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Encryption and authentication

// // //

I Simplest case: Alice and Bob share a secret key .

I Prerequisite: Eve doesn’t know .

I Alice and Bob exchange any number of messages.

I Encryption takes plaintext m and produces ciphertext c ,
decryption takes c and produces m so that Dec(Enc(m)) = m.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.

I Security goal #3: Authenticity, i.e., recognizing Eve impersonating.

I Decryption fails for invalid ciphertexts.
(This needs a definition of what “invalid” means).
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Motivation

Encryption using stream cipher (or OTP) as c = m + s, taken modulo 2.

011001110011001010010010111001

+ 010111101100011010110100101001

--------------------------------

001110011111010000100110010000

Flipping bit i in the ciphertext means flipping bit i in the plaintext.

Encryption requires integrity protection!

: send c ,H(c). Checksum H(c) detects changes in c .

But Eve could change that to c ′,H(c ′).

Solution(?): Send c ,H(m).

This works if m is secret.
Not desirable to decrypt before checking validity.

Positive feature:
Bob is sure that Alice sent this, as sender must know encryption key.
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Message authentication code (MAC)
A MAC is a cryptographic checksum ensuring integrity and authenticity.

It takes a message (plaintext or ciphertext) and a shared key and
produces the authentication tag:

MAC : {0, 1}∗ × {0, 1}` → {0, 1}n.

Like hash functions, MACs take blocks of bits; some padding rules apply.

Security requirements

I Computing a valid MAC without knowing k is hard.

I Given a valid pair (c ,MAC(c , k)) it is hard to produce a valid pair
(c ′,MAC(c ′, k)) for c ′ 6= c .

I Even given the power to request MAC(ci , k) on chosen messages ci
it is hard to produce a valid pair (c ′,MAC(c ′, k)) for new c ′ 6= ci .

Note

I Alice and Bob typically share encryption key and authentication key.
Key k here is the authentication key.

I A MAC convinces Bob that the message came from Alice;
it cannot convince outsiders: Alice and Bob share key k.
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Simple MAC
Define MAC(c , k) = H(k c), for cryptographic hash function H.

Want c in the second position so that collisions in H cannot be turned
into forged MACs. (This matters in the 3rd scenario where the attacker
can request MACs on chosen messages).

pad(c) = C0 C1 C2 C3 Ct−1· · ·

Ch0 =IV C
h1

C
h2

C
h3

· · · C H(c)

Simple MAC is insecure if H uses the Merkle-Damg̊ard construction:

H(k c Ct) = C (Ct ,H(k c))

is computable from MAC(c , k) = H(k c) without knowing k.

Patch by insisting on fixed padding at end of message or use other H.

General comment: We typically want to encrypt then MAC.
Image credit: adapted from Jérémy Jean.
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HMAC

There are many MAC designs
in the literature. (*MAC exists
for almost all values of *.)

HMAC (1996) by Bellare, Canetti,
and Krawczyk.

HMAC deals with issues
such as length-extension
attacks (Merkle-Damg̊ard)
or collisions in H by putting
k at beginning and end.

Also uses two different
padding strings (ipad, opad)
to tweak the key:
HMAC(c , k) = H((k+opad)H((k+ipad) c))
(some details to fit k into one block of H).

Image credit: adapted from Carl Richard Theodor Schneider.
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