Claim: $deg(P^*(x)S(x)) < n$

Proof.
Proof.

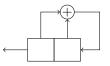
$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^{\infty} s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^{\infty} s_i x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^{\infty} \left(\sum_{j=0}^n c_{n-j}s_{i-j}\right) x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^{\infty} 0 \cdot x^i$$
Definition of LFSR: $s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j} \Rightarrow 0 = \sum_{j=0}^n c_j s_{k+j}$
Change the order of summation: $0 = \sum_{j=0}^n c_{n-j} s_{k+n-j}$
and rename $k + n = i$

Tanja Lange

Using $P(x) = x^2 + x + 1$.

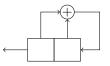


This LFSR produces output $\overline{011}$.

 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Using $P(x) = x^2 + x + 1$.



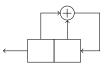
This LFSR produces output $\overline{011}$.

 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Crossmultiplying gives $0 \cdot x^0$

Using $P(x) = x^2 + x + 1$.



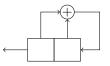
This LFSR produces output $\overline{011}$.

 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Crossmultiplying gives $0 \cdot x^0 + (0+1) \cdot x$

Using $P(x) = x^2 + x + 1$.



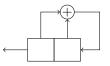
This LFSR produces output $\overline{011}$.

 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Crossmultiplying gives $0 \cdot x^0 + (0+1) \cdot x + (0+1+1) \cdot x^2$

Using $P(x) = x^2 + x + 1$.



This LFSR produces output $\overline{011}$.

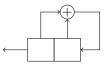
 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Crossmultiplying gives

 $0 \cdot x^0 + (0+1) \cdot x + (0+1+1) \cdot x^2 + (1+1+0) \cdot x^3$

Using $P(x) = x^2 + x + 1$.



This LFSR produces output $\overline{011}$.

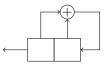
 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Crossmultiplying gives

 $0 \cdot x^{0} + (0+1) \cdot x + (0+1+1) \cdot x^{2} + (1+1+0) \cdot x^{3} + (1+0+1) \cdot x^{4}$

Using $P(x) = x^2 + x + 1$.



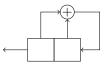
This LFSR produces output $\overline{011}$.

 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

Crossmultiplying gives $0 \cdot x^0 + (0+1) \cdot x + (0+1+1) \cdot x^2 + (1+1+0) \cdot x^3 + (1+0+1) \cdot x^4 + (0+1+1) \cdot x^5$

Using $P(x) = x^2 + x + 1$.



This LFSR produces output $\overline{011}$.

 $P^*(x) = (x^2 + x + 1)^* = x^2(x^{-2} + x^{-1} + 1) = (1 + x + x^2).$ This means the product on the previous slide is

$$(x^{2} + x + 1) \cdot (x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + \cdots)$$

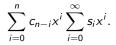
Crossmultiplying gives

 $0 \cdot x^{0} + (0+1) \cdot x + (0+1+1) \cdot x^{2} + (1+1+0) \cdot x^{3} + (1+0+1) \cdot x^{4} + (0+1+1) \cdot x^{5} + (1+1+0) \cdot x^{6} \cdots .$

The coefficients of x^2, x^3, \ldots match shifts of 011 because the coefficient vector of $P^*(x)$ is 111.

The coefficients of x^0 and x^1 have fewer terms because their degree is lower than deg(P).

That's why we need to treat them separately in



Tanja Lange

Example of proof