Introduction to Cryptography 2WF80

Discrete Logarithms

Tanja Lange Technische Universiteit Eindhoven

08 December 2016

<u>Diffie–Hellman key exchange</u>

1976, first to introduce public-key cryptography.

Standardize group G, & pick some $g \in G$.

Alice chooses secret a, computes her public key g^a .

Bob chooses secret b, computes his public key g^b .

Alice computes $(g^b)^a$. Bob computes $(g^a)^b$. They use this shared secret to encrypt with symmetric crypto.

e.g. $G = \mathbf{Q}, g = 2$

Warning #1: Many G are unsafe!

e.g. $G = \mathbf{Q}$, g = 2 size gives away exponent.

 $G = (\mathbf{F}_p, +)$, i.e., A sends ag.

Warning #1: Many G are unsafe!

e.g. $G = \mathbf{Q}, g = 2$ size gives away exponent.

 $G = (\mathbf{F}_p, +)$, i.e., A sends ag.

E computes $a \equiv ag \cdot g^{-1} \mod p$ using XGCD.

Diffie-Hellman key exchange

The proper DH proposal:

Standardize large prime p &generator g of \mathbf{F}_p^* .

Alice chooses big secret a < p-1, computes her public key g^a .

Bob chooses big secret b, computes his public key g^b .

Alice computes $(g^b)^a$. Bob computes $(g^a)^b$. They use this shared secret

to encrypt with symmetric crypto.

Is this secure?

Computational Diffie-Hellman Problem (CDHP): Given g, g^a, g^b compute g^{ab} .

Decisional Diffie-Hellman Problem (DDHP): Given g, g^a, g^b , and g^c decide whether $g^c = g^{ab}$.

Discrete Logarithm Problem (DLP): Given g, g^a, compute a. If one can solve DLP, then

CDHP and DDHP are easy.

Practical problems

Eve can set up a *man-in-the-middle* attack:

E decrypts everything from *A* and reencrypts it to *B* and vice versa.

This attack cannot be detected unless *A* and *B* have some long-term secrets.

<u>Semi-static DH</u>

Alice publishes long-term public key g^a , keeps long-term secret key a.

Any user can encrypt to Alice using this key: Pick random k, compute $r = g^k$ and encrypt message using key derived from $(g^a)^k$. Send ciphertext c along with r.

Alice decrypts, by obtaining same key from $r^a = g^{ak}$.

ElGamal encryption

(For historical purposes only) Alice publishes long-term public key q^a , keeps long-term secret key a. Any user can encrypt to Alice using this key: Pick random k, compute $r = g^k$. Encrypt $m \in \mathbf{F}_{p}^{*}$ as $c = (g^{a})^{k} \cdot m$. Send (r, c).

Alice decrypts, by computing $m = c/(r^a) = (g^a)^k \cdot m/g^{ak}$.

Downside: requires m in group; has multiplicative structure.

ElGamal signatures

Requires a hash function. Let $g \in \mathbf{F}_{p}^{*}$ have prime order ℓ . Alice publishes long-term public key q^a , keeps long-term secret key a. Alice signs message m: Pick random k, compute $r = g^k$, $s \equiv k^{-1}(r + \operatorname{hash}(m)a) \mod \ell$. Signature is (r, s).

Anybody can verify signature: Compute $r^s - g^r \cdot (g^a)^{hash(m)}$; accept if 0.

Valid signatures get accepted

$$egin{aligned} r^s &= g^{k \cdot k^{-1}(r+ ext{hash}(m)a)} \ &= g^{r+ ext{hash}(m)a} \ &= g^r \cdot (g^a)^{ ext{hash}(m)}. \end{aligned}$$

Thus difference is 0.

The discrete-logarithm problem

Let p = 1000003 and g = 2. The number of elements in \mathbf{F}_p^* is

The discrete-logarithm problem

Let p = 1000003 and g = 2. The number of elements in \mathbf{F}_p^* is $1000002 = 2 \cdot 3 \cdot 166667$ and g has order 1000002.

The discrete-logarithm problem

Let p = 1000003 and g = 2. The number of elements in \mathbf{F}_p^* is $1000002 = 2 \cdot 3 \cdot 166667$ and g has order 1000002. In general, any element of \mathbf{F}_p^* has order dividing (p - 1).

Here, g = 2 generates the entire multiplicative group modulo p.

Any $1 \le h \le p - 1$ is power of g. h = 159429, find n with $h = g^n$. Could find n by brute force. Is there a faster way?

Understanding brute force

Can compute successively $g^1 = 2$, $g^2 = 4$, $g^3 = 8$, $g^4 = 16$,

$$g^{20} = 48573$$

 $g^{1000001} = 500002 = g^{-1}$
 $g^{1000002} = 1.$

At some point we'll find n with $g^n = 159429$.

Maximum cost of computation: ≤ 1000001 multiplications by g.

 \leq 1000001 nanoseconds on CPU that does 1 MULT/nanosecond. This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger *p*, making the attack slower.

Attack cost scales linearly: $\approx 2^{50}$ MULTs for $p \approx 2^{50}$, $\approx 2^{100}$ MULTs for $p \approx 2^{100}$, etc.

(Not exactly linearly: cost of MULTs grows with *p*. But this is a minor effect.) Computation has a good chance of finishing earlier.

Chance scales linearly:

- 1/2 chance of 1/2 cost;
- 1/10 chance of 1/10 cost; etc.

"So users should choose large n."

Computation has a good chance of finishing earlier. Chance scales linearly: 1/2 chance of 1/2 cost; 1/10 chance of 1/10 cost; etc.

"So users should choose large n." That's pointless. We can apply "random self-reduction": choose random r, say 69961; compute $q^r = 872477;$ compute $g^{r+n} = g^r \cdot h$ as $872477 \cdot 159429 = 718342;$ compute discrete log; subtract $r \mod 1000002$; get n.

Computation can be parallelized.

One low-cost chip can run many parallel searches. Example, 2⁶ €: one chip, 2¹⁰ cores on the chip, each 2³⁰ MULTs/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips. Example, 2³⁰ €: 2²⁴ chips, so 2³⁴ cores, so 2⁶⁴ MULTs/second, so 2⁸⁹ MULTs/year.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets g^{n_1} , $g^{n_2}, \ldots, g^{n_{100}}$:

Can find all of $n_1, n_2, \ldots, n_{100}$ with ≤ 1000002 MULTs.

Simplest approach: First build a sorted table containing $g^{n_1}, \ldots, g^{n_{100}}$. Then check table for g^1, g^2 , etc. Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving *at least one* out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its *first* n_i ?

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving *at least one* out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its *first* n_i ? Typically \approx 1000002/100 mults. Can use random self-reduction to turn a single target into multiple targets. Let ℓ be the order of g.

Given g^n : Choose random $r_1, r_2, \ldots, r_{100}$. Compute $g^{r_1} \cdot g^n$, $g^{r_2} \cdot g^n$, etc.

Solve these 100 DL problems. Typically $\approx \ell/100$ mults to find *at least one* $r_i + n \mod \ell$, immediately revealing *n*. Also spent some MULTs to compute each q^{r_i} : $\approx \log_2 p$ MULTs for each *i*. Faster: Choose $r_i = ir_1$ with $r_1 pprox \ell/100$. Compute q^{r_1} ; $q^{r_1} \cdot q^n$; $q^{2r_1} \cdot q^n$; $q^{3r_1} \cdot q^n$; etc. Just 1 MULT for each new i. $\approx 100 + \log_2 \ell + \ell/100$ MULTs to find *n* given g^n .

Faster: Increase 100 to $\approx \sqrt{\ell}$. Only $\approx 2\sqrt{\ell}$ MULTs to solve one DL problem! "Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: p = 1000003, $\ell = 1000002, \ \sqrt{\ell} \approx 1000.$ $q = 2, h = q^n = 159429.$ Compute $q^{1000} = 510646$. Then compute 1000 targets: $h = q^0 \cdot q^n = 159429,$ $q^{1000} \cdot q^n = 536901,$ $q^{2 \cdot 1000} \cdot q^n = 525551,$ $q^{3.1000} \cdot q^n = 710839$, $a^{4 \cdot 1000} \cdot q^n = 3036$,

 $g^{999\cdot 1000} \cdot g^n = 143529$,

```
Build a sorted table of targets:
q^{4\cdot 1000} \cdot h = 3036,
a^{486\cdot 1000} \cdot h = 3973,
a^{648\cdot 1000} \cdot h = 5038,
a^{909\cdot 1000} \cdot h = 7814,
a^{544\cdot 1000} \cdot h = 7862,
a^{100\cdot 1000} \cdot h = 999018,
Look up g, g^2, g^3, etc. in table.
q^{675} = 913004; find
q^{590\cdot 1000} \cdot h = 913004
in the table of targets.
```

Thus

 $675 \equiv 590 \cdot 1000 + n \mod 1000002;$ and

- $n \equiv -590 \cdot 1000 + 675$
 - \equiv 410677 mod 1000002.
- Test: $g^{410677} = 159429$.

More common version: Let $m = \left| \sqrt{\ell} \right|$. Compute table with (g^i, i) for 0 < i < m; sort while computing. Each step costs 1 MULT. Reach g^m , invert: $G = q^{-m}$. Compute $G^{j}h$ and compare with table entries. Match instantly gives $q^{-jm}h=q^i$, thus n=i+jm. Cost: $(\leq 2m+2)$ MULTs +1INV.

<u>Rationale</u>

Write $n = n_0 + n_1 m$. Then the baby step g^{n_0} matches the giant step $G^{n_1}h = g^{-n_1m}h$.

Optimizations

Using $g^{jm}h$ avoids inversion but needs reduction mod p-1(extra implementation).

Can optimize by interleaving baby and giant steps (needs $\log_2 n$ MULTs for exponentiation again).