Modes of operation

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Background

Block ciphers encrypt block of b bits:

Enc:
$$\{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^n$$
, Enc_k(m) = c.

- Split longer messages into blocks of b bits; append padding: pad(m) = M₀ M₁ M₂...M_{t−1}; M_{t−1} may include padding.
- Simplest mode is electronic codebook mode (ECB): encrypt blocks independently.

Image credits: ECB mode: adapted from Jérémy Jean, ECB penguin: By en:User:Lunkwill

Background

Block ciphers encrypt block of b bits:

Enc: $\{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^n$, Enc_k(m) = c.

- Split longer messages into blocks of b bits; append padding: pad(m) = M₀ M₁ M₂...M_{t−1}; M_{t−1} may include padding.
- Simplest mode is electronic codebook mode (ECB): encrypt blocks independently.

Image credits: ECB mode: adapted from Jérémy Jean, ECB penguin: By en:User:Lunkwill

Background

Block ciphers encrypt block of b bits:

Enc: $\{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^n$, Enc_k(m) = c.

- Split longer messages into blocks of b bits; append padding: pad(m) = M₀ M₁ M₂...M_{t−1}; M_{t−1} may include padding.
- Simplest mode is electronic codebook mode (ECB): encrypt blocks independently.

Image credits: ECB mode: adapted from Jérémy Jean, ECB penguin: By en:User:Lunkwill

Cipher-block-chaining mode (CBC)

To encrypt message *m* under key *k*, pick IV and determine blocks M_i . Then $C_0 = \text{Enc}_k(M_0 + \text{IV})$, $C_i = \text{Enc}_k(M_i + C_{i-1})$ for i > 0. Send ciphertext IV $C_0 C_1 C_2 \dots C_{t-1}$.

Cipher-block-chaining mode (CBC)

To encrypt message *m* under key *k*, pick IV and determine blocks M_i . Then $C_0 = \text{Enc}_k(M_0 + \text{IV})$, $C_i = \text{Enc}_k(M_i + C_{i-1})$ for i > 0. Send ciphertext IV $C_0 C_1 C_2 \dots C_{t-1}$.

Decrypt: $M_0 = \operatorname{Dec}_k(C_0) + \operatorname{IV}, \quad M_i = \operatorname{Dec}_k(C_i) + C_{i-1} \text{ for } i > 0.$

To retrieve M_i we need only C_{i-1} , C_i : locally decryptable.

Tanja Lange

Image credit: adapted from Jérémy Jean

Output-feedback mode (OFB)

To encrypt, use: $C_i = M_i + \operatorname{Enc}_k^{i+1}(\mathsf{IV})$ for $i \ge 0$.

To decrypt, use:: $M_i = C_i + \operatorname{Enc}_k^{i+1}(\operatorname{IV})$ for $i \ge 0$.

- OFB does not require Dec_k.
- Encryption resembles data flow in stream cipher.
- Later blocks have higher cost, but Encⁱ⁺¹_k(IV) can be precomputed. (No dependence on M_i.)

Image credit: adapted from Jérémy Jean

Tanja Lange

Here IV | i means writing *i* in binary and concatenating it with IV. IV length limits space for counter. IV must not repeat. Can use binary addition instead of concatenation.

To encrypt, use: $C_i = M_i + \operatorname{Enc}_k(\operatorname{IV} \mid i)$ for $i \ge 0$.

To decrypt, use:: $M_i = C_i + \operatorname{Enc}_k(\operatorname{IV} \mid i)$ for $i \ge 0$.

- CTR does not require Dec_k.
- Each block has same cost, can precompute encryption stream; can locally encrypt and decrypt.

Tanja Lange

Modes of operation detection adapted from Jérémy Jean

Warnings!

- Always authenticate and check integrity!
 - Block ciphers need modes and MACs.
 - Stream ciphers need MACs.
- ► Typically, Alice and Bob share a key k from which encryption key k_{enc} and authentication key k_{auth} are computed. Example k_{enc} = H(k 0), k_{auth} = H(k 1).
- IV needs to be sent as part of the ciphertext.
 Most modes require non-repeating IVs (else two-time pad).
- There are more modes; many have issues with padding. (See homework 3 for an interesting case).

Warnings!

- Always authenticate and check integrity!
 - Block ciphers need modes and MACs.
 - Stream ciphers need MACs.
- ► Typically, Alice and Bob share a key k from which encryption key k_{enc} and authentication key k_{auth} are computed. Example k_{enc} = H(k 0), k_{auth} = H(k 1).
- IV needs to be sent as part of the ciphertext.
 Most modes require non-repeating IVs (else two-time pad).
- There are more modes; many have issues with padding. (See homework 3 for an interesting case).
- ► Modes like AES-GCM achieve authenticated encryption.
- Sometimes want to authenticate and protect integrity of more data than we encrypt, e.g., sequence numbers in protocols. Authenticated encryption with associated data (AEAD) is the right tool for this.
- AEAD can be built from pieces we know, but more efficient or more secure when purpose built, see the Caesar competition.