Introduction to Cryptography
2WF80
Discrete Logarithms

Tanja Lange
Technische Universiteit Eindhoven

08 December 2016

Ditfie—Hellman key exchange

1976, first to introduce public-key
cryptography.

Standardize group G, &
pick some g € G.

Alice chooses secret a,
computes her public key g?.

Bob chooses secret b,
computes his public key g°.

Alice computes (g°)%.

Bob computes (g%)°.

They use this shared secret

to encrypt with symmetric crypto.

Alice's Bob's

secret key a secret key b
v !
Alice's Bob's
public key public key
a b

o
{Alice, Bob}'s {Bob, Alice}'s

shared secret — shared secret

gab gba

Alice's Bob's

secret key a secret key b
v !
Alice's Bob's
public key public key
g °

>
{Alice, Bob}'s {Bob, Alice}'s

shared secret — shared secret

gab gba

Warning #1: Many G are unsafel
eg. G=Q,9g=2

Alice's Bob's

secret key a secret key b
v !
Alice's Bob's
public key public key
g °

>
{Alice, Bob}'s {Bob, Alice}'s

shared secret — shared secret

gab gba

Warning #1: Many G are unsafel

e.g. G = Q, g = 2 size gives away
exponent.
G = (Fp,+), i.e., A sends ag.

Alice's Bob's

secret key a secret key b
v !
Alice's Bob's
public key public key
g °

>
{Alice, Bob}'s {Bob, Alice}'s

shared secret — shared secret

gab gba

Warning #1: Many G are unsafel
e.g. G = Q, g = 2 size gives away
exponent.

G = (Fp,+), i.e., A sends ag.

E computes a = ag - ¢~ mod p

using XGCD.

Ditfie—Hellman key exchange

The proper DH proposal:

Standardize large prime p &
generator g of F3.

Alice chooses big secret a < p—1,
computes her public key g2.

Bob chooses big secret b,
computes his public key g°.

Alice computes (g°)%.
Bob computes (g%)°.
They use this shared secret

to encrypt with symmetric crypto.

Is this secure?

Computational Diffie-Hellman
Problem (CDHP):

Given g, g%, ¢°

compute g0

Decisional Diffie-Hellman
Problem (DDHP):

Given g, g%, ¢°, and ¢¢
decide whether ¢¢ = ¢9°.

Discrete Logarithm
Problem (DLP):
Given g, g%, compute a.

If one can solve DLP, then
CDHP and DDHP are easy.

Practical problems

Eve can set up a
man-in-the-middle attack:

ae bf
A<l o FZ B

E decrypts everything from A

and reencrypts it to B

and vice versa.

This attack cannot be detected
unless A and B have some

long-term secrets.

Semi-static DH

Alice publishes long-term
public key g2,
keeps long-term secret key a.

Any user can encrypt to

Alice using this key:

Pick random k, compute 7 = g~
and encrypt message using key
derived from (g%)¥.

Send ciphertext ¢ along with 7.

Alice decrypts, by obtaining
same key from r¢ = g9

ElGamal encryption

(For historical purposes only)

Alice publishes long-term
public key g%,
keeps long-term secret key a.

Any user can encrypt to

Alice using this key:

Pick random k, compute r = g*.
Encrypt m € F, as ¢ = (g*)* - m.

Send (r, ¢).
Alice decrypts, by computing
m=c/(r%) = (g°)F - m/g*

Downside: requires m in group;
has multiplicative structure.

ElGamal signatures

Requires a hash function.
Let g € F;, have prime order ¢£.

Alice publishes long-term
public key g2,
keeps long-term secret key a.

Alice signs message m:

Pick random k&, compute r = gk,
s = k~1(r + hash(m)a) mod £.
Signature is (7, s).

Anybody can verity signature:
Compute 75 — g" - (ga)hash(m);
accept if O.

Valid signatures get accepted

rS — gk-k_l(r+hash(m)a)
_ gr+hash(m)a
— g7 (ga)hash(m)_

Thus difference is 0.

The discrete-logarithm problem

Let » = 1000003 and g = 2.
The number of elements in F;'; IS

The discrete-logarithm problem

Let » = 1000003 and g = 2.
The number of elements in F;'; IS
1000002 =2 -3 -166667

and g has order 1000002.

The discrete-logarithm problem

Let » = 1000003 and g = 2.

The number of elements in F is
1000002 =2 -3 - 166667

and g has order 1000002.

In general, any element of F;'; has
order dividing (p — 1).

Here, g = 2 generates the entire
multiplicative group modulo .

Any 1 < h <p—1Iis power of g.
h = 159429, find n with h = g"
Could find n by brute force.

Is there a faster way?

Understanding brute force

Can compute successively

g =2,

g9 =4,

9> =8,
g4 16,

920 = 48573

91000001 — 500002 = g—l_
91000002 — 1

At some point we'll find n
with g" = 159429.

Maximum cost of computation:
< 1000001 multiplications by g.

< 1000001 nanoseconds on CPU
that does 1 MULT /nanosecond.
This 1s negligible work

for p & 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:
~ 2°0 MULTs for p ~ 2°Y,
~ 2100 MULTSs for D RS 2100 " otc.

(Not exactly linearly:

cost of MULTs grows with ».
But this is a minor effect.)

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:
choose random 7, say 69961;
compute ¢" = 872477;
compute g" " = g" - h as
872477 - 159429 = 718342;
compute discrete log;

subtract mod 1000002; get n.

Computation can be parallelized.

One low-cost chip can run
many parallel searches.
Example, 26 € one chip,

210 cores on the chip,

each 23° MULTs/second?
Maybe; see SHARCS workshops
for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 224 chips,
so 23% cores,

so 2°% MULTSs/second,

so 289 MULTs/year.

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets ¢™!,
gn2 gnloo:

Can find all of n1,no,..., 1100
with < 1000002 MULTSs.

Simplest approach: First build

a sorted table containing
gm g"100.

Then check table for
gl, g2, etc.

Interesting consequence 71
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence #2:
Solving at least one
out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Interesting consequence 71
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence #2:
Solving at least one
out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?
Typically &~ 1000002/100 mults.

Can use random self-reduction
to turn a single target

into multiple targets.

Let £ be the order of g.

Given g":
Choose random 71, 792,...,7T100.
Compute g'1 - g",

g2 - g", etc.

Solve these 100 DL problems.
Typically ~ £/100 mults
to find at least one

r; +n mod £,
immediately revealing n.

Also spent some MULTs
to compute each ¢":
~ logr o MULTs for each 1.

Faster: Choose r; = 17
with r1 ~ 3/100.
Compute g"1;

gTl - g

g n

g

211 . gn-.
Just 1 MULT for each new 1.

371 . g™ etc.

~ 100 + log, £ + £/100 MULTs
to find n given g".

Faster: Increase 100 to =~ /4.
Only ~ 2v/4 MULTs

to solve one DL problem!
“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: » = 1000003,
¢ = 1000002, /£ = 1000.
g =2, h=g" =159429.

Compute ¢1%%0 = 510646.
Then compute 1000 targets:
h = g% g™ = 159429,
gto00. 47 — 536901,

g#19%0 . g" = 525551,
g> 1990 . g™ = 7108309,
g4-1000 _ g’n — 3036,

9959-1000 g™ = 143529,

Build a sorted table of targets:
94-1000 . h = 3036

486-1000 h = 3973,

648-1000 h = 5038,

909-1000 h = 7814,

544-1000 h = 7862

Q Q Q

091090 p = 999018,
Look up g, 92, g3, etc. in table.

g%7 = 913004; find
g0 1090 . p = 913004
in the table of targets.

Thus
675 = 590-10004+7n mod 1000002;
and

= —590 - 1000 4+ 675

= 410677 mod 1000002.

Test: ¢g*0077 — 159429

More common version:
Let m = [\/ZJ

Compute table with (g%, %)
for 0 <1 < m;

sort while computing.
Each step costs 1 MULT.
Reach g™, invert: G = g~
Compute G? h and
compare with table entries.

m

Match instantly gives
g_jmh — gi, thus n =1+ 1m.
Cost: (<2m+2) MULTs +1INV.

Rationale

Write n = ng + n1m.
Then the baby step ¢™0

matches the giant step
GM"lh =g "MMp,

Optimizations

Using ¢?™h avoids inversion
but needs reduction mod » — 1
(extra implementation).

Can optimize by interleaving
baby and giant steps

(needs logo n MULTSs
for exponentiation again).

