Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Motivation

In the encryption / signature / KEM systems we have seen, the private key has a lot of power.

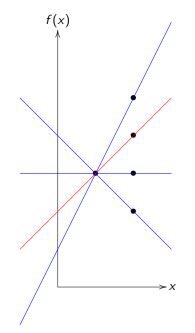
Many structures are set up so that multiple people must contribute to perform an action – think of opening a bank vault with physical keys.

We deal with the simplest case, that all users are equal and that a certain number of them need to contribute, this is called a threshold system.

We share a secret among N users in a way that any t of them can recover it, while t - 1 or fewer get no information on it. This is called a t-out-of-N system.

Can emulate more powerful users by giving them more shares.

Idea



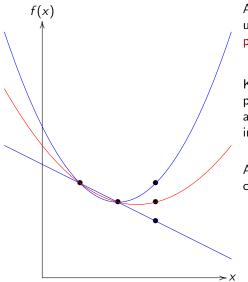
A line is uniquely determined by two points.

Knowing only one point holds no information about where the line intersects the *y*-axis:

Any of the blue lines is a candidate line.

Tanja Lange

Idea

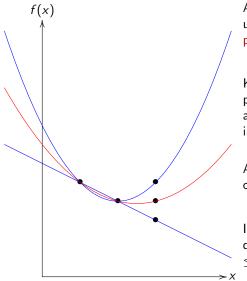


A degree-2 polynomial is uniquely determined by three points.

Knowing only two or fewer points holds no information about where the function intersects the *y*-axis:

Any of the blue graphs is a candidate.

Idea



A degree-2 polynomial is uniquely determined by three points.

Knowing only two or fewer points holds no information about where the function intersects the *y*-axis:

Any of the blue graphs is a candidate.

In general, t points uniquely define a polynomial of degree $\leq t - 1$.

To share integer *a* do the following:

Generate polynomial:

Pick t-1 random integer coefficients $f_1, f_2, \ldots, f_{t-1}$ and define

$$f(x) = a + \sum_{i=1}^{t-1} f_i x^i.$$

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i)); Note that here $i \neq 0$ and $i \neq j$ must hold. (This matches a point in the graph.)

To share integer *a* do the following:

Generate polynomial:

Pick t-1 random integer coefficients $f_1, f_2, \ldots, f_{t-1}$ and define

$$f(x) = a + \sum_{i=1}^{t-1} f_i x^i.$$

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i)); Note that here $i \neq 0$ and $i \neq j$ must hold. (This matches a point in the graph.)

Then t users can reconstruct f(x) by Lagrange interpolation, while t - 1 or fewer users learn nothing about f(0).

To share integer *a* do the following:

Generate polynomial:

Pick t-1 random integer coefficients $f_1, f_2, \ldots, f_{t-1}$ and define

$$f(x) = a + \sum_{i=1}^{t-1} f_i x^i.$$

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i)); Note that here $i \neq 0$ and $i \neq j$ must hold. (This matches a point in the graph.)

Then t users can reconstruct f(x) by Lagrange interpolation, while t - 1 or fewer users learn nothing about f(0).

Note that the shares (i, f(i)) are secret information and must be transmitted in an encrypted manner.

Tanja Lange

Shamir secret sharing

Lagrange interpolation

We can recover the entire polynomial f(x) from t shares, but we only care about f(0) = a.

Let users with shares i_1, i_2, \ldots, i_t with $i_j \neq i_k$ participate in the reconstruction. Then

$$f(0) = \sum_{j=1}^{t} f(i_j) \prod_{k=1, k \neq j}^{t} \frac{i_k}{(i_k - i_j)}.$$

The product is over t - 1 fractions for each summand. Excluding k = j avoids division by zero.

If more than t users contribute, just ignore the surplus shares.

Nobody should ever know a.

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares, computes and uses *a*, and then forgets the shares and *a*.

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares, computes and uses a, and then forgets the shares and a.

It's much better to use the shares locally to perform a partial decryption / signature and then to combine those parts using the Lagrange coefficients.

This uses additivity of the shares and depends on the scheme. See exercise sheet 7 for more.

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares, computes and uses a, and then forgets the shares and a.

It's much better to use the shares locally to perform a partial decryption / signature and then to combine those parts using the Lagrange coefficients.

This uses additivity of the shares and depends on the scheme. See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed manner as well by having t users contribute.

Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the t shares into one.