LFSRs: Math vs. mystery

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

A fourth example

Our hypotheses would have predicted: 21, 21, 21, 21, 3, 1 and some more for the $2^5 - 21 - 1 = 10$ missing states in the first. But we do not get the fourth 21.

Tanja Lange

LFSRs: Math vs. mystery

Some notation

- Given an LFSR with state size *n*, characteristic polynomial P(x).
- For a polynomial f(x) denote by $f^*(x)$ its reciprocal

$$f^*(x) = \left(\sum_{i=0}^n f_i x^i\right)^* = x^n \sum_{i=0}^n f_i x^{-i} = \sum_{i=0}^n f_i x^{n-i} = \sum_{i=0}^n f_{n-i} x^i.$$

Some notation

- Given an LFSR with state size n, characteristic polynomial P(x).
- For a polynomial f(x) denote by $f^*(x)$ its reciprocal

$$f^*(x) = \left(\sum_{i=0}^n f_i x^i\right)^* = x^n \sum_{i=0}^n f_i x^{-i} = \sum_{i=0}^n f_i x^{n-i} = \sum_{i=0}^n f_{n-i} x^i.$$

• Examples:
$$(x^n + 1)^* = x^n(x^{-n} + 1) = 1 + x^n$$
; $(f^*(x))^* = f(x)$.

Some notation

- Given an LFSR with state size n, characteristic polynomial P(x).
- For a polynomial f(x) denote by $f^*(x)$ its reciprocal

$$f^*(x) = \left(\sum_{i=0}^n f_i x^i\right)^* = x^n \sum_{i=0}^n f_i x^{-i} = \sum_{i=0}^n f_i x^{n-i} = \sum_{i=0}^n f_{n-i} x^i.$$

- Examples: $(x^n + 1)^* = x^n(x^{-n} + 1) = 1 + x^n$; $(f^*(x))^* = f(x)$.
- The generating function of a sequence $\{s_i\}_i$ is given by

$$S(x)=\sum_{i=0}^{\infty}s_ix^i.$$

Note: *S* depends on the starting state; there are 2^n different generating functions for an LFSR with state size *n*.

Some notation and helpful results

- Given an LFSR with state size *n*, characteristic polynomial P(x).
- For a polynomial f(x) denote by $f^*(x)$ its reciprocal

$$f^*(x) = \left(\sum_{i=0}^n f_i x^i\right)^* = x^n \sum_{i=0}^n f_i x^{-i} = \sum_{i=0}^n f_i x^{n-i} = \sum_{i=0}^n f_{n-i} x^i.$$

- Examples: $(x^n + 1)^* = x^n(x^{-n} + 1) = 1 + x^n$; $(f^*(x))^* = f(x)$.
- The generating function of a sequence $\{s_i\}_i$ is given by

$$S(x)=\sum_{i=0}^{\infty}s_ix^i.$$

Note: *S* depends on the starting state; there are 2^n different generating functions for an LFSR with state size *n*.

Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right)\sum_{i=0}^\infty s_ix^i$$

Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^\infty s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^\infty s_i x^i$$

Proof.
Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^\infty s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^\infty s_i x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^\infty \left(\sum_{j=0}^n c_{n-j}s_{i-j}\right) x^i$$

Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^\infty s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^\infty s_i x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^\infty \left(\sum_{j=0}^n c_{n-j}s_{i-j}\right) x^i$$

Definition of LFSR:
$$s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j}$$

Proof.
Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^{\infty} s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^{\infty} s_i x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^{\infty} \left(\sum_{j=0}^n c_{n-j}s_{i-j}\right) x^i$$
Definition of LFSR: $s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j} \Rightarrow 0 = \sum_{j=0}^n c_j s_{k+j}$

Proof.
Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^\infty s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^\infty s_i x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^\infty \left(\sum_{j=0}^n c_{n-j}s_{i-j}\right) x^i$$
Definition of LFSR: $s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j} \Rightarrow 0 = \sum_{j=0}^n c_j s_{k+j}$

Change the order of summation: $0 = \sum_{j=0}^{n} c_{n-j} s_{k+n-j}$

Tanja Lange

Proof.
Proof.

$$P^*(x)S(x) = \left(1 + \sum_{i=1}^n c_{n-i}x^i\right) \sum_{i=0}^\infty s_i x^i = \sum_{i=0}^n c_{n-i}x^i \sum_{i=0}^\infty s_i x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^i c_{n-j}s_{i-j}\right) x^i + \sum_{i=n}^\infty \left(\sum_{j=0}^n c_{n-j}s_{i-j}\right) x^i$$
Definition of LFSR: $s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j} \Rightarrow 0 = \sum_{j=0}^n c_j s_{k+j}$
Change the order of summation: $0 = \sum_{j=0}^n c_{n-j} s_{k+n-j}$
and rename $k + n = i$

Tanja Lange

LFSRs: Math vs. mystery

Proof.
Proof.

$$P^{*}(x)S(x) = \left(1 + \sum_{i=1}^{n} c_{n-i}x^{i}\right) \sum_{i=0}^{\infty} s_{i}x^{i} = \sum_{i=0}^{n} c_{n-i}x^{i} \sum_{i=0}^{\infty} s_{i}x^{i}$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} c_{n-j}s_{i-j}\right) x^{i} + \sum_{i=n}^{\infty} \left(\sum_{j=0}^{n} c_{n-j}s_{i-j}\right) x^{i}$$

$$= \sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} c_{n-j}s_{i-j}\right) x^{i} + \sum_{i=n}^{\infty} 0 \cdot x^{i}$$

Definition of LFSR: $s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j} \Rightarrow 0 = \sum_{j=0}^n c_j s_{k+j}$

Change the order of summation: $0 = \sum_{j=0}^{n} c_{n-j} s_{k+n-j}$ and rename k + n = i

Tanja Lange

Characterization of characteristic polynomial

This gives an alternative definition of the characteristic polynomial:

Lemma Let F(x) of deg(F) < n and $P(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ with $c_0 = 1$. Then the power series

 $S(x) = F(x)/P^*(x)$

is the generating function of an LFSR with state size n satisfying $s_{k+n} = \sum_{j=0}^{n-1} c_j s_{k+j}$.

Proof computes $P^*(x)S(x)$. Then observes that deg(F) < n forces cancellations as in previous proof.

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r.

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) = \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$.

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) = \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$. Remember from calculus: $\sum_{j=0}^{\infty} x^{jr} = 1/(x^r + 1)$.

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) = \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$. Remember from calculus: $\sum_{j=0}^{\infty} x^{jr} = 1/(x^r + 1)$. Combine with previous lemma:

$$S(x) = F(x)/P^*(x) = \bar{S}(x)/(x^r+1)$$

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) = \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$. Remember from calculus: $\sum_{j=0}^{\infty} x^{jr} = 1/(x^r + 1)$. Combine with previous lemma:

$$S(x) = F(x)/P^*(x) = \bar{S}(x)/(x^r + 1)$$

rearrange, compute reciprocal, and remember $(x^r + 1)^* = x^r + 1$

$$F^*(x)(x^r+1)=\bar{S}^*(x)P(x)$$

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) = \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$. Remember from calculus: $\sum_{j=0}^{\infty} x^{jr} = 1/(x^r + 1)$. Combine with previous lemma:

$$S(x) = F(x)/P^*(x) = \bar{S}(x)/(x^r + 1)$$

rearrange, compute reciprocal, and remember $(x^r + 1)^* = x^r + 1$

degree
$$< n$$
 $F^*(x)(x^r + 1) = \overline{S}^*(x)P(x)$ irreducible of degree n

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) = \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$. Remember from calculus: $\sum_{j=0}^{\infty} x^{jr} = 1/(x^r + 1)$. Combine with previous lemma:

$$S(x) = F(x)/P^*(x) = \overline{S}(x)/(x^r + 1)$$

rearrange, compute reciprocal, and remember $(x^r + 1)^* = x^r + 1$

degree < n $F^*(x)(x^r + 1) = \overline{S}^*(x)P(x)$ irreducible of degree n

Thus $P(x)|(x^{r}+1)$, i.e. $ord(P) = \ell | r$.

Lemma

Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR. If P(x) is irreducible and has order ℓ then all non-zero starting states give sequences of period ℓ .

Proof.

Let $\{s_i\}_i$ have period r. We know $r|\ell$. Put $\overline{S}(x) = \sum_{i=0}^{r-1} s_i x^i$. Then $S(x) \neq \overline{S}(x) (1 + x^r + x^{2r} + \cdots)$. Remember from calculus: $\sum_{j=0}^{\infty} x^{jr} = 1/(x^r + 1)$. Combine with previous lemma:

$$S(x) = F(x)/P^*(x) = \bar{S}(x)/(x^r+1)$$

rearrange, compute reciprocal, and remember $(x^r + 1)^* = x^r + 1$

degree < n $F^*(x)(x^r + 1) = \overline{S}^*(x)P(x)$ irreducible of degree nThus $P(x)|(x^r + 1)$, i.e. $\operatorname{ord}(P) = \ell | r$. Together this gives $r = \ell$.

Tanja Lange

Theorem

Let $\{s_i\}_i$ and $\{t_i\}_i$ be sequences from LFSRs with characteristic polynomials P(x) and Q(x).

There exists an LFSR with output matching $\{s_i + t_i\}_i$. Its characteristic polynomial is lcm(P(x), Q(x)).

Proof.

The generating function of the sum is

$$\sum (s_i + t_i)x^i = S(x) + T(x) = \frac{F(x)}{P^*(x)} + \frac{G(x)}{Q^*(x)} =$$

Theorem

Let $\{s_i\}_i$ and $\{t_i\}_i$ be sequences from LFSRs with characteristic polynomials P(x) and Q(x).

There exists an LFSR with output matching $\{s_i + t_i\}_i$. Its characteristic polynomial is lcm(P(x), Q(x)).

Proof.

The generating function of the sum is

$$\sum (s_i + t_i)x^i = S(x) + T(x) = \frac{F(x)}{P^*(x)} + \frac{G(x)}{Q^*(x)} = \frac{a(x)F(x)}{\operatorname{lcm}(P^*(x), Q^*(x))} + \frac{b(x)G(x)}{\operatorname{lcm}(P^*(x), Q^*(x))} = \frac{a(x)F(x) + b(x)G(x)}{R^*(x)},$$

where $R(x) = \operatorname{lcm}(P(x), Q(x))$ (thus $R^*(x) = \operatorname{lcm}(P^*(x), Q^*(x))$),
 $R^*(x) = a(x)P^*(x) = b(x)Q^*(x).$

Theorem

Let $\{s_i\}_i$ and $\{t_i\}_i$ be sequences from LFSRs with characteristic polynomials P(x) and Q(x).

There exists an LFSR with output matching $\{s_i + t_i\}_i$. Its characteristic polynomial is lcm(P(x), Q(x)).

Proof.

The generating function of the sum is

$$\sum (s_i + t_i)x^i = S(x) + T(x) = \frac{F(x)}{P^*(x)} + \frac{G(x)}{Q^*(x)} = \frac{a(x)F(x)}{\operatorname{lcm}(P^*(x), Q^*(x))} + \frac{b(x)G(x)}{\operatorname{lcm}(P^*(x), Q^*(x))} = \frac{a(x)F(x) + b(x)G(x)}{R^*(x)},$$

where $R(x) = \operatorname{lcm}(P(x), Q(x))$ (thus $R^*(x) = \operatorname{lcm}(P^*(x), Q^*(x))$),
 $R^*(x) = a(x)P^*(x) = b(x)Q^*(x).$

$$\deg(a(x)F(x) + b(x)G(x)) < \deg(R)$$

as $\deg(F) < \deg(P)$ and $\deg(G) < \deg(Q)$. All this holds independent of the starting states.

Tanja Lange

The characteristic polynomials are $x^2 + x + 1$ and $x^5 + x + 1$.

Thus their lcm is just $x^5 + x + 1$.

We're not missing a "fourth" 21 - there is only one!

All three sequences of period 21 would have turned out to be the same!

Thus their lcm is just $x^5 + x + 1$.

We're not missing a "fourth" 21 - there is only one! All three sequences of period 21 would have turned out to be the same! We also have sequences of periods 7,3, and 1, reaching 2^5 .

Thus their lcm is just $x^5 + x + 1$.

We're not missing a "fourth" 21 - there is only one! All three sequences of period 21 would have turned out to be the same! We also have sequences of periods 7,3, and 1, reaching 2^5 .

Do the following to analyze LFSRs:

- 1. Factor the characteristic polynomial $P(x) = \prod f_i^{e_i}(x)$, for $f_i(x)$ irreducible, $f_i \neq f_j$, and $e_i > 0$.
- 2. Compute orders of $f_i^{e_i}(x)$.
- Combine periods, taking care of offsets to get all periods. No cancellations because the f_i are co-prime.

Step 2 is different from what you did on sheet 2. Revisit LFSR (f).

Tanja Lange

Correct hypotheses

The following holds for LFSRs with co-prime characteristic polynomials.

- Adding LFSRs of max periods p and r gives period lcm(p, r).
- ► If the first LFSR has periods p = 2^m 1 and 1 and the second LFSR has periods r = 2ⁿ - 1 and 1, then
 - their sum has gcd(p, r) sequences of period lcm(p, r) (resulting from the gcd(p, r) different offsets)
 - and sequences of period p, r, and 1, from initializing one or both in the all-zero state.
 - ▶ These sum up to $gcd(p, r) \cdot lcm(p, r) + p + r + 1 = p \cdot r + p + r + 1$ = $(p+1)(r+1) = 2^m \cdot 2^n$, thus accounting for all 2^{m+n} states.
- If one or both do not have maximal periods we expect
 - gcd(p, r) sequences of period lcm(p, r)
 - sequences of period p, r, and 1,
 - sequences from combinations of the other parts.