Baby-stp giant-step attack

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Attack on the discrete-logarithm problem

Let $g \in G$ with $\operatorname{ord}(g) = \ell$. Let $m = \lfloor \sqrt{\ell} \rfloor$. Let $h = g^a$ for secret a.

Write $a = a_0 + a_1 m$ and split the search space. (Typical meet-in-the-middle attack).

Search for a match of g^i with $g^{-jm}h$, find it at at $i = a_0, j = a_1$.

Tanja Lange

The BSGS algorithm

Baby steps	 Compute table with (gⁱ, i) for 0 ≤ i < m; Sort by first element while computing.
Preparation	• Reach g^m , invert: $S = g^{-m}$.
Giant steps	 Starting at j = 0, 1, 2, 3,, compute S^jh and compare with table entries. Match instantly gives g^{-jm}h = gⁱ, thus a = i + jm.
Cost	Each BS or GS costs 1 MULT.

▶ Total cost ($\leq 2m + 2$) MULTs +1INV.

The BSGS algorithm

Baby steps	 Compute table with (gⁱ, i) for 0 ≤ i < m; Sort by first element while computing.
^D reparation	• Reach g^m , invert: $S = g^{-m}$.
Giant steps	 Starting at j = 0, 1, 2, 3,, compute S^jh and compare with table entries. Match instantly gives g^{-jm}h = gⁱ, thus a = i + jm.
Cost	 ► Each BS or GS costs 1 MULT. ► Total cost (≤ 2m + 2) MULTs +1INV.

Example: see exercise sheet.

Optimizations

Using $g^{jm}h$ in the giant steps avoids inversion but needs reduction mod ℓ to get the result.

Can optimize by interleaving baby and giant steps (needs $\log_2 n$ MULTs for exponentiation again).