
Introduction to Cryptography

2WF80

Discrete Logarithms

Tanja Lange

Technische Universiteit Eindhoven

08 December 2016



Diffie–Hellman key exchange

1976, first to introduce public-key

cryptography.

Standardize group G, &

pick some g 2 G.

Alice chooses secret a,

computes her public key ga.

Bob chooses secret b,

computes his public key gb.

Alice computes (gb)a.

Bob computes (ga)b.

They use this shared secret

to encrypt with symmetric crypto.



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

ga

&&NN
NNN

N

Bob’s
public key

gb

xxppp
ppp

fAlice;Bobg’s
shared secret

gab
=

fBob;Aliceg’s
shared secret

gb a



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

ga

&&NN
NNN

N

Bob’s
public key

gb

xxppp
ppp

fAlice;Bobg’s
shared secret

gab
=

fBob;Aliceg’s
shared secret

gb a

Warning #1: Many G are unsafe!

e.g. G = Q; g = 2



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

ga

&&NN
NNN

N

Bob’s
public key

gb

xxppp
ppp

fAlice;Bobg’s
shared secret

gab
=

fBob;Aliceg’s
shared secret

gb a

Warning #1: Many G are unsafe!

e.g. G = Q; g = 2 size gives away

exponent.

G = (Fp;+), i.e., A sends ag.



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

ga

&&NN
NNN

N

Bob’s
public key

gb

xxppp
ppp

fAlice;Bobg’s
shared secret

gab
=

fBob;Aliceg’s
shared secret

gb a

Warning #1: Many G are unsafe!

e.g. G = Q; g = 2 size gives away

exponent.

G = (Fp;+), i.e., A sends ag.

E computes a � ag � g�1 mod p

using XGCD.



Diffie–Hellman key exchange

The proper DH proposal:

Standardize large prime p &

generator g of F�p.

Alice chooses big secret a < p�1,

computes her public key ga.

Bob chooses big secret b,

computes his public key gb.

Alice computes (gb)a.

Bob computes (ga)b.

They use this shared secret

to encrypt with symmetric crypto.



Is this secure?

Computational Diffie-Hellman

Problem (CDHP):

Given g; ga; gb

compute gab.

Decisional Diffie-Hellman

Problem (DDHP):

Given g; ga; gb, and gc

decide whether gc = gab.

Discrete Logarithm

Problem (DLP):

Given g; ga, compute a.

If one can solve DLP, then

CDHP and DDHP are easy.



Practical problems

Eve can set up a

man-in-the-middle attack:

A oo
gae // E oo

gbf // B

E decrypts everything from A

and reencrypts it to B

and vice versa.

This attack cannot be detected

unless A and B have some

long-term secrets.



Semi-static DH

Alice publishes long-term

public key ga,

keeps long-term secret key a.

Any user can encrypt to

Alice using this key:

Pick random k, compute r = gk

and encrypt message using key

derived from (ga)k.

Send ciphertext c along with r.

Alice decrypts, by obtaining

same key from ra = gak.



ElGamal encryption

(For historical purposes only)

Alice publishes long-term

public key ga,

keeps long-term secret key a.

Any user can encrypt to

Alice using this key:

Pick random k, compute r = gk.

Encrypt m 2 F�p as c = (ga)k �m.

Send (r; c).

Alice decrypts, by computing

m = c=(ra) = (ga)k �m=gak.

Downside: requires m in group;

has multiplicative structure.



ElGamal signatures

Requires a hash function.

Let g 2 F�p have prime order `.

Alice publishes long-term

public key ga,

keeps long-term secret key a.

Alice signs message m:

Pick random k, compute r = gk,

s � k�1(r + hash(m)a) mod `.

Signature is (r; s).

Anybody can verify signature:

Compute rs � gr � (ga)hash(m);

accept if 0.



Valid signatures get accepted

rs = gk�k
�1(r+hash(m)a)

= gr+hash(m)a

= gr � (ga)hash(m).

Thus difference is 0.



The discrete-logarithm problem

Let p = 1000003 and g = 2.

The number of elements in F�p is



The discrete-logarithm problem

Let p = 1000003 and g = 2.

The number of elements in F�p is

1000002 = 2 � 3 � 166667

and g has order 1000002.



The discrete-logarithm problem

Let p = 1000003 and g = 2.

The number of elements in F�p is

1000002 = 2 � 3 � 166667

and g has order 1000002.

In general, any element of F�p has

order dividing (p� 1).

Here, g = 2 generates the entire

multiplicative group modulo p.

Any 1 � h � p� 1 is power of g.

h = 159429, find n with h = gn.

Could find n by brute force.

Is there a faster way?



Understanding brute force

Can compute successively

g1 = 2,

g2 = 4,

g3 = 8,

g4 = 16,

: : :

g20 = 48573

g1000001 = 500002 = g�1.

g1000002 = 1.

At some point we’ll find n

with gn = 159429.

Maximum cost of computation:

� 1000001 multiplications by g.



� 1000001 nanoseconds on CPU

that does 1 MULT/nanosecond.

This is negligible work

for p � 220.

But users can

standardize a larger p,

making the attack slower.

Attack cost scales linearly:

� 250 MULTs for p � 250,

� 2100 MULTs for p � 2100, etc.

(Not exactly linearly:

cost of MULTs grows with p.

But this is a minor effect.)



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply

“random self-reduction”:

choose random r, say 69961;

compute gr = 872477;

compute gr+n = gr � h as

872477 � 159429 = 718342;

compute discrete log;

subtract r mod 1000002; get n.



Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 26 e: one chip,

210 cores on the chip,

each 230 MULTs/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.

Example, 230 e: 224 chips,

so 234 cores,

so 264 MULTs/second,

so 289 MULTs/year.



Multiple targets and giant steps

Computation can be applied

to many targets at once.

Given 100 DL targets gn1 ,

gn2 , : : : , gn100 :

Can find all of n1; n2; : : : ; n100

with � 1000002 MULTs.

Simplest approach: First build

a sorted table containing

gn1 , : : : , gn100 .

Then check table for

g1, g2, etc.



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?

Typically � 1000002=100 mults.



Can use random self-reduction

to turn a single target

into multiple targets.

Let ` be the order of g.

Given gn:

Choose random r1; r2; : : : ; r100.

Compute gr1 � gn,

gr2 � gn, etc.

Solve these 100 DL problems.

Typically � `=100 mults

to find at least one

ri + n mod `,

immediately revealing n.



Also spent some MULTs

to compute each gri :

� log2 p MULTs for each i.

Faster: Choose ri = ir1

with r1 � `=100.

Compute gr1 ;

gr1 � gn;

g2r1 � gn;

g3r1 � gn; etc.

Just 1 MULT for each new i.

� 100 + log2 ` + `=100 MULTs

to find n given gn.



Faster: Increase 100 to � p
`.

Only � 2
p
` MULTs

to solve one DL problem!

“Shanks baby-step-giant-step

discrete-logarithm algorithm.”



Example: p = 1000003,

` = 1000002,
p
` � 1000.

g = 2, h = gn = 159429.

Compute g1000 = 510646.

Then compute 1000 targets:

h = g0 � gn = 159429,

g1000 � gn = 536901,

g2�1000 � gn = 525551,

g3�1000 � gn = 710839,

g4�1000 � gn = 3036,

: : :

g999�1000 � gn = 143529,



Build a sorted table of targets:

g4�1000 � h = 3036,

g486�1000 � h = 3973,

g648�1000 � h = 5038,

g909�1000 � h = 7814,

g544�1000 � h = 7862,

: : :

g100�1000 � h = 999018,

Look up g, g2, g3, etc. in table.

g675 = 913004; find

g590�1000 � h = 913004

in the table of targets.



Thus

675 � 590�1000+n mod 1000002;

and

n � �590 � 1000 + 675

� 410677 mod 1000002.

Test: g410677 = 159429.



More common version:

Let m =
jp

`
k

.

Compute table with (gi; i)

for 0 � i < m;

sort while computing.

Each step costs 1 MULT.

Reach gm, invert: G = g�m.

Compute Gjh and

compare with table entries.

Match instantly gives

g�jmh = gi, thus n = i + jm.

Cost: (� 2m+ 2) MULTs +1INV.



Rationale

Write n = n0 + n1m.

Then the baby step gn0

matches the giant step

Gn1h = g�n1mh.

Optimizations

Using gjmh avoids inversion

but needs reduction mod p� 1

(extra implementation).

Can optimize by interleaving

baby and giant steps

(needs log2 n MULTs

for exponentiation again).


