LFSRs: Mathematical properties

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Theorem

Let $ord(C) = \ell$ for C the state-update matrix of an LFSR. The longest period generated by this LFSR is ℓ . State $S_0 = (00 \dots 01)$ is a starting state of maximal period.

Proof.

Let S_i be the *i*-th state, starting from S_0 , thus $S_i = (\underbrace{00 \dots 0}_{1} 1 * \dots *)$.

n-1-i

Theorem

Let $ord(C) = \ell$ for C the state-update matrix of an LFSR. The longest period generated by this LFSR is ℓ . State $S_0 = (00 \dots 01)$ is a starting state of maximal period.

Proof.

Let S_i be the *i*-th state, starting from S_0 , thus $S_i = (\underbrace{00 \dots 0}_{n-1-i} 1 * \dots *)$. Assume on the contrary that $S_i = S_{r+i}$ for all $i \ge 0$ and $0 < r < \ell$. Then $S_i = S_{r+i} = S_i C^r$ and $C^r \ne I$ (by the definition of order). Make an $n \times n$ matrix S of the starting states to get

$$S = \begin{pmatrix} \cdots & S_0 & \cdots \\ \cdots & S_1 & \cdots \\ \vdots & \vdots \\ \cdots & S_{n-1} & \cdots \end{pmatrix} = \begin{pmatrix} \cdots & S_0 & \cdots \\ \cdots & S_1 & \cdots \\ \vdots & \vdots \\ \cdots & S_{n-1} & \cdots \end{pmatrix} C^r = S \cdot C^r$$

Theorem

Let $ord(C) = \ell$ for C the state-update matrix of an LFSR. The longest period generated by this LFSR is ℓ . State $S_0 = (00 \dots 01)$ is a starting state of maximal period.

Proof.

Let S_i be the *i*-th state, starting from S_0 , thus $S_i = (\underbrace{00 \dots 0}_{n-1-i} 1 * \dots *)$. Assume on the contrary that $S_i = S_{r+i}$ for all $i \ge 0$ and $0 < r < \ell$. Then $S_i = S_{r+i} = S_i C^r$ and $C^r \ne I$ (by the definition of order). Make an $n \times n$ matrix S of the starting states to get

$$S = \begin{pmatrix} \cdots & S_0 & \cdots \\ \cdots & S_1 & \cdots \\ \vdots & \vdots \\ \cdots & S_{n-1} & \cdots \end{pmatrix} = \begin{pmatrix} \cdots & S_0 & \cdots \\ \cdots & S_1 & \cdots \\ \vdots & \vdots \\ \cdots & S_{n-1} & \cdots \end{pmatrix} C^r = S \cdot C^r$$

S is invertible (the S_i are linearly independent).

Theorem

Let $ord(C) = \ell$ for C the state-update matrix of an LFSR. The longest period generated by this LFSR is ℓ . State $S_0 = (00 \dots 01)$ is a starting state of maximal period.

Proof.

Let S_i be the *i*-th state, starting from S_0 , thus $S_i = (\underbrace{00 \dots 0}_{n-1-i} 1 * \dots *)$. Assume on the contrary that $S_i = S_{r+i}$ for all $i \ge 0$ and $0 < r < \ell$. Then $S_i = S_{r+i} = S_i C^r$ and $C^r \ne I$ (by the definition of order). Make an $n \times n$ matrix S of the starting states to get

$$S = \begin{pmatrix} \cdots & S_0 & \cdots \\ \cdots & S_1 & \cdots \\ \vdots & \vdots \\ \cdots & S_{n-1} & \cdots \end{pmatrix} = \begin{pmatrix} \cdots & S_0 & \cdots \\ \cdots & S_1 & \cdots \\ \vdots & \vdots \\ \cdots & S_{n-1} & \cdots \end{pmatrix} C^r = S \cdot C^r$$

S is invertible (the *S_i* are linearly independent). Then $I = S^{-1}S = S^{-1}SC^r = C^r$ contradicting $r < \ell$. Thus $r = \ell$.

Tanja Lange

Order of C = order of P

Let P(x) be the characteristic polynomial of C. By definition of the characteristic polynomials, P(C) = 0. Thus $x \mod P(x)$ satisfies the same equation as C and thus $\operatorname{ord}(C) = \operatorname{ord}(P)$.

This matches our experiments

- 1. $s_{j+2} = s_j + s_{j+1}$ has order 3 for both C and P.
- 2. $s_{j+3} = s_j + s_{j+1}$ has order 7 for both C and P.

The other examples had reducible P, so we didn't compute ord(P).

Reminder:

f(x) is irreducible if $f(x) = g(x) \cdot h(x)$ implies $\deg(g) = 0$ or $\deg(h) = 0$. Else f(x) is reducible.

Rabin's irreducibility test

A polynomial $f(x) \in \mathbb{F}_q[x]$ of degree *n* is irreducible if and only if

1.
$$f(x) | (x^{q_{\ell}^{n} - x}),$$

2. $gcd(f(x), x^{q_{\ell}^{d} - x}) = 1$ for all $d | n$ with $0 < d < n$.

Let $n = \prod p_i^{e_i}$ for p_i prime, $e_i \ge 1$. It is sufficient to check 2. for $d_i = n/p_i$.

Rabin's irreducibility test

A polynomial $f(x) \in \mathbb{F}_q[x]$ of degree *n* is irreducible if and only if

1.
$$f(x) | (x^{q^n} - x),$$

2. $gcd(f(x), x^{q^d} - x) = 1$ for all $d | n$ with $0 < d < n$.

Let $n = \prod p_i^{e_i}$ for p_i prime, $e_i \ge 1$. It is sufficient to check 2. for $d_i = n/p_i$.

By 1. we have for f irreducible

$$x^{q^n} \equiv x \bmod f(x),$$

Thus $\operatorname{ord}(f)|(q^n-1)|$

This observation limits the orders we need to check

1.
$$s_{j+2} = s_j + s_{j+1}$$
 has $P(x) = x^2 + x + 1$ irreducible, deg $(P) = 2$ and $2^2 - 1 = 3$ is prime, thus ord $(P) = 3$ without any computation.

This observation limits the orders we need to check

- 1. $s_{j+2} = s_j + s_{j+1}$ has $P(x) = x^2 + x + 1$ irreducible, deg(P) = 2 and $2^2 1 = 3$ is prime, thus ord(P) = 3 without any computation.
- 2. $s_{j+3} = s_j + s_{j+1}$ has $P(x) = x^3 + x + 1$ irreducible, deg(P) = 3 and $2^3 1 = 7$ is prime, thus ord(P) = 7 without any computation.

This observation limits the orders we need to check

- 1. $s_{j+2} = s_j + s_{j+1}$ has $P(x) = x^2 + x + 1$ irreducible, deg(P) = 2 and $2^2 1 = 3$ is prime, thus ord(P) = 3 without any computation.
- 2. $s_{j+3} = s_j + s_{j+1}$ has $P(x) = x^3 + x + 1$ irreducible, deg(P) = 3 and $2^3 1 = 7$ is prime, thus ord(P) = 7 without any computation.

3.
$$s_{j+4} = s_j + s_{j+1}$$
 has $P(x) = x^4 + x + 1$ irreducible, deg $(P) = 4$ and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know ord $(P) \in \{1, 3, 5, 15\}$.

This observation limits the orders we need to check

1. $s_{j+2} = s_j + s_{j+1}$ has $P(x) = x^2 + x + 1$ irreducible, deg(P) = 2 and $2^2 - 1 = 3$ is prime, thus ord(P) = 3 without any computation.

2.
$$s_{j+3} = s_j + s_{j+1}$$
 has $P(x) = x^3 + x + 1$ irreducible, deg $(P) = 3$ and $2^3 - 1 = 7$ is prime, thus ord $(P) = 7$ without any computation.

3.
$$s_{j+4} = s_j + s_{j+1}$$
 has $P(x) = x^4 + x + 1$ irreducible, deg $(P) = 4$ and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know ord $(P) \in \{1, 3, 5, 15\}$. Can exclude orders 1,3 without computation because of the degree.

$$x^5 = x \cdot x^4 \equiv x \cdot (x+1) = x^2 + x \neq 1 \mod x^4 + x + 1.$$

This observation limits the orders we need to check

1. $s_{j+2} = s_j + s_{j+1}$ has $P(x) = x^2 + x + 1$ irreducible, deg(P) = 2 and $2^2 - 1 = 3$ is prime, thus ord(P) = 3 without any computation.

2.
$$s_{j+3} = s_j + s_{j+1}$$
 has $P(x) = x^3 + x + 1$ irreducible, deg $(P) = 3$ and $2^3 - 1 = 7$ is prime, thus ord $(P) = 7$ without any computation.

3.
$$s_{j+4} = s_j + s_{j+1}$$
 has $P(x) = x^4 + x + 1$ irreducible, deg $(P) = 4$ and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know ord $(P) \in \{1, 3, 5, 15\}$. Can exclude orders 1,3 without computation because of the degree.

$$x^5 = x \cdot x^4 \equiv x \cdot (x+1) = x^2 + x \neq 1 \mod x^4 + x + 1.$$

After excluding all small degrees we conclude that ord(P) = 15.

This observation limits the orders we need to check

1. $s_{j+2} = s_j + s_{j+1}$ has $P(x) = x^2 + x + 1$ irreducible, deg(P) = 2 and $2^2 - 1 = 3$ is prime, thus ord(P) = 3 without any computation.

2.
$$s_{j+3} = s_j + s_{j+1}$$
 has $P(x) = x^3 + x + 1$ irreducible, deg $(P) = 3$ and $2^3 - 1 = 7$ is prime, thus ord $(P) = 7$ without any computation.

3. $s_{j+4} = s_j + s_{j+1}$ has $P(x) = x^4 + x + 1$ irreducible, deg(P) = 4 and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know ord $(P) \in \{1, 3, 5, 15\}$. Can exclude orders 1,3 without computation because of the degree.

$$x^5 = x \cdot x^4 \equiv x \cdot (x+1) = x^2 + x \neq 1 \mod x^4 + x + 1.$$

After excluding all small degrees we conclude that $\operatorname{ord}(P) = 15$. 4. $s_{j+4} = s_j + s_{j+1} + s_{j+2} + s_{j+3}$ has $P(x) = x^4 + x^3 + x^2 + x + 1$ irreducible, deg(P) = 4 and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know $\operatorname{ord}(P) \in \{1, 3, 5, 15\}$. Again can exclude orders 1,3.

This observation limits the orders we need to check

1. $s_{j+2} = s_j + s_{j+1}$ has $P(x) = x^2 + x + 1$ irreducible, deg(P) = 2 and $2^2 - 1 = 3$ is prime, thus ord(P) = 3 without any computation.

2.
$$s_{j+3} = s_j + s_{j+1}$$
 has $P(x) = x^3 + x + 1$ irreducible, deg $(P) = 3$ and $2^3 - 1 = 7$ is prime, thus ord $(P) = 7$ without any computation.

3. $s_{j+4} = s_j + s_{j+1}$ has $P(x) = x^4 + x + 1$ irreducible, deg(P) = 4 and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know ord $(P) \in \{1, 3, 5, 15\}$. Can exclude orders 1,3 without computation because of the degree.

$$x^5 = x \cdot x^4 \equiv x \cdot (x+1) = x^2 + x \neq 1 \mod x^4 + x + 1.$$

After excluding all small degrees we conclude that $\operatorname{ord}(P) = 15$. 4. $s_{j+4} = s_j + s_{j+1} + s_{j+2} + s_{j+3}$ has $P(x) = x^4 + x^3 + x^2 + x + 1$ irreducible, deg(P) = 4 and $2^4 - 1 = 15 = 3 \cdot 5$. Thus we know $\operatorname{ord}(P) \in \{1, 3, 5, 15\}$. Again can exclude orders 1,3.

$$x^5 = x \cdot x^4 \equiv x \cdot (x^3 + x^2 + x + 1) = x^4 + x^3 + x^2 + x \\ \equiv (x^3 + x^2 + x + 1) + x^3 + x^2 + x \equiv 1 \mod x^4 + x^3 + x^2 + x + 1$$

Thus the order is 5.

Tanja Lange

LFSRs: Mathematical properties

Definition

The characteristic polynomial P(x) of an LFSR is called *primitive* if P is irreducible and $ord(P) = 2^n - 1$, where n is the length of the state.

Definition

The characteristic polynomial P(x) of an LFSR is called *primitive* if P is irreducible and $ord(P) = 2^n - 1$, where n is the length of the state.

This matches the definition of *primitive polynomial* in finite fields: $\mathbb{F}_{2^k} \cong \mathbb{F}_2[x]/(P(x))$ has *P* primitive if *P* is irreducible and $\mathbb{F}_{2^k}^* = \langle x \rangle$, i.e. if *x* generates all $2^k - 1$ non-zero elements.

Definition

The characteristic polynomial P(x) of an LFSR is called *primitive* if P is irreducible and $ord(P) = 2^n - 1$, where n is the length of the state.

This matches the definition of *primitive polynomial* in finite fields: $\mathbb{F}_{2^k} \cong \mathbb{F}_2[x]/(P(x))$ has P primitive if P is irreducible and $\mathbb{F}_{2^k}^* = \langle x \rangle$, i.e. if x generates all $2^k - 1$ non-zero elements.

Theorem

If P is irreducible then all non-zero starting states give the same period. Proof in "LFSRs: Math vs. mystery" video.

Definition

The characteristic polynomial P(x) of an LFSR is called *primitive* if P is irreducible and $ord(P) = 2^n - 1$, where n is the length of the state.

This matches the definition of *primitive polynomial* in finite fields: $\mathbb{F}_{2^k} \cong \mathbb{F}_2[x]/(P(x))$ has P primitive if P is irreducible and $\mathbb{F}_{2^k}^* = \langle x \rangle$, i.e. if x generates all $2^k - 1$ non-zero elements.

Theorem

If P is irreducible then all non-zero starting states give the same period. Proof in "LFSRs: Math vs. mystery" video.

This means that for irreducible P we know all periods by knowing ord(P). Example:

 $s_{j+4} = s_j + s_{j+1}s_{j+2} + s_{j+3}$ has $P(x) = x^4 + x^3 + x^2 + x + 1$ irreducible of order 5. Thus the periods are 5,5,5,1.