
LFSRs: Math vs. mystery

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology



A fourth example

0 0 0 0 1

1 1

+

++

These LFSRs produce
000010001100101011111 and 011
of periods 21 and 3.

Their sum gives
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1

+ 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

-------------------------------------------

0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0

of period 21.

0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1

+ 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

-------------------------------------------

1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1

of period 7?

Our hypotheses would have predicted: 21, 21, 21, 21, 3, 1 and
some more for the 25 − 21− 1 = 10 missing states in the first.
But we do not get the fourth 21.
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Some notation

I Given an LFSR with state size n, characteristic polynomial P(x).

I For a polynomial f (x) denote by f ∗(x) its reciprocal

f ∗(x) =

(
n∑

i=0

fix
i

)∗
= xn

n∑
i=0

fix
−i =

n∑
i=0

fix
n−i =

n∑
i=0

fn−ix
i .

I Examples: (xn + 1)∗ = xn(x−n + 1) = 1 + xn; (f ∗(x))∗ = f (x).

I The generating function of a sequence {si}i is given by

S(x) =
∞∑
i=0

six
i .

Note: S depends on the starting state; there are 2n different
generating functions for an LFSR with state size n.

I Claims: deg(P∗(x)S(x)) < n.
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Claim: deg(P∗(x)S(x)) < n

Proof.

P∗(x)S(x) =

(
1 +

n∑
i=1

cn−ix
i

) ∞∑
i=0

six
i

=
n∑

i=0

cn−ix
i
∞∑
i=0

six
i

=
n−1∑
i=0

 i∑
j=0

cn−jsi−j

 x i +
∞∑
i=n

 n∑
j=0

cn−jsi−j

 x i

=
n−1∑
i=0

 i∑
j=0

cn−jsi−j

 x i +
∞∑
i=n

0 · x i

Definition of LFSR: sk+n =
∑n−1

j=0 cjsk+j

⇒ 0 =
∑n

j=0 cjsk+j

Change the order of summation: 0 =
∑n

j=0 cn−jsk+n−j
and rename k + n = i
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Characterization of characteristic polynomial

This gives an alternative definition of the characteristic polynomial:

Lemma
Let F (x) of deg(F ) < n and P(x) = xn +

∑n−1
i=0 cix

i with c0 = 1. Then
the power series

S(x) = F (x)/P∗(x)

is the generating function of an LFSR with state size n satisfying
sk+n =

∑n−1
j=0 cjsk+j .

Proof computes P∗(x)S(x).
Then observes that deg(F ) < n forces cancellations as in previous proof.
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A promised proof

Lemma
Let P(x) with deg(P) = n be the characteristic polynomial of an LFSR.
If P(x) is irreducible and has order ` then all non-zero starting states give
sequences of period `.

Proof.
Let {si}i have period r . We know r |`.
Put S̄(x) =

∑r−1
i=0 six

i . Then S(x) = S̄(x)
(
1 + x r + x2r + · · ·

)
.

Remember from calculus:
∑∞

j=0 x
jr = 1/(x r + 1).

Combine with previous lemma:

S(x) = F (x)/P∗(x) = S̄(x)/(x r + 1)

rearrange, compute reciprocal, and remember (x r + 1)∗ = x r + 1

F ∗(x)(x r + 1) = S̄∗(x)P(x)

irreducible of degree ndegree < n

Thus P(x)
∣∣(x r + 1), i.e. ord(P) = `|r .

Together this gives r = `.
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Theorem
Let {si}i and {ti}i be sequences from LFSRs with characteristic
polynomials P(x) and Q(x).
There exists an LFSR with output matching {si + ti}i .
Its characteristic polynomial is lcm(P(x),Q(x)).

Proof.
The generating function of the sum is∑

(si + ti )x
i = S(x) + T (x) =

F (x)

P∗(x)
+

G (x)

Q∗(x)
=

a(x)F (x)

lcm(P∗(x),Q∗(x))
+

b(x)G (x)

lcm(P∗(x),Q∗(x))
=

a(x)F (x) + b(x)G (x)

R∗(x)
,

where R(x) = lcm(P(x),Q(x)) (thus R∗(x) = lcm(P∗(x),Q∗(x)) ),
R∗(x) = a(x)P∗(x) = b(x)Q∗(x).

deg(a(x)F (x) + b(x)G (x)) < deg(R)

as deg(F ) < deg(P) and deg(G ) < deg(Q).
All this holds independent of the starting states.
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+

b(x)G (x)

lcm(P∗(x),Q∗(x))
=

a(x)F (x) + b(x)G (x)

R∗(x)
,

where R(x) = lcm(P(x),Q(x)) (thus R∗(x) = lcm(P∗(x),Q∗(x)) ),
R∗(x) = a(x)P∗(x) = b(x)Q∗(x).

deg(a(x)F (x) + b(x)G (x)) < deg(R)

as deg(F ) < deg(P) and deg(G ) < deg(Q).
All this holds independent of the starting states.
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A mystery solved

0 0 0 0 1

1 1

+

++

The characteristic polynomials
are x2 + x + 1 and x5 + x + 1.

The latter factors as
x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1).

Thus their lcm is just x5 + x + 1.

We’re not missing a “fourth” 21 – there is only one!
All three sequences of period 21 would have turned out to be the same!
We also have sequences of periods 7,3, and 1, reaching 25.

Do the following to analyze LFSRs:

1. Factor the characteristic polynomial P(x) =
∏

f eii (x),
for fi (x) irreducible, fi 6= fj , and ei > 0.

2. Compute orders of f eii (x).

3. Combine periods, taking care of offsets to get all periods.
No cancellations because the fi are co-prime.

Step 2 is different from what you did on sheet 2. Revisit LFSR (f).
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Correct hypotheses

The following holds for LFSRs with co-prime characteristic polynomials.

I Adding LFSRs of max periods p and r gives period lcm(p, r).

I If the first LFSR has periods p = 2m − 1 and 1 and
the second LFSR has periods r = 2n − 1 and 1, then

I their sum has gcd(p, r) sequences of period lcm(p, r)
(resulting from the gcd(p, r) different offsets)

I and sequences of period p, r , and 1,
from initializing one or both in the all-zero state.

I These sum up to gcd(p, r)·lcm(p, r) + p + r + 1 = p · r + p + r + 1
= (p + 1)(r + 1) = 2m · 2n,
thus accounting for all 2m+n states.

I If one or both do not have maximal periods we expect
I gcd(p, r) sequences of period lcm(p, r)
I sequences of period p, r , and 1,
I sequences from combinations of the other parts.
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