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Motivation

Want a short handle to some larger piece of data such that:

I it (probably) uniquely identifies the larger piece of data;

(think of PGP fingerprints)

I even a small change in the large data leads to a different handle;

(think of vs. as some bits flip in the data)

I one cannot compute the fingerprint without knowing all the data;

(fingerprint forms a commitment to the data.)

I the fingerprints are (close to) uniformly distributed;

(can use them – or parts thereof – to assign data to buckets.)

I one cannot reconstruct the data from the fingerprint.

(at least sometimes that’s desired.)
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Cryptographic hash functions
A cryptographic hash function H maps

H : {0, 1}∗ → {0, 1}n

bit strings of arbitrary length to bit strings of length n.

A secure hash function satisfies the following 3 properties:

Preimage resistance: Given y ∈ H({0, 1}∗) finding x ∈ {0, 1}∗ with
H(x) = y is hard.

y is fixed and known to be the image of some x ∈ {0, 1}∗.
Typically there are many such x , but it should be
computationally hard to find any.

Second preimage resistance: Given x ∈ {0, 1}∗ finding x ′ ∈ {0, 1}∗ with
x 6= x ′ and H(x ′) = H(x) is hard.

x ∈ {0, 1}∗ fixes H(x) = y . Typically there are many
other x ′ 6= x with the same image, but it should be
computationally hard to find any.

Collision resistance: Finding x , x ′ ∈ {0, 1}∗ with x 6= x ′ and
H(x ′) = H(x) is hard.

This property leaves full flexibility to choose any target y .
Nevertheless it should be computationally hard to find any
x 6= x ′ with the same image.
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Generic hardness

If the output of H is distributed uniformly then
each y has a 1/2n chance of being the image.

Hence it takes about 2n calls to H to find a preimage.

The same approach works to find second preimages.
The probability that same x is found is negligible.

Hence it takes about 2n calls to H to find a second preimage.

The birthday paradox implies that if one draws elements at random from
a set of m elements, then with 50% probability one has picked one
element twice after about

√
m picks.

Hence it takes O(2n/2) calls to H to find a collision.

This number is much lower than the other two because there is no
restriction on the target.

Note that these are the highest possible complexities one can hope for.
Some hash functions require far fewer operation to break.
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Merkle-Damg̊ard construction
While the definition says H : {0, 1}∗ → {0, 1}n
most constructions take data in blocks of a fixed number of bits.

Let pad(m) = M0 M1 M1 . . . Mt−1 be the message padded up to a
multiple of the block length n so that m = m0 m1 m2 . . .m`−1 turns into
M0 = m0 m1 m2 . . .mn−1,M1 = mn mn+1 mn+2 . . .m2n−1, . . .
Mt−1 = m(t−1)n m(t−1)n+1 m(t−1)n+2 . . .m`−1 p0 p1 . . . pj−1, where
t = d`/ne, p0, p1, . . . , pj−1 are padding bits and j = tn − `

pad(m) = M0 M1 M2 M3 Mt−1· · ·

Ch0 = IV C
h1

C
h2

C
h3

· · · C H(m)

C in the Merkle-Damg̊ard construction is a compression function

C : {0, 1}2n → {0, 1}n.
Each step takes the n-bit hi−1 (previous output or h0 = IV) and n
message bits and compresses these to hi = C (Mi−1, hi−1) of n bits.

Image credit: adapted from Jérémy Jean.
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Properties of Merkle-Damg̊ard construction

pad(m) = M0 M1 M2 M3 Mt−1· · ·

Ch0 =IV C
h1

C
h2

C
h3

· · · C H(m)

The iterative design makes analysis easier.

I If C : {0, 1}2n → {0, 1}n is collision resistant then so is H.

I H is only collision resistant if C is.

The construction means that hashes can be computed incrementally,
e.g., one can stream data one block at a time into a small hashing device.

We used this as a feature in finding partial SHA-1 collisions,
see our write up for details.

Image credit: adapted from Jérémy Jean.
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Summary of hash functions

Hash functions are used in

I public-key signatures
(see video Public-key and symmetric-key cryptology);

I symmetric-key authentication
(see video Message authentication codes (MACs)).

Cryptographic libraries support several hash functions:

I In use and probably OK: SHA-256, SHA-384, SHA-512; SHA-3,
SHAKE, other SHA-3 finalists.

I SHA-1 is still in use for fingerprints, e.g. for git and PGP.
Collisions were computed in 2017 https://shattered.io/.
Practical attack (chosen prefix collision) in 2020
https://sha-mbles.github.io/

I MD5: collisions (2004) and chosen-prefix collisions (2008).
Flame malware (2012) used MD5 collision to create signature
on fake Windows update.

I MD4: efficient collisions (1995), very efficient collisions (2004).
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