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Motivation

In the encryption / signature / KEM systems we have seen, the private
key has a lot of power.

Many structures are set up so that multiple people must contribute to
perform an action — think of opening a bank vault with physical keys.

We deal with the simplest case, that all users are equal and that a certain
number of them need to contribute, this is called a threshold system.

We share a secret among N users in a way that any t of them can
recover it, while t — 1 or fewer get no information on it.
This is called a t-out-of-N system.

Can emulate more powerful users by giving them more shares.
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Idea
f(x)

A line is uniquely determined
by two points.

Knowing only one point holds
—_— no information about where
the line intersects the y-axis:

Any of the blue lines is a can-
didate line.
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Idea

f(x) A degree-2 polynomial is
uniquely determined by three
points.

Knowing only two or fewer
points holds no information
about where the function
intersects the y-axis:

Any of the blue graphs is a
candidate.

X
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Idea

f(x) A degree-2 polynomial is
uniquely determined by three
points.

Knowing only two or fewer
points holds no information
about where the function
intersects the y-axis:

Any of the blue graphs is a
candidate.

In general, t points uniquely
define a polynomial of degree
<t-1.

X
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Shamir secret sharing

To share integer a do the following:

Generate polynomial:
Pick t — 1 random integer coefficients fi, f>, ..., f;_1 and define

t—1
f(x)=a+ Z fix'.
i=1

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i));
Note that here i # 0 and / # j must hold.
(This matches a point in the graph.)
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Shamir secret sharing

To share integer a do the following:

Generate polynomial:
Pick t — 1 random integer coefficients fi, f>, ..., f;_1 and define

t—1
f(x)=a+ Z fix'.
i=1

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i));
Note that here i # 0 and / # j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f(x) by Lagrange interpolation,
while t — 1 or fewer users learn nothing about (0).
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Shamir secret sharing

To share integer a do the following:

Generate polynomial:
Pick t — 1 random integer coefficients fi, f>, ..., f;_1 and define

t—1
f(x)=a+ Z fix'.
i=1

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i));
Note that here i # 0 and / # j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f(x) by Lagrange interpolation,
while t — 1 or fewer users learn nothing about (0).

Note that the shares (i, f(i)) are secret information and must be
transmitted in an encrypted manner.
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Lagrange interpolation

We can recover the entire polynomial f(x) from t shares, but we only
care about f(0) = a.

Let users with shares i1, i, ..., iy with ij # i, participate in the
reconstruction. Then

t t

FO)=> f(i) T i/Gx— i)
j=1 k=lhfj ~—o
The product is over t — 1 fractions for each summand. Excluding k =
avoids division by zero.

If more than t users contribute, just ignore the surplus shares.
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Security considerations

Nobody should ever know a.
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Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.
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Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.
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Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It's much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.

This uses additivity of the shares and depends on the scheme.

See exercise sheet 7 for more.
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Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It's much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.

This uses additivity of the shares and depends on the scheme.

See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.
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