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Notation

If
n =

l−1∑

i=0

ni2
i

we write n in binary representation

n = (nl−1 . . . n0)2.
E.g.
n = 35 = 32+2+1 = 1 · 25 +0 · 24 +0 · 23 +0 · 22 +1 · 21 +1 · 20,
then 35 = (100011)2.

The following algorithms are stated in some group (G,⊕)
with neutral element O. Scalar multiplication is denoted by
[n]P = P ⊕ P ⊕ · · · ⊕ P (n terms).
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Right–to–Left Binary
IN: An element P ∈ G and a positive integer
n = (nl−1 . . . n0)2.
OUT: The element [n]P ∈ G.

1. R← O, Q← P ,

2. for i = 0 to l − 2 do

(a) if ni = 1 then R← P ⊕Q

(b) Q← [2]Q

3. if nl−1 = 1 then R← P ⊕Q

4. return R

This algorithm computes [35]P = [25]P ⊕ [21]P ⊕ P .
For i = j, at the end of step 2, Q holds [2j+1]P and R holds
[(nj . . . n0)2]P .
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Left–to–Right Binary

IN: An element P ∈ G and a positive integer
n = (nl−1 . . . n0)2, nl−1 = 1.
OUT: The element [n]P ∈ G.

1. R← P

2. for i = l − 2 to 0 do

(a) R← [2]R

(b) if ni = 1 then R← P ⊕R

3. return R

This algorithm computes
[35]P = [2]([2]([2]([2]([2]P ))) ⊕ P )⊕ P .
For i = j the intermediate variable R holds [(nl−1 . . . nj)2]P .
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Number of additions

For each 1 in the binary representation of n we
compute an addition. On average there are l/2
non-zero coefficients.

In some groups (e.g. elliptic curves) P ⊕Q has the
same cost as P ⊖Q), so it makes sense to use negative
coefficients. This gives signed binary expansions.

Note that 31 = 24 + 23 + 22 + 2 + 1 = 25 − 1 and so

[31]P = [2]([2]([2]([2]P ⊕ P )⊕ P )⊕ P )⊕ P )

= [2]([2]([2]([2]([2]P ))))) ⊖ P

Can always replace two adjacent 1’s in the binary
expansion by 101̄ since (11)2 = (101̄)s. (1̄ denotes −1).
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Examples

By systematically replacing runs of 1’s we can achieve
that there are no two adjacent bits that are non-zero.

A representation fulfilling this is called a “non-adjacent
form” (NAF).

NAF’s have the lowest density among all signed binary
expansions (with coefficients in {0, 1,−1}).
(10010100110111010110)2 =
(1001010011011101101̄0)2 =
(10010100110111101̄01̄0)2 =
(100101001110001̄01̄01̄0)2 =
(10010101001̄0001̄01̄01̄0)2

Results no worse, but not necessarily better
35 = (100011)2 = (100101̄)s.
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Non-Adjacent Form
IN: Positive integer n = (nlnl−1 . . . n0)2, nl = nl−1 = 0.
OUT: NAF of n, (n′

l−1 . . . n′

0)s.

1. c0 ← 0

2. for i = 0 to l − 1 do

(a) ci+1 ← ⌊(ci + ni + ni+1)/2⌋
(b) n′

i ← ci + ni − 2ci+1

3. return (n′

l−1 . . . n′
0)s

Resulting signed binary expansion has length at most l + 1,
so longer by at most 1 bit. On average there are l/3
non-zero coefficients.
Also possible to get a representation with the same density
from left to right.

Tanja Lange Scalar Multiplication & Weierstrass Cuves – p. 7



NAF – example
1. c0 ← 0

2. for i = 0 to l − 1 do

(a) ci+1 ← ⌊(ci + ni + ni+1)/2⌋
(b) n′

i ← ci + ni − 2ci+1

3. return (n′

l−1 . . . n′

0)s

35 = (00100011)2, c0 = 0
c1 = ⌊(0 + 1 + 1)/2⌋ = 1, n0 = 0 + 1− 2 = −1
c2 = ⌊(1 + 1 + 0)/2⌋ = 1, n1 = 1 + 1− 2 = 0
c3 = ⌊(1 + 0 + 0)/2⌋ = 0, n2 = 1 + 0− 0 = 1
c4 = ⌊(0 + 0 + 0)/2⌋ = 0, n3 = 0 + 0− 0 = 0
c5 = ⌊(0 + 0 + 1)/2⌋ = 0, n4 = 0 + 0− 0 = 0
c6 = ⌊(0 + 1 + 0)/2⌋ = 0, n5 = 0 + 1− 0 = 1
c7 = ⌊(0 + 0 + 0)/2⌋ = 0, n6 = 0 + 0− 0 = 0⇒ 35 = (100101̄)s
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Generalizations

So far all expansions in base 2 (signed or unsigned).

Generalize to larger base; often 2w (w > 1). Then the
coefficients are in [0, 2w − 1]. Also fractional windows
have been suggested.

w is called window width.

Assume that [m]P for m ∈ [0, 2w − 1] are precomputed.

Easiest way: just group w bits.

Sliding windows: Group w bits and skip forward if LSB
is 0 (requires only odd integers in [0, 2w − 1]) as
coefficients and leads to l/(w + 1) additions).

If ⊖ is cheap, use signed sliding windows; this leads to
l/(w + 2) additions.
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Sliding windows

(10 01 01 00 11 01 11 01 01 10)2 =
(02 01 01 00 03 01 03 01 01 02)2 = (2110313112)4,
needs 8 additions and precomputed [2]P and [3]P

(100101001101 11010110)2 =
(1001010003 0103010030)2,
needs 7 additions and only precomputed [3]P

(10010100110111010110)2 =
(1001010011100003̄0030)2 =
(10010101001̄00003̄0030)2 =
(10011003̄001̄00003̄0030)2 =
(10003003̄001̄00003̄0030)2
needs 5 additions and precomputed [3]P , assuming that
⊖ is available.
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Weierstrass curves
E : y2 + (a1x + a3)

︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Group: E(IFq) = { (x, y) ∈ IF2
q : y2 + h(x)y = f(x) } ∪ {P∞ }

Often q = 2r or q = p, prime. Isomorphic transformations
lead to

y2 = f(x) q odd,

for
y2 + xy = x3 + a2x

2 + a6

y2 + y = x3 + a4x + a6
q = 2r,

curve non-supersingular
curve supersingular

Restrict to fields of odd characteristic or characteristic 0.
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Group Law in E(IR), h = 0

y2 = x3 − x

P

Q
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Group Law in E(IR), h = 0

y2 = x3 − x

P

Q

S
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Group Law in E(IR), h = 0

y2 = x3 − x

P

Q

S

P ⊕Q
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Notation

y2 = x3 − x

P

Q

l : y − λx− µ = 0 P ⊕Q

v : x− c = 0
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

Line y = λx + µ has slope

λ = yQ−yP

xQ−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , Q
and S, thus

(x− xP )(x− xQ)(x− xS) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

xS = λ2 − xP − xQ
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q

Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
yS = λxS + µ

= λxS + yP − λxP

= λ(xS − xP ) + yP

Point P ⊕Q has the same x-coordinate as S but negative
y-coordinate:

xP⊕Q = λ2 − xP − xQ, yP⊕Q = λ(xP − xP⊕Q)− yP
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q

[2]P

[−2]P
When doubling, use tangent at P .
Compute slope λ via partial
derivatives of curve equation:

λ = 3x2

P +a4

2yP
.

Remaining computation identical to
addition.

x[2]P = λ2 − 2xP , y[2]P = λ(xP − x[2]P )− yP
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

Q

S

P ⊕Q

[2]P

[−2]P

In general, for (xP , yP ) 6= (xQ,−yQ):

(xP , yP )⊕ (xQ, yQ) =

= (xP⊕Q, yP⊕Q) =

= (λ2− xP − xQ, λ(xP − xP⊕Q)− yP ),

where

λ =

{

(yQ − yP )/(xQ − xP ) if xP 6= xQ,

(3x2
P + a4)/(2yP ) if P = Q

⇒ Addition and Doubling need
1 I, 2M, 1S and 1 I, 2M, 2S, respectively.

Note that −(x, y) = (x,−y).
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Long Weierstrass equation

E : y2 + (a1x + a3)
︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Negative of P = (xP , yP ) is given by
−P = (xP ,−yP − h(xP )).

(xP , yP )⊕ (xQ, yQ) = (xR, yR) =

= (λ2 + a1λ− a2− xP − xQ, λ(xP − xR)− yP − a1xR − a3),

where

λ =

{

(yQ − yP )/(xQ − xP ) if xP 6= xQ,
3x2

P +2a2xP +a4−a1yP

2yP +a1xP +a3
if P = Q and P 6= −Q

P ⊕ (−P ) = P∞.

P ⊕ P∞ = P∞ ⊕ P = P .
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Relationship between Weierstrass and Edwards

Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let P4 = (u4, v4) have order 4 and shift u s.t. 2P4 = (0, 0).
Then Weierstrass form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

Define d = 1− (4u3
4/v

2
4).

The coordinates x = v4u/(u4v), y = (u− u4)/(u + u4)
satisfy

x2 + y2 = 1 + dx2y2.

Inverse map u = u4(1 + y)/(1− y), v = v4u/(u4x).

Finitely many exceptional points. Exceptional points
have v(u + u4) = 0.
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Exceptional points of the map
Points with v(u + u4) = 0 on Weierstrass curve map to
points at infinity on desingularization of Edwards curve.

Reminder: d = 1− (4u3
4/v

2
4).

u = −u4 is u-coordinate of a point iff

(−u4)
3 + (v2

4/u
2
4 − 2u4)(u4)

2 + u2
4(u5)

= v2
4 − 4u3

4 = v2
4d

is a square, i. e., iff d is a square.

v = 0 corresponds to (0, 0) which maps to (0,−1) on
Edwards curve and to solutions of
u2 + (v2

4/u
2
4 − 2u4)u + u2

4 = 0. Discriminant is

(v2
4/u

2
4 − 2u4)

2 − 4u2
4 = v4

4d,

i. e., points defined over k iff d is a square.
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Complete addition law
Previous slide shows that for d 6= 2 in IFq all points of
the Weierstrass curve map to the affine part of the
Edwards curve; where we extend the map by
P∞ 7→ (0, 1) and (0, 0) 7→ (0,−1).

Geometric description: The points (1 : 0 : 0) and
(0 : 1 : 0) at infinity on the Edwards curve are singular.
They blow up to two points each on the
desingularization of the curve; these points are defined
over IFq(

√
d).

Attention: Having no IFq-rational points at infinity does
not guarantee that the formulas are complete:

(x3, y3) = ((x1y1 + x2y2)/(x1x2 + y1y2), (x1y1 − x2y2)/(x1y2 − y1x2))

is addition on Edwards curve . . . and fails for doublings.
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