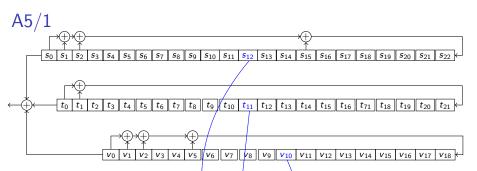

Practical use of LFSRs


Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

- \blacktriangleright A5/1 was standardized for GSM, still used in 2G.
- ► 3 LFSRs with primitive characteristic polynomials: $x^{23} + x^{15} + x^2 + x + 1$, $x^{22} + x + 1$, and $x^{19} + x^5 + x^2 + x + 1$.

- A5/1 was standardized for GSM, still used in 2G.
- ► 3 LFSRs with primitive characteristic polynomials: $x^{23} + x^{15} + x^2 + x + 1$, $x^{22} + x + 1$, and $x^{19} + x^5 + x^2 + x + 1$.
- Achieves some nonlinearity by
 - checking the values of \vec{s}_{12} , \vec{t}_{11} , and \vec{v}_{10} ,
 - advancing only the LFSRs for which these check bits agree with the majority of the check bits.
- This means that at least 2 LFSRs advance per step.
- 64 key bits, but 10 set to 0.

- GSM uses 22-bit frame numbers (\approx IV).
- ▶ The LFSRs are fixed, so where do the key bits go?

- GSM uses 22-bit frame numbers (\approx IV).
- The LFSRs are fixed, so where do the key bits go?
- ▶ Run key setup with key k and frame number f.
 - 1. Initialize all registers to 0: $R_1 = R_2 = R_3 = 0$.
 - 2. for i = 0 to 63:

clock all three registers (this advances all of them)

 $R_1[22] = R_1[22] + k[i]; R_2[21] = R_2[21] + k[i]; R_3[18] = R_3[18] + k[i].$

3. for i = 0 to 21

clock all three registers (this advances all 3)

 $R_1[22] = R_1[22] + f[i]; R_2[21] = R_2[21] + f[i]; R_3[18] = R_3[18] + f[i].$

- ► Run A5/1 for 100 cycles and discard the output. This uses clocking by s₁₂, t₁₁, and v₁₀,
- ► Run A5/1 for 228 cycles and use the output as keystream. This uses clocking by s₁₂, t₁₁, and v₁₀,

- GSM uses 22-bit frame numbers (\approx IV).
- The LFSRs are fixed, so where do the key bits go?
- ▶ Run key setup with key k and frame number f.
 - 1. Initialize all registers to 0: $R_1 = R_2 = R_3 = 0$.
 - 2. for i = 0 to 63:

clock all three registers (this advances all of them)

 $R_1[22] = R_1[22] + k[i]; R_2[21] = R_2[21] + k[i]; R_3[18] = R_3[18] + k[i].$

3. for i = 0 to 21

clock all three registers (this advances all 3)

 $R_1[22] = R_1[22] + f[i]; R_2[21] = R_2[21] + f[i]; R_3[18] = R_3[18] + f[i].$

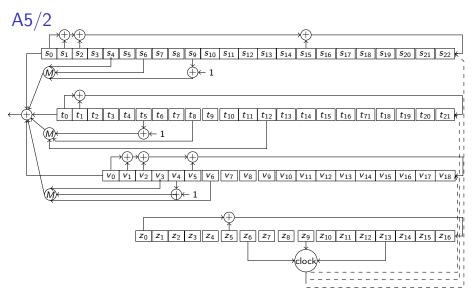
- ► Run A5/1 for 100 cycles and discard the output. This uses clocking by s₁₂, t₁₁, and v₁₀,
- ► Run A5/1 for 228 cycles and use the output as keystream. This uses clocking by s₁₂, t₁₁, and v₁₀,
- The design was kept secret, though partially revealed already in 1994 by Ross Anderson; fully reverse engineered by Marc Briceno, Ian Goldberg, and David Wagner, who cryptanalyzed it and posted a readable implementation.

- GSM uses 22-bit frame numbers (\approx IV).
- The LFSRs are fixed, so where do the key bits go?
- Run key setup with key k and frame number f.
 - 1. Initialize all registers to 0: $R_1 = R_2 = R_3 = 0$.
 - 2. for i = 0 to 63:

clock all three registers (this advances all of them)

 $R_1[22] = R_1[22] + k[i]; R_2[21] = R_2[21] + k[i]; R_3[18] = R_3[18] + k[i].$

3. for i = 0 to 21


clock all three registers (this advances all 3)

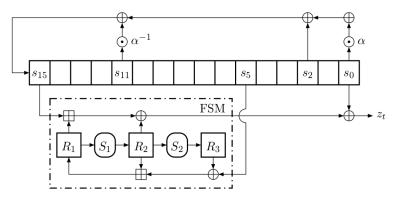
 $R_1[22] = R_1[22] + f[i]; R_2[21] = R_2[21] + f[i]; R_3[18] = R_3[18] + f[i].$

- Run A5/1 for 100 cycles and discard the output. This uses clocking by s₁₂, t₁₁, and v₁₀,
- ► Run A5/1 for 228 cycles and use the output as keystream. This uses clocking by s₁₂, t₁₁, and v₁₀,
- The design was kept secret, though partially revealed already in 1994 by Ross Anderson; fully reverse engineered by Marc Briceno, Ian Goldberg, and David Wagner, who cryptanalyzed it and posted a readable implementation.
- ► Latest attack cost: 2²⁴; given 3 4 min of ciphertext or even less ciphertext, more computer power

Tanja Lange

Practical use of LFSRs

- > A5/2 used for export control, weakened version of A5/1.
- 4th LFSRs is used to clock the other three.
 Extra inputs into output sum use majority function of bits.


Tanja Lange

Practical use of LFSRs

- ▶ k and f used in manner similar to A5/1 (also filling in R_4).
- Clock is controlled by 3 bits of R₄;
 R_i is advanced if *i*-th control bit matches majority.
- Design looks a lot more convoluted than A5/1, yet the cipher is weaker.
- ▶ Reversed and broken by Briceno, Goldberg, Wagner in 1999.

- k and f used in manner similar to A5/1 (also filling in R_4).
- Clock is controlled by 3 bits of R₄;
 R_i is advanced if *i*-th control bit matches majority.
- Design looks a lot more convoluted than A5/1, yet the cipher is weaker.
- ▶ Reversed and broken by Briceno, Goldberg, Wagner in 1999.
- ▶ Now broken instantly (in 2¹⁶ steps) by Barkan, Biham, and Keller.
- ► Downgrade from A5/1 was possible.
- Publicly available tables of precomputation exist.

SNOW-3G

- SNOW-3G is used in 3G communication.
- Upper part is LFSR with elements of $\mathbb{F}_{2^{32}}$; i.e., $\alpha \in \mathbb{F}_{2^{32}}$ is fixed.
- ► The bottom part forgets about the field structure: ⊞ is integer addition modulo 2³²,
 - \oplus is bitwise addition (matching addition in ${\rm I\!F}_{2^{32}}).$

▶ R_1, R_2, R_3 are registers, S_1, S_2 are 32-bit to 32-bit substitution boxes. Picture from https://www.cryptolux.org/index.php/File:SNOW-3G.png.

Tanja Lange

Wrapping up

- ► LFSRs are typical ingredients of hardware ciphers.
- LFSRs require some non-linear component to be secure. The typical attack models assume some access to keystream; ciphertext-only attacks have direct practical relevance.
- Many old designs had some "security by obscurity" and crumbled once description was known.
- See State of the Art in Lightweight Symmetric Cryptography by Alex Biryukov and Léo Perrin for a good overview.
 It mostly covers modern, not broken designs.

Table 3 shows how much security has degraded for legacy designs:

Name	Intended platform	Key	IS	IV	Att. time	Reference
A5/1	Cell phones	64	64	22	2^{24}	[And94]
A5/2		64	81	22	2^{16}	[BBK08]
CMEA †		64	16 - 48	_	2^{32}	[WSK97]
ORYX		96	96	-	2^{16}	$[WSD^+99]$
A5-GMR-1	Satellite phones	64	82	19	$2^{38.1}$	$[DHW^{+}12]$
A5-GMR-2		64	68	22	2^{28}	$[DHW^+12]$
DSC	Cordless phones	64	80	35	2^{34}	$[LST^+09]$
SecureMem.	Atmel chips	64	109 cal use of LESRs	128	$2^{29.8}$	[GvR¥WS10]