Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

 $f(x_0, x_1, x_2, \ldots, x_{n-1})$ Linear means that there are no products $x_i \cdot x_i$ and no constant term. OUT s_0 s_1 **s**₂ $f(\mathbf{x}) = \sum_{i=0}^{n-1} c_i x_i$

 s_{n-1}

. . .

Linear means that there are no products $x_i \cdot x_j$ and no constant term. $f(\mathbf{x}) = \sum_{i=0}^{n-1} c_i x_i$

Each state $S_j \in \mathbb{F}_2^n$, OUT $S_j = (s_j s_{j+1} s_{j+2} \dots s_{j+n-1})$. Coefficients $c_i \in \mathbb{F}_2$.

Linear means that there are no products $x_i \cdot x_i$ and no constant term. .1 $f(\mathbf{x}) = \sum_{i=0}^{n-1} c_i x_i$ Each state $S_i \in \mathbb{F}_2^n$, OUT **s**0 $S_i = (s_i \, s_{i+1} \, s_{i+2} \, \dots \, s_{i+n-1}).$ Coefficients $c_i \in \mathbb{F}_2$. Typically $c_0 = 1$ (else we could have output one step earlier). $IV = S_0$ Turn key k into $k = c_0 c_1 c_2 \dots c_{n-1}$

Simplify by putting connections for $c_i = 1$, no connections for $c_i = 0$.

Simplify by putting connections for $c_i = 1$, no connections for $c_i = 0$. $f(x_0, x_1, x_2) = x_0 + x_2 =$

Simplify by putting connections for $c_i = 1$, no connections for $c_i = 0$.

$$f(x_0, x_1, x_2) = x_0 + x_2 = 1 \cdot x_0 + 0 \cdot x_1 + 1 \cdot x_2.$$

Tanja Lange

Linear means that there are no products $x_i \cdot x_j$ and no constant term. $f(\mathbf{x}) = \sum_{i=0}^{n-1} c_i x_i$

Each state $S_j \in \mathbb{F}_2^n$, $S_j = (s_j \ s_{j+1} \ s_{j+2} \ \dots \ s_{j+n-1})$. Coefficients $c_i \in \mathbb{F}_2$.

Typically $c_0 = 1$ (else we could have output one step earlier).

 $IV = S_0$ Turn key k into $k = c_0 c_1 c_2 \dots c_{n-1}$

$$f(x_0, x_1, x_2) = x_0 + x_2 = 1 \cdot x_0 + 0 \cdot x_1 + 1 \cdot x_2.$$

Starting state $S_0 = (0 \ 0 \ 1)$

has period 7 with output $\overline{0011101}$. This covers all non-zero starting states.

0

0

0

Starting state
$$S_0 = (0 \ 0 \ 1)$$

has period 7 with output $\overline{0011101}$. This covers all non-zero starting states. For any LFSR, the all-zero state $S = (000 \dots 0)$ leads to output $\overline{0}$, of period 1 because $\sum c_i \cdot 0 = 0$.

n

0

Starting state
$$S_0 = (0 \ 0 \ 1)$$

has period 7 with output 0011101.OUT This covers all non-zero starting states. For any LFSR, the all-zero state S = (000...0)n leads to output 0, of period 1 n because $\sum c_i \cdot 0 = 0$. This means that period 7 is maximal

for a register of length 3, as $2^3 - 1 = 7$.

0

1

1

0

1

What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ OUT What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ OUT

0

0

1

What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ OUT \leftarrow $0 \ 0 \ 1 \ 1$ $0 \ 0 \ 1 \ 1$ What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ OUT \leftarrow $0 \ 0 \ 1 \ 1$ $0 \ 0 \ 1 \ 1$ $0 \ 0 \ 1 \ 1$ $0 \ 0$

What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ gives period 4 with output OUT $\overline{0011}$. This misses $2^3 - 4 = 4$ states.

What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ gives period 4 with output OUT $\overline{0011}$. This misses $2^3 - 4 = 4$ states.

What is the period of $s_{i+3} = s_i + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ gives period 4 with output OUT 0011.This misses $2^3 - 4 = 4$ states. $\begin{array}{cccc} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}$ Starting state 111 gives period 1 with output $\overline{1}$ 1 0 1 1

What is the period of $s_{j+3} = s_j + s_{j+1} + s_{j+2}$? Starting state $S_0 = (0 \ 0 \ 1)$ gives period 4 with output OUT 0011.This misses $2^3 - 4 = 4$ states. $\begin{array}{cccc} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}$ Starting state 111 gives period 1 with output $\overline{1}$ 1 0

What is the period of $s_{j+3} = s_{j+3}$	$s_j + s_{j+1} + s_{j+1}$	$s_{j+2}?$			
Starting state $S_0 = (0 \ 0 \ 1)$ gives period 4 with output $\overline{0 \ 0 \ 1 \ 1}$.	OUT	←	* *]
This misses $2^3 - 4 = 4$ states.		0	0	1	1
Starting state 111	0	0	1	1	0
gives period 1 with output $\overline{1}$	0	1	1	0	0
gives period I with output I	1	1	0	0	1
Starting state 101 gives period 2 with output $\overline{10}$	1	0	0	1	
		1	1	1	1
	1	1	1	1	
		1	0	1	0
	1	0	1	0	1

What is the period of $s_{j+3}=s_{j+3}$	$s_j + s_{j+1} + s_{j+1}$	- <i>s</i> _{j+2} ?			
Starting state $S_0 = (0 \ 0 \ 1)$ gives period 4 with output $\overline{0011}$.	OUT	←]
This misses $2^3 - 4 = 4$ states.		0	0	1	1
Starting state 111 gives period 1 with output $ar{1}$	0 0 1	0 1 1	1 1 0	1 0 0	0 0 1
Starting state 101 gives period 2 with output $\overline{10}$	1	0	0	1	1
Together with $ar{0}$ we have now seen all 8 states.	1	1 1	1 1	1 1	1
Periods are 4,2,1,1 depending on starting state.	1 0	1 0 1	0 1 0	1 0 1	0 1

- ▶ An attacker knows the size of the register there are *n* bits in the IV.
- The output bits have linear relations

$$s_{j+n}=\sum c_i s_{j+i},$$

- ▶ An attacker knows the size of the register there are *n* bits in the IV.
- The output bits have linear relations

$$s_{j+n}=\sum c_i s_{j+i},$$

This means that obtaining n - 1 outputs beyond the IV enables an attacker to compute the c_i using linear algebra. $(n - 1 \text{ because } c_0 = 1 \text{ is known.})$

- ▶ An attacker knows the size of the register there are *n* bits in the IV.
- The output bits have linear relations

$$s_{j+n}=\sum c_i s_{j+i},$$

This means that obtaining n - 1 outputs beyond the IV enables an attacker to compute the c_i using linear algebra.

 $(n-1 \text{ because } c_0 = 1 \text{ is known.})$

This means that LFSRs alone do not satisfy the requirements we put on stream ciphers:

A good stream cipher produces a stream of numbers that

- is unpredictable given any previous portion of the stream;
- does not exhibit any non-random statistical properties.

- ▶ An attacker knows the size of the register there are *n* bits in the IV.
- The output bits have linear relations

$$s_{j+n}=\sum c_i s_{j+i},$$

This means that obtaining n - 1 outputs beyond the IV enables an attacker to compute the c_i using linear algebra.

 $(n-1 \text{ because } c_0 = 1 \text{ is known.})$

This means that LFSRs alone do not satisfy the requirements we put on stream ciphers:

A good stream cipher produces a stream of numbers that

- is unpredictable given any previous portion of the stream;
- does not exhibit any non-random statistical properties.
- We can analyze LFSRs mathematically.
- LFSRs are used in combination with non-linear functions in stream cipher design.