
Homework sheet 2, due 12 January 2017 at 13:45

Submit your homework by encrypted and signed email. This time a different member of your
group should handle the submission; ideally you should cc your group members. Do not forget to
attach your public key if I don’t have it yet.

1. Alice is a web merchand offering encrypted connections using semi-static DH in IF∗
103 in the

subgroup of order ` = 51 generated by 2.

For this exercise you should not use your computer for more functions than a pocket cal-
culator offers you; in particular make sure to give full details when computing inverses and
exponentitations.

(a) Verify that 2 has order 51, justify your computation and try to use not too many
multiplications and squarings.

(b) Alice’s public key is hA = 30. Use the baby-step giant-step algorithm to compute an
integer a between 0 and 50 so that ga = hA, i.e. compute the discrete logarithm of
Alice’s key. Solutions using brute-force search for a will not be accepted. Make sure to
verify your result by computing ga.

2. In SSLv3 one of the two options for symmetric encryption is DES in CBC mode. To protect
against message forgery a message authentication code MAC is used. SSLv3 uses the MAC-
then-encrypt approach, thus a message m first gets encoded as M = m||MAC(m)||pad =
M1 . . .M`−1M` and then encrypted using DES with CBC. The padding pad is chosen so that
the total length of M in bytes is a multiple of 8 (to match the block size of DES) and that
the last byte states the length of the padding (including this byte) in bytes. Note, the latter
means that there always has to be a padding, even if m||MAC(m) has length a multiple
of 8. There are no further requirements on how the padding is chosen. Upon receiving a
ciphertext C, a computer will decrypt the message M , read the last byte to learn the length
of the padding to identify m and MAC(m), and finally verify the MAC. If this verification
fails the computer will close the connection.

(a) Just as a reminder of how CBC works, write how you decrypt the last block of the
ciphertext.

(b) Assume that C = C0C1 . . . C`−1C` is a ciphertext so that the C` block comes entirely
from the encryption of pad. The first block C0 contains the IV. What is the value of
the last byte in M`? Show how this gives you a method that for each 0 < i < ` you can
test whether the last byte of Mi matches a publicly available value (computed from the
Ci).

To give a concrete example let C0 =01 23 45 67 89 AB CD EF, C`−1 =12 34 56 78

9A BC DE F0 (in hex) and (like above) let C` come entirely from padding. What value
of the last byte of M1 can you test for?

3. In RC4 we need to swap two states. This is easiest to do using an extra variable, i.e. we copy
S[i] to dummy, copy S[j] to S[i] and finally copy dummy to S[j]. To save on storage space one
might have the idea to implement the swap in the following three steps:

(a) S[i]← S[i] xor S[j]

(b) S[j]← S[i] xor S[j]

(c) S[i]← S[i] xor S[j]

Explain first why this usually computes the correct S[i] and S[j]. Now assume that this
piece of code does the swap in the second part of the code (after the key setup). Explain
why this can go wrong and state (with explanation) the expected number of steps until this
goes wrong for the first time. Explain what happens long term with this implementation.
Note that there are multiple possibilities of what happens. I don’t expect a full analysis.

4. This exercise expects you to brute force RC4 at “export-cipher” strength (40 bit keys).
Through some side-channel information you learn that this key was set up for 2WF80 and
that the first byte key[0] = 80. Find a key that could have produced the following output
sequence:

130, 189, 254, 192, 238, 132, 216, 132, 82, 173.

