_4 = (u_4, v_4)$ have order 4 and shift u s.t. $2P_4 = (0, 0)$. Then Weierstrass form:

$$v^{2} = u^{3} + (v_{4}^{2}/u_{4}^{2} - 2u_{4})u^{2} + u_{4}^{2}u.$$

- Define $d = 1 (4u_4^3/v_4^2)$.
- The coordinates $x = v_4 u/(u_4 v)$, $y = (u u_4)/(u + u_4)$ satisfy

$$x^2 + y^2 = 1 + dx^2 y^2.$$

- Inverse map $u = u_4(1+y)/(1-y), v = v_4u/(u_4x).$
- Finitely many exceptional points. Exceptional points have $v(u + u_4) = 0$.

Exceptional points of the map

Points with $v(u + u_4) = 0$ on Weierstrass curve map to points at infinity on desingularization of Edwards curve.

• Reminder:
$$d = 1 - (4u_4^3/v_4^2)$$
.

• $u = -u_4$ is *u*-coordinate of a point iff

$$(-u_4)^3 + (v_4^2/u_4^2 - 2u_4)(u_4)^2 + u_4^2(u_5)$$

= $v_4^2 - 4u_4^3 = v_4^2d$

is a square, i.e., iff d is a square.

- v = 0 corresponds to (0,0) which maps to (0,-1) on Edwards curve and to solutions of $u^2 + (v_4^2/u_4^2 - 2u_4)u + u_4^2 = 0$. Discriminant is $(v_4^2/u_4^2 - 2u_4)^2 - 4u_4^2 = v_4^4 d$,
 - i.e., points defined over k iff d is a square.

Tanja Lange

Complete addition law

- Previous slide shows that for $d \neq \Box$ in \mathbb{F}_q all points of the Weierstrass curve map to the affine part of the Edwards curve; where we extend the map by $P_{\infty} \mapsto (0, 1)$ and $(0, 0) \mapsto (0, -1)$.
- Geometric description: The points (1:0:0) and (0:1:0) at infinity on the Edwards curve are singular. They blow up to two points each on the desingularization of the curve; these points are defined over $\mathbb{F}_q(\sqrt{d})$.
- Attention: Having no \mathbb{F}_q -rational points at infinity does not guarantee that the formulas are complete:

 $(x_3, y_3) = \left((x_1y_1 + x_2y_2) / (x_1x_2 + y_1y_2), (x_1y_1 - x_2y_2) / (x_1y_2 - y_1x_2) \right)$

is addition on Edwards curve ... and fails for doublings.