Exercise sheet 3, 1 December 2016

For this exercise sheet you should not use your computer for more functions than a pocket calculator offers you (though with more digits).

1. Compute 11^9 mod 35 in two different ways: First compute 11^9 and then reduce modulo 35 and then compute it reducing modulo 35 whenever useful. Observe the time the computation takes you.

For the exponentiaton with reduction you should use the *square-and-multiply method*. Look it up or ask Christine to present it.

- 2. State all elements in $(\mathbb{Z}/12)^{\times}$.
- 3. State all elements in $(\mathbb{Z}/21)^{\times}$.
- 4. Execute the RSA key generation where p = 239, q = 433, and e = 23441.
- 5. RSA-encrypt the message 23 to a user with public key (e, n) = (17, 11584115749). Document how you compute the exponentiation.
- 6. Find the smallest positive integer x satisfying the following system of congruences, should such a solution exist.

 $x \equiv 0 \mod 3$ $x \equiv 1 \mod 5$ $x \equiv 2 \mod 8$

Reminder on how the Chinese Remainder Theorem works:

Theorem 1 (Chinese Remainder Theorem)

Let $r_1, \ldots, r_k \in \mathbb{Z}$ and let $0 \neq n_1, \cdots, n_k \in \mathbb{N}$ such that the n_i are pairwise coprime. The system of equivalences

$$\begin{array}{rcl} X & \equiv & r_1 \bmod n_1, \\ X & \equiv & r_2 \bmod n_2, \\ & \vdots & & \\ X & \equiv & r_k \bmod n_k, \end{array}$$

has a solution X which is unique up to multiples of $N = n_1 \cdot n_2 \cdots n_k$. The set of all solutions is given by $\{X + aN | a \in \mathbb{Z}\} = X + N\mathbb{Z}$.

If the n_i are not all coprime the system might not have a solution at all. E.g. the system $X \equiv 1 \mod 8$ and $X \equiv 2 \mod 6$ does not have a solution since the first congruence implies that X is odd while the second one implies that X is even. If the system has a solution then it is unique only modulo $\operatorname{lcm}(n_1, n_2, \ldots, n_k)$. E.g. the system $X \equiv 4 \mod 8$ and $X \equiv 2 \mod 6$ has solutions and the solutions are unique modulo 24. Replace $X \equiv 2 \mod 6$ by $X \equiv 2 \mod 3$; the system still carries the same information but has coprime moduli and we obtain $X = 8a + 4 \equiv 2a + 1 \stackrel{!}{\equiv} 2 \mod 3$, thus $a \equiv 2 \mod 3$ and X = 8(3b + 2) + 4 = 24b + 20. The smallest positive solution is thus 20.

We now present a constructive algorithm to find this solution, making heavy use of the extended Euclidean algorithm presented in the previous section. Let $N_i = N/n_i$. Since all n_i are coprime, we have $gcd(n_i, N_i) = 1$ and we can compute u_i and v_i with

$$u_i n_i + v_i N_i = 1.$$

Let $e_i = v_i N_i$, then this equation becomes $u_i n_i + e_i = 1$ or $e_i \equiv 1 \mod n_i$. Furthermore, since all $n_j | N_i$ for $j \neq i$ we also have $e_i = v_i N_i \equiv 0 \mod n_j$ for $j \neq i$. Using these values e_i a solution to the system of equivalences is given by

$$X \equiv \sum_{i=1}^{k} r_i e_i \bmod N,$$

since X satisfies $X \equiv r_i \mod n_i$ for each $1 \le i \le k$.

Example 2 Consider the system of integer equivalences

 $X \equiv 1 \mod 3,$ $X \equiv 2 \mod 5,$ $X \equiv 5 \mod 7.$

The moduli are coprime and we have N=105. For $n_1=3, N_1=35$ we get $v_1=2$ by just observing that $2 \cdot 35=70 \equiv 1 \mod 3$. So $e_1=70$. Next we compute $N_2=21$ and see $v_2=1$ since $21 \equiv 1 \mod 5$. This gives $e_2=21$. Finally, $N_3=15$ and $v_3=1$ so that $e_3=15$.

The result is $X = 70 + 2 \cdot 21 + 5 \cdot 15 = 187$ which indeed satisfies all 3 congruences. To obtain the smallest positive result we reduce 187 modulo N to obtain 82.

For easier reference we phrase this approach as an algorithm.

Algorithm 3 (Chinese remainder computation)

IN: system of k equivalences as $(r_1, n_1), (r_2, n_2), \dots (r_k, n_k)$ with pairwise coprime n_i OUT: smallest positive solution to system

- 1. $N \leftarrow \prod_{i=1}^k n_i$
- 2. $X \leftarrow 0$
- 3. for i=1 to k
 - (a) $M \leftarrow N \operatorname{div} n_i$
 - (b) $v \leftarrow (M^{-1} \mod n_i)$ (use XGCD)
 - (c) $e \leftarrow vM$
 - (d) $X \leftarrow X + r_i e$
- 4. $X \leftarrow X \mod N$