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Blind signatures

Chaum, 1983
Alice can request signatures from Sam the signer and Sam should not
know what he signs.
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Blind signatures

Chaum, 1983
Alice can request signatures from Sam the signer and Sam should not
know what he signs.

Typical application: eCash.

Sam is a bank, eCash is in the form of signed tokens.

Alice withdraws a token (expense charged to her account) by asking for a
signature on a random serial number chosen by her.

Problem: This allows the bank to trace Alice's payment.
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Blind signatures

Chaum, 1983
Alice can request signatures from Sam the signer and Sam should not
know what he signs.

Typical application: eCash.

Sam is a bank, eCash is in the form of signed tokens.

Alice withdraws a token (expense charged to her account) by asking for a
signature on a random serial number chosen by her.

Problem: This allows the bank to trace Alice's payment.
Solution: Use a homomorphic signature.

Details for RSA:
Sam has keypair ((n, d), (n,e)). Signature on m is m¥ mod n.

1. Alice picks blinding factor 0 < r < n with ged(r, n) = 1.

2. Asks for signature on m’ = r® - m mod n.
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Blind signatures

Chaum, 1983
Alice can request signatures from Sam the signer and Sam should not
know what he signs.

Typical application: eCash.

Sam is a bank, eCash is in the form of signed tokens.

Alice withdraws a token (expense charged to her account) by asking for a
signature on a random serial number chosen by her.

Problem: This allows the bank to trace Alice's payment.
Solution: Use a homomorphic signature.

Details for RSA:
Sam has keypair ((n, d), (n,e)). Signature on m is m¥ mod n.

1. Alice picks blinding factor 0 < r < n with ged(r, n) = 1.
2. Asks for signature on m’ = r® - m mod n.

3. Upon receiving s’ = (m')? = r - m? mod n, computes
s =5s'/r mod n, a valid signature on m.
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Undeniable signature

Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).
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Undeniable signature

Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = seh’;\ to Alice.

Tanja Lange Blind signatures, undeniable signatures



Undeniable signature
Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = sehz to Alice.

1

3. Alice sends back v = ¢@ ', where a~! is computed modulo |G|.
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Undeniable signature
Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = sehz to Alice.

3. Alice sends back v = ¢@ ', where a~! is computed modulo |G|.
4. Bob accepts the signature if (H(m))%g’ = v.
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Undeniable signature
Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = sehz to Alice.
3. Alice sends back v = ¢@ ', where a~! is computed modulo |G|.
4. Bob accepts the signature if (H(m))ég’ = v.
A valid transcript is accepted because

v=c" =(shh)"
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Undeniable signature
Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = sehz to Alice.

3. Alice sends back v = ¢@ ', where a~! is computed modulo |G|.

4. Bob accepts the signature if (H(m))%g’ = v.
A valid transcript is accepted because

v=c? = (shh)? = ((H(m))*g™)? = (H(m))g".
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Undeniable signature
Chaum and vn Antwerpen, 1989, Chaum 1990
Alice gives Bob a signed message, but Bob needs to interact with Alice
to verify it.
Benefit for Alice: she can limit who gets to verify;
she can also prove that she did not produce a purported signature.

Make this acceptable to Bob by adding legal framework
(assume she signed if she refuses to cooperate).

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = sehz to Alice.

3. Alice sends back v = ¢@ ', where a~! is computed modulo |G|.
4. Bob accepts the signature if (H(m))%g’ = v.

A valid transcript is accepted because
v=c = (s = ((H(m)*g™ )" = (H(m))g".

Bob does not learn any information on a: he can compute v anyways.
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Undeniable signature — example

Chaum and vn Antwerpen, 1989, Chaum 1990
Details for DLP-based scheme in group G = (g), H: {0,1}* — G.

a

Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:
1. Bob picks e, f € [1, |G| —1].
2. Computes and sends challenge ¢ = seh’;‘ to Alice.

3. Alice sends back v = c@ .

4. Bob accepts the signature if (H(m))eg’ = v.

Use g =2 € TFp3, |G| = 11.
a=09, thus hy = 2% = 6 mod 23,9’1 =5 mod 11.
Assume H(m) = 15.
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Undeniable signature — example
Chaum and vn Antwerpen, 1989, Chaum 1990

Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.
Verification:

1. Bob picks e, f € [1, |G| —1].

2. Computes and sends challenge ¢ = seh’;‘ to Alice.

3. Alice sends back v = ¢ .

4. Bob accepts the signature if (H(m))eg’ = v.

Use g =2 € TFp3, |G| = 11.
a=09, thus hy = 2% = 6 mod 23,9’1 =5 mod 11.
Assume H(m) = 15. Then s = 15° = 14 mod 23.

1. Bob picks e=2,f =3.
2. Computes and sends challenge ¢ = s¢hf, = 142 . 63 = 16 mod 23.
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Undeniable signature — example

Chaum and vn Antwerpen, 1989, Chaum 1990
Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:

1. Bob picks e, f € [1, |G| —1].

2. Computes and sends challenge ¢ = seh’;‘ to Alice.

3. Alice sends back v = ¢? .

4. Bob accepts the signature if (H(m))ég’ = v.
Use g =2 € TFp3, |G| = 11.
a=09, thus hy = 2% = 6 mod 23,9’1 =5 mod 11.
Assume H(m) = 15. Then s = 15° = 14 mod 23.

1. Bob picks e=2,f =3.

2. Computes and sends challenge ¢ = s¢hf, = 142 . 63 = 16 mod 23.
3. Alice sends back v = ¢ = 16° = 6 mod 23.
4

. Bob accepts the signature if (H(m))¢g’ = 152 - 23 = 6 mod 23
matches v = 6.
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Undeniable signature — example

Chaum and vn Antwerpen, 1989, Chaum 1990
Details for DLP-based scheme in group G = (g), H: {0,1}* — G.
Alice has keypair (a, ha = g?). Signature on mis s = (H(m))?.

Verification:

1. Bob picks e, f € [1, |G| —1].

2. Computes and sends challenge ¢ = seh’;‘ to Alice.

3. Alice sends back v = ¢? .

4. Bob accepts the signature if (H(m))ég’ = v.
Use g =2 € TFp3, |G| = 11.
a=09, thus hy = 2% = 6 mod 23,9’1 =5 mod 11.
Assume H(m) = 15. Then s = 15° = 14 mod 23.

1. Bob picks e=2,f =3.

2. Computes and sends challenge ¢ = s¢hf, = 142 . 63 = 16 mod 23.
3. Alice sends back v = ¢ = 16° = 6 mod 23.
4

. Bob accepts the signature if (H(m))¢g’ = 152 - 23 = 6 mod 23
matches v = 6. Worked.
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Undeniable signature — disavowal
Chaum and vn Antwerpen, 1989, Chaum 1990

If Alice did not produce s, i.e., s # (H(m))?, then verification fails
1. Bob picks e, f € [1,]G| —1].
2. Computes and sends challenge ¢ = seh£ to Alice.
3. Alice sends back v = ¢ .

4. Bob accepts the signature if (H(m))egf =v.

To check whether Alice answers consistently using the correct a—!

Bob does a second round, with new random choices r, t.

Bob then has (for an honest Alice):
n=c  =(sthh) =57 g

-1 -1 —1
w=c = (h)T =5
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Undeniable signature — disavowal
Chaum and vn Antwerpen, 1989, Chaum 1990

If Alice did not produce s, i.e., s # (H(m))?, then verification fails
1. Bob picks e, f € [1,]G| —1].
2. Computes and sends challenge ¢ = seh£ to Alice.
3. Alice sends back v = ¢ .

4. Bob accepts the signature if (H(m))egf =v.

To check whether Alice answers consistently using the correct a—!

Bob does a second round, with new random choices r, t.

Bob then has (for an honest Alice):
n=c  =(sthh) =57 g
vo=cf  =(s"hy) =s"T gt
Thus

(vig™")’
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Undeniable signature — disavowal
Chaum and vn Antwerpen, 1989, Chaum 1990

If Alice did not produce s, i.e., s # (H(m))?, then verification fails
1. Bob picks e, f € [1,]G| —1].
2. Computes and sends challenge ¢ = seh£ to Alice.
3. Alice sends back v = ¢ .

4. Bob accepts the signature if (H(m))egf =v.

To check whether Alice answers consistently using the correct a—!

Bob does a second round, with new random choices r, t.

Bob then has (for an honest Alice):
n=c  =(sthh) =57 g

-1 -1 —1
w=c = (h)T =5

Thus

1

—f\r ea! —f\r e-a “\r
(g ") =(s" g'lg ") = (")
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Undeniable signature — disavowal
Chaum and vn Antwerpen, 1989, Chaum 1990

If Alice did not produce s, i.e., s # (H(m))?, then verification fails
1. Bob picks e, f € [1,]G| —1].
2. Computes and sends challenge ¢ = seh£ to Alice.
3. Alice sends back v = ¢ .

4. Bob accepts the signature if (H(m))egf =v.

To check whether Alice answers consistently using the correct a—!

Bob does a second round, with new random choices r, t.

Bob then has (for an honest Alice):
n=c  =(sthh) =57 g

-1 -1 —1
w=c = (h)T =5

Thus

1 —1 —1 t

(vlg—f)r _ (Se'a’lgfg—f)r _ (se~a’ )r _ (sr'a )e _ (Sr'a g g—t)e _ (V2g—t)e

So accept disavowal (Alice did not sign) if (vig~")" = (vag™t)°.
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