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RSA encryption is homomorphic

An encryption system is homomorphic if there exist operations ◦ on the
ciphertext space and 4 on the message space so that

Enck(m1) ◦ Enck(m2) = Enck(m14m2).

For RSA we have

c1 · c2 ≡ me
1 ·me

2 ≡ (m1 ·m2)e mod n,

so RSA is homomorphic with ◦ = 4 being multiplication modulo n.

Homomorphic properties can be desired, so this is not strictly a problem,
but it’s important to be aware of them.

RSA signatures are not homomorphic because they use h(m).
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Security requirements

Attacker goals

I Recover m from Encpk(m),
i.e. break one-wayness (OW).

Attacker abilities

I Chosen ciphertext attack (CCA I / II)
Attacker can ask for decryptions of ciphertexts of his choice.
For II the attacker can continue asking for decryptions after
receiving a challenge ciphertext.

Homomorphic systems cannot be OW-CCA II secure:
Pick random message r compute cr = Encpk(r) and submit

c 6= c ′ = cr ◦ c = Encpk(r) ◦ Encpk(m) = Encpk(r4m)

for decryption. From r4m recover m.

The fine print: This requires 4 to be an operation so that m can be recovered from
r4m and r . Note that the attacker has no restrictions in choosing r other than c ′ 6= c.
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What if Sign(m) ≡ md mod n?
Attacker goals

I Produce forgeries on any message m.
i.e., break universal unforgeability (UU).

I Create some forgery (no control over the message),
i.e., break existential unforgeability (EU).

Attacker abilities
I Known message attack (KMA)

Attacker knows some (m,Sign(m)) pairs.
I Chosen message attack (CMA)

Attacker can request signatures (m,Sign(m))
on messages m of his choice.

Attack on EU-KMA,, given (m1,Sign(m1))
Compute m2 ≡ m2

1 mod n and s2 ≡ (Sign(m1))2 mod n.
Then (m2, s2) is a valid signature on a new message m2.

Attack on UU-CMA:
To eventually construct a signature on m, compute m′ ≡ m · 2e mod n
and request a signature on m′.
Upon receipt of (m′,Sign(m′)) = (m′, (m · 2e)d) = (m′,md · 2),
present (m, (Sign(m′)/2 mod n)) as valid signature on m.
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Back to RSA encryption

Attacker goals

I Learn any information about plaintext (semantic security).
Equivalent to breaking Indistinguishability (IND),
i.e., learning which of two attacker-chosen messages m0,m1 was
encrypted in c = Encpk(mi ) (beyond 50% chance of guessing.)

Attacker abilities

I Chosen plaintext attack (CPA)
Attacker gets encryption of plaintexts of his choice.

Schoolbook RSA is not IND-CPA secure:
Attacker chooses two random messages m0,m1.
Challenger picks b ∈ {0, 1} at random and sends back c = Enc(mb)..

Schoolbook RSA is deterministic!
The attacker can just compute me

0 mod n and me
1 mod n and check

which one matches c .

Not IND-CPA secure implies not IND-CCA secure.
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RSA PKCS#1 v1.5
All the following numbers are written in hexadecimal, i.e. 0 means 0000.

PKCS#1 v1.5 randomizes and pads message m to

pad(m) = 00 02 r 00m,

where r is a randomly chosen, with the condition that r does not include
00. The length of r is at least 8 bytes and is chosen so that pad(m) has
the same length as the modulus n.

Decoding must check for 00 02 as the start of pad(m), else output failure.
Then find 00 (scanning from the left) and thus m.
If no 00 is found, the decoder outputs failure.

1998 Bleichenbacher noticed that the failure messages can be used for an
attack. Let c ≡ (pad(m))e mod n and ` = blog2 nc+ 1.

Send se · c mod n for some s.
If there is no decoding failure then s · pad(m) starts with 00 02, i.e.,

s · pad(m)− k · n ∈ [2 · 2`−16, 3 · 2`−16].

know s so “know” k

Build up many relations and recover m.
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Lessons learned

I Must use RSA with randomized padding!

I PKCS#1 v1.5 is a negative example which is broken using
Bleichenbacher’s attack, see https://robotattack.org/ for a
recent attack in practice.

I RSA-OAEP is a better padding scheme.

I The hash function is essential in RSA signatures.
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