Shamir secret sharing

Tanja Lange
Eindhoven University of Technology

2WEF80: Introduction to Cryptology



Motivation

In the encryption / signature / KEM systems we have seen, the private
key has a lot of power.

Many structures are set up so that multiple people must contribute to
perform an action — think of opening a bank vault with physical keys.

We deal with the simplest case, that all users are equal and that a certain
number of them need to contribute, this is called a threshold system.

We share a secret among N users in a way that any t of them can
recover it, while t — 1 or fewer get no information on it.
This is called a t-out-of-N system.

Can emulate more powerful users by giving them more shares.

Tanja Lange Shamir secret sharing 2



Idea
f(x)

A line is uniquely determined
by two points.

Knowing only one point holds
—_— no information about where
the line intersects the y-axis:

Any of the blue lines is a can-
didate line.

Tanja Lange Shamir secret sharing



Idea

f(x) A degree-2 polynomial is
uniquely determined by three
points.

Knowing only two or fewer
points holds no information
about where the function
intersects the y-axis:

Any of the blue graphs is a
candidate.

X

Tanja Lange Shamir secret sharing 4



Idea

f(x) A degree-2 polynomial is
uniquely determined by three
points.

Knowing only two or fewer
points holds no information
about where the function
intersects the y-axis:

Any of the blue graphs is a
candidate.

In general, t points uniquely
define a polynomial of degree
<t-1.

X

Tanja Lange Shamir secret sharing 4



Shamir secret sharing

To share integer a do the following:

Generate polynomial:
Pick t — 1 random integer coefficients fi, f>, ..., f;_1 and define

t—1
f(x)=a+ Z fix'.
i=1

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i));
Note that here i # 0 and / # j must hold.
(This matches a point in the graph.)

Tanja Lange Shamir secret sharing



Shamir secret sharing

To share integer a do the following:

Generate polynomial:
Pick t — 1 random integer coefficients fi, f>, ..., f;_1 and define

t—1
f(x)=a+ Z fix'.
i=1

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i));
Note that here i # 0 and / # j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f(x) by Lagrange interpolation,
while t — 1 or fewer users learn nothing about (0).

Tanja Lange Shamir secret sharing



Shamir secret sharing

To share integer a do the following:

Generate polynomial:
Pick t — 1 random integer coefficients fi, f>, ..., f;_1 and define

t—1
f(x)=a+ Z fix'.
i=1

(This polynomial satisfies f(0) = a.)

Generate shares:

Each user receives one secret share (i, f(i));
Note that here i # 0 and / # j must hold.
(This matches a point in the graph.)

Then t users can reconstruct f(x) by Lagrange interpolation,
while t — 1 or fewer users learn nothing about (0).

Note that the shares (i, f(i)) are secret information and must be
transmitted in an encrypted manner.

Tanja Lange Shamir secret sharing



Lagrange interpolation

We can recover the entire polynomial f(x) from t shares, but we only
care about f(0) = a.

Let users with shares i1, i, ..., iy with ij # i, participate in the
reconstruction. Then

t t

FO)=> f(i) T i/Gx— i)
j=1 k=lhfj ~—o
The product is over t — 1 fractions for each summand. Excluding k =
avoids division by zero.

If more than t users contribute, just ignore the surplus shares.

Tanja Lange Shamir secret sharing



Security considerations

Nobody should ever know a.

Tanja Lange Shamir secret sharing



Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

Tanja Lange Shamir secret sharing



Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

Tanja Lange Shamir secret sharing



Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It's much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.

This uses additivity of the shares and depends on the scheme.

See exercise sheet 7 for more.

Tanja Lange Shamir secret sharing



Security considerations

Nobody should ever know a.

Once the t parties computed a they don't need the others anymore.

This is solved (in theory) by using a trusted party who gets the shares,
computes and uses a, and then forgets the shares and a.

It's much better to use the shares locally to perform a partial decryption
/ signature and then to combine those parts using the Lagrange
coefficients.

This uses additivity of the shares and depends on the scheme.

See exercise sheet 7 for more.

We cannot trust anybody to forget secrets, so generate a in a distributed
manner as well by having t users contribute.
Each of the t users then shares their input in a t-out-of-N manner.

A user should get all his shares for the same i so that he can combine the
t shares into one.

Tanja Lange Shamir secret sharing 7



