
Exercise sheet 3, 1 December 2016

For this exercise sheet you should not use your computer for more functions than a pocket calcu-
lator offers you (though with more digits).

1. Compute 119 mod 35 in two different ways: First compute 119 and then reduce modulo 35
and then compute it reducing modulo 35 whenever useful. Observe the time the computation
takes you.

For the exponentiaton with reduction you should use the square-and-multiply method. Look
it up or ask Christine to present it.

2. State all elements in (Z/12)×.

3. State all elements in (Z/21)×.

4. Execute the RSA key generation where p = 239, q = 433, and e = 23441.

5. RSA-encrypt the message 23 to a user with public key (e, n) = (17, 11584115749). Document
how you compute the exponentiation.

6. Find the smallest positive integer x satisfying the following system of congruences, should
such a solution exist.

x ≡ 0 mod 3

x ≡ 1 mod 5

x ≡ 2 mod 8

Reminder on how the Chinese Remainder Theorem works:

Theorem 1 (Chinese Remainder Theorem)
Let r1, . . . , rk ∈ Z and let 0 6= n1, · · · , nk ∈ IN such that the ni are pairwise coprime. The system
of equivalences

X ≡ r1 mod n1,

X ≡ r2 mod n2,

...

X ≡ rk mod nk,

has a solution X which is unique up to multiples of N = n1 · n2 · · ·nk. The set of all solutions is
given by {X + aN |a ∈ Z} = X + NZ.

If the ni are not all coprime the system might not have a solution at all. E.g. the system
X ≡ 1 mod 8 and X ≡ 2 mod 6 does not have a solution since the first congruence implies that X
is odd while the second one implies that X is even. If the system has a solution then it is unique
only modulo lcm(n1, n2, . . . , nk). E.g. the system X ≡ 4 mod 8 and X ≡ 2 mod 6 has solutions
and the solutions are unique modulo 24. Replace X ≡ 2 mod 6 by X ≡ 2 mod 3; the system still

carries the same information but has coprime moduli and we obtain X = 8a+4 ≡ 2a+1
!≡ 2 mod 3,

thus a ≡ 2 mod 3 and X = 8(3b + 2) + 4 = 24b + 20. The smallest positive solution is thus 20.
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We now present a constructive algorithm to find this solution, making heavy use of the extended
Euclidean algorithm presented in the previous section. Let Ni = N/ni. Since all ni are coprime,
we have gcd(ni, Ni) = 1 and we can compute ui and vi with

uini + viNi = 1.

Let ei = viNi, then this equation becomes uini + ei = 1 or ei ≡ 1 mod ni. Furthermore, since all
nj |Ni for j 6= i we also have ei = viNi ≡ 0 mod nj for j 6= i.
Using these values ei a solution to the system of equivalences is given by

X ≡
k∑

i=1

riei mod N,

since X satisfies X ≡ ri mod ni for each 1 ≤ i ≤ k.

Example 2 Consider the system of integer equivalences

X ≡ 1 mod 3,

X ≡ 2 mod 5,

X ≡ 5 mod 7.

The moduli are coprime and we have N = 105. For n1 = 3, N1 = 35 we get v1 = 2 by just
observing that 2 · 35 = 70 ≡ 1 mod 3. So e1 = 70. Next we compute N2 = 21 and see v2 = 1 since
21 ≡ 1 mod 5. This gives e2 = 21. Finally, N3 = 15 and v3 = 1 so that e3 = 15.
The result is X = 70 + 2 · 21 + 5 · 15 = 187 which indeed satisfies all 3 congruences. To obtain the
smallest positive result we reduce 187 modulo N to obtain 82.

For easier reference we phrase this approach as an algorithm.

Algorithm 3 (Chinese remainder computation)
IN: system of k equivalences as (r1, n1), (r2, n2), . . . (rk, nk) with pairwise coprime ni

OUT: smallest positive solution to system

1. N ←
∏k

i=1 ni

2. X ← 0

3. for i = 1 to k

(a) M ← N div ni

(b) v ← (M−1 mod ni) (use XGCD)

(c) e← vM

(d) X ← X + rie

4. X ← X mod N
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