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Notation

o -
n = Z ni2i
1=0

we write n In binary representation

Eg n = (nl_l ce no)g.

n=35=324+24+1=1-240-2*4+0-25+0-22+1-21 +1.29,
then 35 = (100011),.

The following algorithms are stated in some group (G, ®)
with neutral element O. Scalar multiplication is denoted by
n|P=POPD---O P (nterms).
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Right—to—Left Binary

ﬁ N: An element P € G and a positive integer T

n = (nl_l .. .n())g.
OUT: The element [n|P € G.

1. R— 0O, Q) «— P,
2. fori=0tol—-2do
@ ifn=1thenR—PDQ
(b) @ < [2]Q
3.ifn_1=1thenR— P& Q
4. return R

This algorithm computes [35]P = [2°|P @ [2}|P & P.
For i = j, at the end of step 2, Q holds [2/*!]P and R holds

\_[(Hj - no)Q]P. J
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Left—to—Right Binary
| -

N: An element P € G and a positive integer
n = (nl_l “. no)g, ni—1 — 1.
OuUT: The element [n|P € G.

1. R P

2. fori=01—-2to0do

(a) R« 2R

() ifn=1thenR+~— P& R
3. returnR

This algorithm computes
351 = [2J([2)([21([2]([2]P))) ® P) ® P.
For : = j the intermediate variable R holds [(n;_;...n;)2]P.

| |
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Number of additions

-

For each 1 in the binary representation of n we
compute an addition. On average there are [/2
non-zero coefficients.

In some groups (e.g. elliptic curves) P & @ has the
same cost as P © ()), so it makes sense to use negative
coefficients. This gives signed binary expansions.

Notethat 31 =2*+23+22+2+1=2°—1andso

3Up = RIEIE(2PeP)oP)®P)® P)
= [2J(2I2](2([2]1P)))) e P

Can always replace two adjacent 1’s in the binary
expansion by 101 since (11); = (101),. (1 denotes —1).

|
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Examples

-

By systematically replacing runs of 1's we can achieve
that there are no two adjacent bits that are non-zero.

A representation fulfilling this is called a “non-adjacent
form” (NAF).

NAF’s have the lowest density among all signed binary
expansions (with coefficients in {0,1, —1}).

(10010100110111010110) =
(10010100110111011010)5
(10010100110111101010)5
(
(

10010100111000101010)5 =
10010101001000101010)5

Results no worse, but not necessarily better
35 = (100011)9 = (100101)s,. o
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Non-Adjacent Form

ﬁN: Positive integer n = (nyn;_1...ng)2, n; = nj_1 = O. T
ouT: NAF of n, (n;_;...ng)s.

1. cg— 0
2. fori=0tol—1do
(@) cit1 « [(ci +n;+nip1)/2]
(b) n «— ci +n; —2¢iq1
3. return (n,_,...nH)s
Resulting signed binary expansion has length at most [ + 1,

so longer by at most 1 bit. On average there are [/3
non-zero coefficients.

Also possible to get a representation with the same density
from left to right.

| |
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NAF — example
fl. co — 0 T

2. fori=0tol—-1do
(@) cit1 «— |(ci+ni +nit1)/2]
(b) n; — ¢; + ni — 2¢i41

3. return (n)_,...n\)s

35 = (00100011)2, cg = 0

ci=10+1+1)/2]=1,np=04+1-2=—1
co=(1+4140)/2]=1,n1=141-2=0

C3 = _(1—|—0—|—0)/2_ =0,n=140—-0=1
c4=(0+040)/2] =0,n3=04+0—-0=0
c5s=[(04+0+1)/2] =0,y =0+0—-0=0
cg=1(0+1+0)/2]=0,n5=0+1-0=1
c7=1(0+0+40)/2] =0,n6 =0+0—0=0= 35=(100101),

| |
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Generalizations

-

So far all expansions in base 2 (signed or unsigned).

Generalize to larger base; often 2% (w > 1). Then the
coefficients are in [0,2* — 1]. Also fractional windows
have been suggested.

w 1S called window width.
Assume that [m|P for m € |0,2" — 1] are precomputed.
Easiest way: just group w bits.

Sliding windows: Group w bits and skip forward if LSB
IS 0 (requires only odd integers in |[0,2* — 1]) as
coefficients and leads to [/(w + 1) additions).

If © Is cheap, use signed sliding windows; this leads to
[/(w + 2) additions. J
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-

Sliding windows

# (10010100110111010110)9 =

(02010100030103010102)2 = (2110313112)4,
needs 8 additions and precomputed [2] P and [3]P

(100101001101 11010110)9 =
(1001010003 0103010030)2,
needs 7 additions and only precomputed [3] P

(10010100110111010110)5
(10010100111000030030)5
(10010101001000030030)2
( )
)

10011003001000030030)5
(10003003001000030030)2
needs 5 additions and precomputed (3] P, assuming that

O Is available. J
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Welerstrass curves

f E :y? +Sa1:z: -+ agzy 2333 + agx? + asx + ag, h, f € IFy[z]. T
h@) /()

Group: E(IFy) = {(z,y) € F] : y* + h(z)y = f(z) } U { Px }

Often ¢ = 2" or ¢ = p, prime. Isomorphic transformations
lead to

y* = f(z) g odd,
for
v +ay = 3+ asx® + ag e curve non-supersingule
'ty = 20+ asr + ag T7 curve supersingular
Eestrict to fields of odd characteristic or characteristic 0. J
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Group Lawin E(IR),h =0
; -

v =23 —x

P o1

DQ

|
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Group Lawin E(IR),h =0
; -

v =23 —x
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Group Lawin E(IR),h =0
; -

v =23 —x
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Notation

=23 —x

l:y—)\aﬁ—,u:O“ PoQ

|
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Group Law (g odd)
|7 E:y2:x3—|—a4aj—|—a6, a; € I, T

Line y = Az + p has slope

p 1 \ = yQ—yP_
TQ—TPp

Equating gives

s Az + p)? = 23 + asx + ag.

This equation has 3 solutions, the z-coordinates of P, ()
and S, thus

(x —zp)(x —20)(T —25) = 25— N2° + (ag — 2M\u)x + ag — pu*

L s = N —xp—1Q J
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Group Law (g odd)

E:y2::€3—|—a4aj—|—a6, a; € I, T

Voeo

p 1
Q +

N

Point P is on line, thus

yp = Axp + u, L.€.
pU=1yp— Arp,
and
ys = Arg+p

= Ars+yp— Axp
= Mag—xp) +yp

Point P & () has the same z-coordinate as S but negative
y-coordinate:

|

Tpag = N —xp — 10, Yprag = NTp — Tpag) — yp J
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Group Law (g odd)

E:y2::€3—|—a4aj—|—a6, a; € I, T

Voeo

Z When doubling, use tangent at P.
— Compute slope ) via partial

derivatives of curve equation:

2| P 2
x \ — 3rp+ay
2yp

N

S
\ Remaining computation identical to
addition.

Tp = A —2xp,  ypp = Map — Tp) — Yp

|
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Group Law (g odd)
|7 E:y2:x3—|—a4aj—|—a6, a; € I, T

/ In general, for (zp,yp) # (xQ, —y0):
P&Q

Z ; (CCP,yP) D ('rQayQ) —
’ — (xP@QayPEBQ) —

= (M —zp— 129, \zp —TPag) — yp),

}[—2P
o 1]
| \ip where

\ y — { yo —yp)/(xg —zp) Ifxp # xq,

(32% + a4)/(2yp) ifP=qQ

= Addition and Doubling need
11,2M, 1S and 11, 2M, 2S, respectively.

Note that —(x,y) = (z, —y).

| |
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Long Welerstrass equation

f E :y? +Sa1:1: + agzy = 333 + a9z® + agx + ag, h, f € IFy[z]. T
h?;) /()

# Negative of P = (xp,yp) IS given by
—P = (ZCP, —Yyp — h([Ep))

® (vp,yp) ® (2Q,yQ) = (TR, YR) =
— ()\2 +aiN—a9g —xp — xQ, )\(xp — xR) —Yyp —a1TR — a,3),
where

A_{ (vg — yp)/(zg —zp) ifzp # 20,

3x%+2a2xp+a4—a1yp I __
S —— fP=qQand P # —(Q

® P®(—P)= P.

L.o P P,=P,®P=P. J
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Relationship between Weierstrass and Edw

B

9

B

Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let Py = (uq,vq) have order 4 and shift v s.t. 2P, = (0,0).
Then Weierstrass form:

v? = u’ + (V3 Jui — 2ug)u® + uiu.
Define d = 1 — (4u3 /v7).

The coordinates =z = vqu/(uqv), y = (v — uq)/(u + uy)
satisfy

2% % =1+ da’y?.
Inverse map v = us(1+y)/(1 —y), v=vau/(usaz).

Finitely many exceptional points. Exceptional points
have v(u + uyg) = 0. J
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Exceptional points of the map

Points with v(u + us) = 0 on Weierstrass curve mapto
points at infinity on desingularization of Edwards curve.

Reminder: d = 1 — (4uj /v3).

u = —uy 1S u-coordinate of a point iff

(—ua)® + (vf /uf — 2ua)(ua)® + uj(us)
= vj —4duy = vid
IS a square, i. e., Iff d is a square.

v = 0 corresponds to (0,0) which maps to (0,—1) on
Edwards curve and to solutions of
u? + (v:/uf — 2uq)u + uf = 0. Discriminant is

(Ui/uﬁ — 2u4)2 — 4“121 — vflld,

i. e., points defined over & iff d is a square. -
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Complete addition law

f.o Previous slide shows that for d # O in I, all points of T
the Weierstrass curve map to the affine part of the
Edwards curve; where we extend the map by
Py — (0,1) and (0,0) — (0,—1).

o Geometric description: The points (1:0:0) and
(0:1:0) atinfinity on the Edwards curve are singular.
They blow up to two points each on the
desingularization of the curve; these points are defined

over IF,(v/d).

# Attention: Having no IF,-rational points at infinity does
not guarantee that the formulas are complete:

(73,y3) = (191 + 22y2) /(2172 + Y1Yy2), (T1y1 — T2y2)/(T1Y2 — Y172))
L IS addition on Edwards curve ... and fails for doublings. J
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