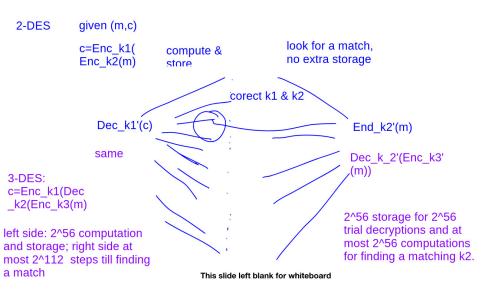
Live session 07 Dec 2020

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Picture from Canvas conference session



Picture from Canvas conference session

Generalize to 2n+1-DES. Then left hand side does 2^{56*n} operations and stores them. The RHS does $2^{n+1}56$ operations

Grover's seach algorithm take $2^{n/2}$ to compute a key of n bits.

However this needs a very big and stable quantum computer.

Padding is often dangerous; look up padding attacks.

Padding is encoding (not encryption or such), the operation is public and invertible. Communicating parties need to agree on how it is used.

Merkle-Damgård construction

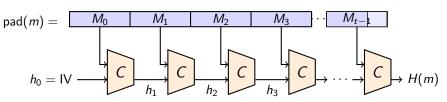
While the definition says $H: \{0,1\}^* \to \{0,1\}^n$ most constructions take data in blocks of a fixed number of bits.

Let pad(m) = M_0 M_1 M_1 ... M_{t-1} be the message padded up to a multiple of the block length n so that $m=m_0$ m_1 m_2 ... $m_{\ell-1}$ turns into $M_0=m_0$ m_1 m_2 ... m_{n-1} , $M_1=m_n$ m_{n+1} m_{n+2} ... m_{2n-1} , ... $M_{t-1}=m_{(t-1)n}$ $m_{(t-1)n+1}$ $m_{(t-1)n+2}$... $m_{\ell-1}$ p_0 p_1 ... p_{j-1} , where $t=\lceil \ell/n \rceil$, p_0,p_1,\ldots,p_{j-1} are padding bits and $j=tn-\ell$

Merkle-Damgård construction

While the definition says $H: \{0,1\}^* \to \{0,1\}^n$ most constructions take data in blocks of a fixed number of bits.

Let pad(m) = $M_0 \, M_1 \, M_1 \, \dots \, M_{t-1}$ be the message padded up to a multiple of the block length n so that $m=m_0 \, m_1 \, m_2 \dots m_{\ell-1}$ turns into $M_0=m_0 \, m_1 \, m_2 \dots m_{n-1}, M_1=m_n \, m_{n+1} \, m_{n+2} \dots m_{2n-1}, \dots$ $M_{t-1}=m_{(t-1)n} \, m_{(t-1)n+1} \, m_{(t-1)n+2} \dots m_{\ell-1} \, p_0 \, p_1 \dots p_{j-1},$ where $t=\lceil \ell/n \rceil, \, p_0, p_1, \dots, p_{j-1}$ are padding bits and $j=tn-\ell$



C in the Merkle-Damgård construction is a compression function

$$C: \{0,1\}^{2n} \to \{0,1\}^n.$$

Each step takes the *n*-bit h_{i-1} (previous output or $h_0 = IV$) and *n* message bits and compresses these to $h_i = C(M_{i-1}, h_{i-1})$ of *n* bits.

Image credit: adapted from Jérémy Jean.

Tanja Lange Live session 07 Dec 2020 4

Example: MD4 C_i D_i B_i A_i $M'_{ii} \longrightarrow \coprod$ ⋘ 5 C_{i+1} D_{i+1} A_{i+1} B_{i+1}

Each M_i turns into 48 M_{ii} of 32-bit. One call to C is 48 rounds.

Picture credit Jérémy Jean Live session 07 Dec 2020