ElGamal encryption and signature

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

ElGamal encryption

For historical purposes only

- ▶ This scheme does encrypt messages, requires messages to be in *G*.
- ► Alice publishes long-term public key h_A = g^a, keeps long-term private key a.
- Any user can encrypt to Alice using this key:
 - Pick random k, compute $r = g^k$.
 - Encrypt $m \in G$ as $c = (g^a)^k \cdot m$.
 - ▶ Send (*r*, *c*).
 - Alice decrypts, by computing $m = c/(r^a) = (g^a)^k \cdot m/g^{ak}$.

Positives:

- Is homomorphic.
- Is randomized.
- Downsides:
 - Requires $m \in G$.
 - Is homomorphic.
 - Not OW-CCA II secure.

ElGamal signature

- ► This requires computing inverses modulo the order of g. Easiest to describe if ord(g) = l is prime.
- ► Alice publishes long-term public key h_A = g^a, keeps long-term private key a.
- Alice signs message m:
 - Pick random k, compute r = g^k, and s ≡ k⁻¹(H(m) − ar) mod ℓ.
 - ▶ Signature is (*r*, *s*).
- ► Anybody can verify signature: Compute g^{H(m)} - r^s · (h_A)^r, accept if 0.
- Valid signatures get accepted:

ElGamal signature

- ► This requires computing inverses modulo the order of g. Easiest to describe if ord(g) = l is prime.
- Alice publishes long-term public key h_A = g^a, keeps long-term private key a.
- Alice signs message m:
 - Pick random k, compute r = g^k, and s ≡ k⁻¹(H(m) − ar) mod ℓ.
 - ▶ Signature is (*r*, *s*).
- ► Anybody can verify signature: Compute g^{H(m)} - r^s · (h_A)^r, accept if 0.
- Valid signatures get accepted:

$$r^{s} \cdot (h_{A})^{r} = g^{k \cdot k^{-1}(H(m)-ar)} \cdot g^{ar} = g^{H(m)}$$

Thus the difference is 0.

Note that computations in the exponent of g happen modulo the order of g.