
Homework sheet 2, due 05 December 2019 at 13:30

If you use sage for your computations note that you can compute modulo a
polynomial using %. In Pari the function Mod also works for polynomials.

Submit your homework by encrypted and signed email to all three TAs. Make
sure to test early whether your encryption program can handle Jonathan’s
key and if not, contact him for an alternative. Do not forget to attach your
public key and the public key of anybody you put in cc.

1. This exercise is about LFSRs. You know that A and B use an LFSR
with state size 6. You observe ciphertext 10100100100010111010 and

know that start of the message was tue and that the following encoding
was used:

a -> 00000

b -> 00001

c -> 00010

...

z -> 11001

0 -> 11010

...

5 -> 11111

The ciphertext is the xor of the message with the output stream of the
LFSR.

(a) Compute the first 15 bits of the LFSR output 2 point

(b) Compute the initialization vector and the feedback coefficients of

the LFSR. 6 point

(c) Compute the next character after tue. 2 point

Note that the encoding used above is the binary representation of the
integer associated to the letter

A B C D E F G H I J K L M N O P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q R S T U V W X Y Z 0 1 2 3 4 5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31



2. In RC4 we need to swap two states. This is easiest to do using an extra
variable, i.e. we copy S[i] to dummy, copy S[j] to S[i] and finally copy
dummy to S[j]. To save on storage space one might have the idea to
implement the swap in the following three steps:

(a) S[i]← S[i] xor S[j]

(b) S[j]← S[i] xor S[j]

(c) S[i]← S[i] xor S[j]

Explain first why this usually computes the correct S[i] and S[j]. Now
assume that this piece of code does the swap in the second part of
the code (after the key setup). Explain why this can go wrong and
state (with explanation) the expected number of steps until this goes
wrong for the first time. Explain what happens long term with this
implementation.
Note that there are multiple possibilities of what happens. I don’t
expect a full analysis. 5 points

3. This exercise expects you to brute force RC4 at “export-cipher”
strength (40 bit = 5 byte keys). Through some side-channel infor-
mation you learn that this key was set up for 2WF80 and that the first
byte key[0] = 80. Find a key that could have produced the following
output sequence:

130, 189, 254, 192, 238, 132, 216, 132, 82, 173.

Note: this should be a feasible computation on a notebook. If it feels
like more computation chances are that something is wrong in your
approach. 5 points


