Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

To use an FSR as a stream cipher, make $t = t_k$ a function of the key k, put $IV = (s_0 s_1 s_2 \dots s_{n-1})$, and discard the first *n* output bits.

$$0 + 1 \cdot 0 + 1 + 1 = 0$$

$$0 + 1 \cdot 0 + 1 + 1 = 0$$

$$1 + 0 \cdot 1 + 0 + 1 = 0$$

$$0 + 1 \cdot 0 + 0 + 1 = 1$$

$$1 + 0 \cdot 0 + 1 + 1 = 1$$

Output: 0 1 0

$$0 + 0 \cdot 1 + 1 + 1 = 0$$

Output: 0 1 0 1

$$0 + 1 \cdot 1 + 0 + 1 = 0$$

Output: 0 1 0 1 0

Output: 0 1 0 1 0 0

$$1 + 0 \cdot 0 + 0 + 1 = 0$$

Output: 0 1 0 1 0 0 1

$$0 + 0 \cdot 0 + 0 + 1 = 1$$

Output: 0 1 0 1 0 0 1 1

$$0 + 0 \cdot 0 + 1 + 1 = 0$$

Output: 0 1 0 1 0 0 1 1 0

$$0 + 0 \cdot 1 + 0 + 1 = 1$$

Output: 0 1 0 1 0 0 1 1 0 0

$$0 + 1 \cdot 0 + 1 + 1 = 0$$

Output: 0 1 0 1 0 0 1 1 0 0 0

$$0 + 1 \cdot 0 + 1 + 1 = 0$$

Output: 0 1 0 1 0 0 1 1 0 0 0

This is equal to our starting state!

Output: 0 1 0 1 0 0 1 1 0 0 0

This is equal to our starting state!

This FSR outputs

```
\overline{01010011000},
```

i.e., the output is periodic with period length 11.

Repetition is unavoidable as there are only $2^4 = 16$ possible states.

Not all need to appear in the same run.

Exercise: Here we miss state (1111). Determine the output sequence resulting from this state.

A sequence $\{s_i\}_i$ is called *periodic* if there exists an integer r > 0 so that

 $s_{r+i} = s_i$

for all $i \ge 0$. The *period* is the smallest such r.

A sequence $\{s_i\}_i$ is called *periodic* if there exists an integer r > 0 so that

for all $i \ge 0$. The *period* is the smallest such r.

A sequence $\{s_i\}_i$ is called *periodic* if there exists an integer r > 0 so that

 $s_{r+i} = s_i$ $s_2 \xrightarrow{53} \\ s_3 \xrightarrow{54} \\ s_9 = s_1 \xrightarrow{7} \\ s_8 = s_0 \xrightarrow{7} \\ s_7 \xrightarrow{7} \\ s_8 = s_0 \xrightarrow{7} \\ s_7 \xrightarrow{7} \\ s_8 \xrightarrow{7} \\ s_8 \xrightarrow{7} \\ s_7 \xrightarrow{7} \\ s_8 \xrightarrow{7} \\ s_8 \xrightarrow{7} \\ s_7 \xrightarrow{7} \\ s_8 \xrightarrow{$

It is called *ultimately periodic* if there exist integers r > 0 and $i_0 \ge 0$ so that s_0

for all $i \ge i_0$. The smallest i_0 is called the *pre-period*.

Tanja Lange

A sequence $\{s_i\}_i$ is called *periodic* if there exists an integer r > 0 so that

 $s_{r+i} = s_i$

It is called *ultimately periodic* if there exist integers r > 0 and $i_0 \ge 0$ so that s_0

 $s_8 = s_0$ \checkmark

 $s_9 = s_1$

S5

Tanja Lange

Lemma

If $\{s_i\}_i$ is periodic with period r and if for some $\ell > 0$ it holds that

 $s_i = s_{i+\ell}$

for all $i \geq 0$, then

 $r|\ell$.

Lemma

If $\{s_i\}_i$ is periodic with period r and if for some $\ell > 0$ it holds that

 $s_i = s_{i+\ell}$

for all $i \ge 0$, then

 $r|\ell$.

Proof.

Assume on the contrary that $\ell = qr + r_0$ with $0 < r_0 < r$. Then

$$s_i = s_{i+\ell} = s_{i+qr+r_0} = s_{qr+(i+r_0)} = s_{i+r_0}.$$

Lemma

If $\{s_i\}_i$ is periodic with period r and if for some $\ell > 0$ it holds that

 $s_i = s_{i+\ell}$

for all $i \ge 0$, then

 $r|\ell$.

Proof.

Assume on the contrary that $\ell = qr + r_0$ with $0 < r_0 < r$. Then

$$s_i = s_{i+\ell} = s_{i+qr+r_0} = s_{qr+(i+r_0)} = s_{i+r_0}.$$

Lemma

If $\{s_i\}_i$ is periodic with period r and if for some $\ell > 0$ it holds that

 $s_i = s_{i+\ell}$

for all $i \ge 0$, then

 $r|\ell$.

Proof.

Assume on the contrary that $\ell = qr + r_0$ with $0 < r_0 < r$. Then

$$s_i = s_{i+\ell} = s_{i+qr+r_0} = s_{qr+(i+r_0)} = s_{i+r_0}.$$

period definition

Lemma

If $\{s_i\}_i$ is periodic with period r and if for some $\ell > 0$ it holds that

 $s_i = s_{i+\ell}$

for all $i \ge 0$, then

 $r|\ell$.

Proof.

Assume on the contrary that $\ell = qr + r_0$ with $0 < r_0 < r$. Then

$$s_i = s_{i+\ell} \stackrel{\checkmark}{=} s_{i+qr+r_0} = s_{qr+(i+r_0)} = s_{i+r_0}.$$

period definition

Thus $s_i = s_{i+r_0}$ or all $i \ge 0$.

This contradicts the minimality of the period as $0 < r_0 < r$. Thus $r_0 = 0$ and $r | \ell$.