Exercise sheet 3, 28 November 2019

This exercise sheet takes you on a trip to investigate the stream cipher RC4.
You can do it with a simple implementation of it in sage or python but it will
be much faster (and thus your results will be more meaningful) if you work
with a faster implementation, e.g. in C. You can get a simple sage implemen-
tation (with hardcoded values) at http://www.hyperelliptic.org/tanja/
teaching/CS19/rc4.sage. Use https://tools.ietf.org/html/rfc6229 to
check your implementation.

RC4 has a very simple description. It uses a 256 byte state vector S (array of
256 bytes) which contains a permutation of the integers 0,1, ...,255. The key &
consists of £ bytes, where £ is at least 5 and at most 256. For export the shortest
keys were used, meaning the strength against brute-force attacks was 24°.

RC4 setup

for i = 0 to 255
Sfil =1

j=0

for i = 0 to 255
j = (j + S[i] + k[i mod 1]) mod 256
swap values in S[i] and S[j]

Generate RC4 output stream
i=0,j=0
while generating output
i = (i+1) mod 256
] (j + S[il) mod 256
swap values in S[i] and S[j]
c = S[(8[i] + S[j]) mod 256]
output c

1. Take 16 bytes as keylength; vary the key, and plot the distribution of the
second output byte over all 256 possible values of that byte.

2. What happens to the output if S[2] = 0 at the end of the key-setup stage?

3. Take 16 bytes as keylength; vary the key but keep the first byte of it fixed
and plot the first output byte.

4. Take 16 bytes as keylength; vary the first three key bytes and keep the
remaining ones constant. Plot the distribution of the third output byte +
key[0] + key[1] + key[2] + key[3].

5. Read the specification of WEP (the protocol to connect to routers). How
can you use the knowledge from the first three parts to likely break it?

6. Check out the documentation and explanation of Aircrack-ng.


http://www.hyperelliptic.org/tanja/teaching/CS19/rc4.sage
http://www.hyperelliptic.org/tanja/teaching/CS19/rc4.sage
https://tools.ietf.org/html/rfc6229

