Extended Euclidean algorithm (XGCD)

Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Euclidean algorithm and gcd

► The Euclidean algorithm computes the gcd of two numbers

$$d = \gcd(m, n)$$

in time polynomial in $\log_2(\max\{m, n\})$.

- This is much faster than factoring *m* and *n*.
- ► Each step computes the quotient and remainder of two integers, starting with m = q₁ · n + r₁, followed by n = q₂r₁ + r₂, r₁ = q₃r₂ + r₃, r₂ = q₄r₃ + r₄,.... The algorithm stops when r_i = 0 and outputs d = r_{i-1} as the gcd.

Euclidean algorithm and gcd

► The Euclidean algorithm computes the gcd of two numbers

$$d = \gcd(m, n)$$

in time polynomial in $\log_2(\max\{m, n\})$.

- This is much faster than factoring *m* and *n*.
- ► Each step computes the quotient and remainder of two integers, starting with m = q₁ · n + r₁, followed by n = q₂r₁ + r₂, r₁ = q₃r₂ + r₃, r₂ = q₄r₃ + r₄,.... The algorithm stops when r_i = 0 and outputs d = r_{i-1} as the gcd.
- The extended Euclidean algorithm (XGCD) computes integers a, b with

$$d=\gcd(m,n)=am+bn,$$

and |a| < n, |b| < m.

Euclidean algorithm and gcd

► The Euclidean algorithm computes the gcd of two numbers

$$d = \gcd(m, n)$$

in time polynomial in $\log_2(\max\{m, n\})$.

- This is much faster than factoring *m* and *n*.
- ► Each step computes the quotient and remainder of two integers, starting with m = q₁ · n + r₁, followed by n = q₂r₁ + r₂, r₁ = q₃r₂ + r₃, r₂ = q₄r₃ + r₄, The algorithm stops when r_i = 0 and outputs d = r_{i-1} as the gcd.
- The extended Euclidean algorithm (XGCD) computes integers a, b with

$$d = \gcd(m, n) = am + bn,$$

and |a| < n, |b| < m.

Can compute a, b by reversing steps above, starting with

$$r_{i-1} = r_{i-3} - q_{i-1}r_{i-2} = r_{i-3} - q_{i-1}(r_{i-4} - q_{i-2}r_{i-3}) = \cdots = am + bn$$

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$

Input 312, 213
[312, 1, 0]
[213, 0, 1]
$$q = 1$$

- Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bm1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
 - 5. return d, a, b

Input 312, 213 $\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\\ 99, 1, -1 \end{bmatrix} q = 1$

- Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$
 - 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
 - 5. return d, a, b

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + bn 1. $v \leftarrow [m, 1, 0]$ Input 312, 213 $\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\end{bmatrix} \quad q = 1$ $\begin{bmatrix} 99, 1, -1\end{bmatrix} \quad q = 2$

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + 1. 1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ 4. (v = 10)

- 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
- 5. return d, a, b

- Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + 1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$
 - 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
 - 5. return d, a, b

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + 1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$

- 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
- 5. return d, a, b

Input 312, 213 $\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\\ 99, 1, -1\\ q = 2\\ 5, -2, 3\\ q = 6\\ 9, 13, -19\end{bmatrix}$

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$

- 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
- 5. return d, a, b

Input 312, 213 $\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\\ 99, 1, -1\\ q = 2\\ 15, -2, 3\\ q = 6\\ 9, 13, -19\\ q = 1 \end{bmatrix}$

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$

- 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
- 5. return d, a, b

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \operatorname{div} w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$

Input 312, 213							
[312,	1,	0]				
[213,	0,	1]	q = 1			
[99,	1,	-1]	q = 2			
[15,	-2,	3]	q = 6			
[9,	13,	-19]	q = 1			
[6,	-15,	22]				

Input 312, 213 $\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\end{bmatrix} \quad q = 1$ $\begin{bmatrix} 99, 1, -1\\ 15, -2, 3\end{bmatrix} \quad q = 6$ $\begin{bmatrix} 9, 13, -19\\ 6, -15, 22\end{bmatrix} \quad q = 1$

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$

- 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
- 5. return d, a, b

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \operatorname{div} w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$

$$\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\\ 99, 1, -1\\ 15, -2, 3\\ q=1\\ 9, 13, -19\\ q=1\\ 6, -15, 22\\ q=1\\ 3, 28, -41 \end{bmatrix}$$

Input 312, 213

Input 312, 213

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ $\begin{bmatrix} 312, 1, 0\\ 213, 0, 1\\ 99, 1, -1\\ q = 2\\ 15, -2, 3\\ q = 6\\ 9, 13, -19\\ q = 1\\ 6, -15, 22\\ q = 1\\ 3, 28, -41\\ q = 2 \end{bmatrix}$

- 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$
- 5. return d, a, b

Input 312, 213

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \operatorname{div} w[0]) w$ 3.2 $v \leftarrow w$ 22 W/ - V 4

$$d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$$

[312,	1,	0]	
[213,	0,	1]	q=1
[99,	1,	-1]	q = 2
[15,	-2,	3]	q = 6
[9,	13,	-19]	q=1
[6,	-15,	22]	q=1
[3,	28,	-41]	q = 2
[0,	,]	

Input 312, 213 15, -2, 3] q = 69, 13, -19] q = 16, -15, 22] q = 13, 28, -41] q = 2d = 3, a = 28, b = -41indeed

 $28 \cdot 312 - 41 \cdot 213 = 3.$

Input $m, n \in \mathbb{N}$ Output $d \in \mathbb{N}$, $a, b \in \mathbb{Z}$ with d = am + bn1. $v \leftarrow [m, 1, 0]$ 2. $w \leftarrow [n, 0, 1]$ 3. while $w[0] \neq 0$ 3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$ 3.2 $v \leftarrow w$ 3.3 $w \leftarrow x$ 4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$

Input 312, 213 $bn \begin{bmatrix} 312, 1, 0\\ 213, 0, 1\\ 99, 1, -1\\ 99, 1, -1\\ 15, -2, 3\\ q=1\\ [15, -2, 3] q=6\\ [9, 13, -19] q=1\\ [6, -15, 22] q=1\\ [3, 28, -41] q=2\\ [0, ,] \end{bmatrix}$ d = 3, a = 28, b = -41indeed

$$28 \cdot 312 - 41 \cdot 213 = 3.$$

nput
$$m, n \in \mathbb{N}$$

Dutput $d \in \mathbb{N}, a, b \in \mathbb{Z}$ with $d = am + 1$. $v \leftarrow [m, 1, 0]$
2. $w \leftarrow [n, 0, 1]$
3. while $w[0] \neq 0$
3.1 $x \leftarrow v - (v[0] \text{ div } w[0]) w$
3.2 $v \leftarrow w$
3.3 $w \leftarrow x$
4. $d \leftarrow v[0], a \leftarrow v[1], b \leftarrow v[2]$

5. return d, a, b

At every step, v[0] = v[1]m + v[2]n.

▶ On input *m*, *n*, XGCD computes *d*, *a*, *b* with

$$d = am + bn.$$

- An integer m is invertible modulo n if it is co-prime to n, i.e., if gcd(m, n) = 1.
- XGCD is an efficient way to compute modular inverses:

$$1 = am + bn \Rightarrow$$

▶ On input *m*, *n*, XGCD computes *d*, *a*, *b* with

$$d = am + bn.$$

- An integer m is invertible modulo n if it is co-prime to n, i.e., if gcd(m, n) = 1.
- XGCD is an efficient way to compute modular inverses:

$$1 = am + bn \Rightarrow 1 \equiv am \mod n.$$

Thus

$$m^{-1} \equiv a \mod n.$$

▶ On input *m*, *n*, XGCD computes *d*, *a*, *b* with

$$d = am + bn.$$

- An integer m is invertible modulo n if it is co-prime to n, i.e., if gcd(m, n) = 1.
- XGCD is an efficient way to compute modular inverses:

$$1 = am + bn \Rightarrow 1 \equiv am \mod n.$$

Thus

$$m^{-1} \equiv a \mod n$$
.

• Of course, this only works if *m* is invertible modulo *n*.

▶ On input *m*, *n*, XGCD computes *d*, *a*, *b* with

$$d = am + bn.$$

- An integer m is invertible modulo n if it is co-prime to n, i.e., if gcd(m, n) = 1.
- XGCD is an efficient way to compute modular inverses:

$$1 = am + bn \Rightarrow 1 \equiv am \mod n.$$

Thus

$$m^{-1} \equiv a \mod n.$$

Of course, this only works if m is invertible modulo n.
 In the example

$$28 \cdot 312 - 41 \cdot 213 = 3.$$

Thus 312 and 213 are not co prime.

Tanja Lange