Exercise sheet 6, 19 December 2019

For this exercise sheet you should not use your computer for more functions than a pocket calculator offers you (though with more digits) – unless explicitly stated.

The first six exercises are to recap finite fields and groups; skip them if you feel comfortable in that area – or just do them quickly.

- 1. Write all elements of $\mathbb{Z}/13$. For each element determine the order in $(\mathbb{Z}/13, +)$. What orders do you observe; what orders could be possible?
- 2. Write all elements of $\mathbb{Z}/6$. For each element determine the order in $(\mathbb{Z}/6, +)$. What orders do you observe; what orders could be possible?
- 3. Write all elements of $(\mathbb{Z}/13)^*$. For each element determine the order in $((\mathbb{Z}/13)^*, \cdot)$. What orders do you observe; what orders could be possible?
- 4. Write all elements of $(\mathbb{Z}/6)^*$. For each element determine the order in $((\mathbb{Z}/6)^*, \cdot)$. What orders do you observe; what orders could be possible?
- 5. Show that $\mathbb{F}_{61}^* = \langle 2 \rangle$, i.e. show that the order of 2 in \mathbb{F}_{61} is 60.
- 6. Determine the smallest generator $g \in (\mathbb{Z}/4969)^*$ that is larger than 1000. Do this by testing whether 1000 + i is a generator, starting from i = 1 and incrementing i if it is not. Try to make each test as cheap as possible. For this exercise I suggest you use modular exponentiation on your computer but don't just ask it for the order.
- 7. For this exercise you can use your computer. Use the p-1 method with k= $lcm(1,2,3,4,5,\ldots,50)$ and base 2 to factor n=400428248257. If you get stuck on the precision of your computer, remember that the exponentiation is modulo n and that you learned the square-and-multiply method to deal with large exponents. Alternatively, for the last step you can compute the exponentiation in pieces, using the factors of k.
- 8. For this exercise you should use a pocket calculator (or your computer with just basic functions). Use the p-1 method with $k = \text{lcm}\{1, 2, 3, \dots, 6\}$ and base 2 to factor n = 101617.
- 9. The integer p = 103 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 2. You observe $h_a = 23$ and $h_b = 42$. What is the shared key of Alice and Bob?
- 10. The integer p = 103 is prime. You are the eavesdropper and know that Charlie and Dave use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 2. You observe $h_a = 21$ and $h_b = 39$. What is the shared key of Charlie and Dave?

- 11. The integer p = 10007 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 1234. You observe $h_a = 2345$ and $h_b = 4567$. What is the shared key of Alice and Bob?
- 12. This problem is about the DH key exchange. The public parameters are that the group is $(\mathbb{F}_{1009}^*, \cdot)$ and that it is generated by g = 11.
 - (a) Compute the Diffie-Hellman public key belonging to the secret key b = 548.
 - (b) Alice's Diffie-Hellman public key is $h_a = 830$. Compute the shared DH key with Alice using b from the previous part.
 - (c) Alice and Bob keep the prime but change the generator to g = 1008. (This changes the subgroup generated). Simulate one round of DH key exchange. Why would you avoid this generator in practice?
- 13. The integer p=17 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in \mathbb{F}_{17}^* with generator g=3. You observe $h_a=12$ and $h_b=14$. Use the Baby-Step Giant-Step algorithm to compute the secret key of Alice and Bob. Compute the shared key using both h_a^b and h_b^a . Why does this algorithm work? Compute the complexity.