
Shamir secret sharing

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology



Motivation

In the encryption / signature / KEM systems we have seen, the private
key has a lot of power.

Many structures are set up so that multiple people must contribute to
perform an action – think of opening a bank vault with physical keys.

We deal with the simplest case, that all users are equal and that a certain
number of them need to contribute, this is called a threshold system.

We share a secret among N users in a way that any t of them can
recover it, while t − 1 or fewer get no information on it.
This is called a t-out-of-N system.

Can emulate more powerful users by giving them more shares.

Tanja Lange Shamir secret sharing 2



Idea
f (x)OO

x//

• •

•

•

•

A line is uniquely determined
by two points.

Knowing only one point holds
no information about where
the line intersects the y -axis:

Any of the blue lines is a can-
didate line.

Tanja Lange Shamir secret sharing 3



Idea

f (x)OO

x//

•
•

•

•
•

A degree-2 polynomial is
uniquely determined by three
points.

Knowing only two or fewer
points holds no information
about where the function
intersects the y -axis:

Any of the blue graphs is a
candidate.

In general, t points uniquely
define a polynomial of degree
≤ t − 1.

Tanja Lange Shamir secret sharing 4



Idea

f (x)OO

x//

•
•

•

•
•

A degree-2 polynomial is
uniquely determined by three
points.

Knowing only two or fewer
points holds no information
about where the function
intersects the y -axis:

Any of the blue graphs is a
candidate.

In general, t points uniquely
define a polynomial of degree
≤ t − 1.

Tanja Lange Shamir secret sharing 4



Shamir secret sharing
To share integer a do the following:

Generate polynomial:
Pick t − 1 random integer coefficients f1, f2, . . . , ft−1 and define

f (x) = a +
t−1∑
i=1

fix
i .

(This polynomial satisfies f (0) = a.)

Generate shares:
Each user receives one secret share (i , f (i));
Note that here i 6= 0 and i 6= j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f (x) by Lagrange interpolation,
while t − 1 or fewer users learn nothing about f (0).

Note that the shares (i , f (i)) are secret information and must be
transmitted in an encrypted manner.

Tanja Lange Shamir secret sharing 5



Shamir secret sharing
To share integer a do the following:

Generate polynomial:
Pick t − 1 random integer coefficients f1, f2, . . . , ft−1 and define

f (x) = a +
t−1∑
i=1

fix
i .

(This polynomial satisfies f (0) = a.)

Generate shares:
Each user receives one secret share (i , f (i));
Note that here i 6= 0 and i 6= j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f (x) by Lagrange interpolation,
while t − 1 or fewer users learn nothing about f (0).

Note that the shares (i , f (i)) are secret information and must be
transmitted in an encrypted manner.

Tanja Lange Shamir secret sharing 5



Shamir secret sharing
To share integer a do the following:

Generate polynomial:
Pick t − 1 random integer coefficients f1, f2, . . . , ft−1 and define

f (x) = a +
t−1∑
i=1

fix
i .

(This polynomial satisfies f (0) = a.)

Generate shares:
Each user receives one secret share (i , f (i));
Note that here i 6= 0 and i 6= j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f (x) by Lagrange interpolation,
while t − 1 or fewer users learn nothing about f (0).

Note that the shares (i , f (i)) are secret information and must be
transmitted in an encrypted manner.

Tanja Lange Shamir secret sharing 5



Lagrange interpolation

We can recover the entire polynomial f (x) from t shares, but we only
care about f (0) = a.

Let users with shares i1, i2, . . . , it with ij 6= ik participate in the
reconstruction. Then

f (0) =
t∑

j=1

f (ij)
t∏

k=1,k 6=j

ik/(ik − ij).

The product is over t − 1 fractions for each summand. Excluding k = j
avoids division by zero.

If more than t users contribute, just ignore the surplus shares.

Tanja Lange Shamir secret sharing 6



Security considerations

Nobody should ever know a.

Once the t parties computed a they don’t need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It’s much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.
This uses additivity of the shares and depends on the scheme.
See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.

Tanja Lange Shamir secret sharing 7



Security considerations

Nobody should ever know a.

Once the t parties computed a they don’t need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It’s much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.
This uses additivity of the shares and depends on the scheme.
See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.

Tanja Lange Shamir secret sharing 7



Security considerations

Nobody should ever know a.

Once the t parties computed a they don’t need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It’s much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.
This uses additivity of the shares and depends on the scheme.
See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.

Tanja Lange Shamir secret sharing 7



Security considerations

Nobody should ever know a.

Once the t parties computed a they don’t need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It’s much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.
This uses additivity of the shares and depends on the scheme.
See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.

Tanja Lange Shamir secret sharing 7



Security considerations

Nobody should ever know a.

Once the t parties computed a they don’t need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It’s much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.
This uses additivity of the shares and depends on the scheme.
See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.

Tanja Lange Shamir secret sharing 7


