TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Introduction to Cryptology, Monday 19 January 2015

Name

TU/e student number :

Exercise	1	2	3	4	5	6	7	total
points								

:

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 7 exercises. You have from 13:30 - 16:30 to solve them. You can reach 100 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are not allowed to use any books, notes, or other material.

You are allowed to use a simple, non-programmable calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. This exercise is about LFSRs. Do the following subexercises for the sequence

TU/e

 $s_{k+3} = s_{k+1} + s_k$

- (a) Draw the LFSR corresponding this sequence. 2 points
- (b) State the associated matrix corresponding to the LFSR state update and compute its order. 6 points
- (c) State the characteristic polynomial f and compute its factorization. 4 points
- (d) For each of the factors of f compute the order. 6 points
- (e) What is the longest period generated by this LFSR? Make sure to justify your answer. 4 points
- (f) State the lengths of all subsequences so that each state of n bits appears exactly once. 4 points
- This exercise is about modes. Describe how the Output Feedback Mode (OFB) mode can be attacked if the IV is not different for each execution of the encryption operation.
 8 points

For your convenience, here is the definition of OFB:

Let $e_k()$ be a cipher of block length b using key k. Let x_i, y_i , and s_i be bit strings of length b, and IV be a nonce of length b. Encryption (first block): $s_1 = e_k(IV)$ and $y_1 = s_1 \oplus x_1$, Encryption (general block): $s_i = e_k(s_{i-1})$ and $y_i = s_i \oplus x_i$ for $i \ge 2$. Decryption (first block): $s_1 = e_k(IV)$ and $x_1 = s_1 \oplus y_1$, Decryption (general block): $s_i = e_k(s_{i-1})$ and $x_i = s_i \oplus y_i$ for $i \ge 2$.

- 3. This problem is about RSA encryption.
 - (a) Alice's public key is (n, e) = (14803, 3). Encrypt the message m = 1234 to Alice using schoolbook RSA (no padding). 4 points
 - (b) Let p = 659 and q = 709. Compute the public key using e = 5 and the corresponding private key. 8 points
- 4. This problem is about the DH key exchange. The public parameters are that the group is $(\mathbb{F}_{1013}^*, \cdot)$ and that it is generated by g = 3.

	(a) Compute the public key belonging to the secret key $b = 33$.	4 points				
	(b) Alice's public key is $h_a = 528$. Compute the shared	ce's public key is $h_a = 528$. Compute the shared DH key				
	with Alice using b from the previous part.	6 points				
5.	The integer $p = 19$ is prime. You are the eavesdropp that Alice and Bob use the Diffie-Hellman key-exchange generator $g = 2$. Alice's public key is $h_a = 11$. Use the Giant-Step method to compute Alice's private key.	e in \mathbb{F}_{19}^* with				
6.	The affine encryption system is a symmetric system. The key consists of two integers $0 \le a, b < 26$ with $gcd(a, 26) = 1$. Messages and ciphertexts are also integers in $[0, 25]$. Message <i>m</i> is encrypted as $c = a \cdot m + b \mod 26$.					
	(a) Explain how decryption works.	4 points				
	(b) Your key is $(a, b) = (5, 7)$ and you receive the ciphertext 17.					
	Compute the plaintext.	3 points				
	(c) Compute the size of the keyspace, i.e. how many dif	ferent				
	keys exist.	3 points				

7. This exercise is about LFSRs. You know that A and B use an LFSR of order 4. You observe ciphertext 001001010110 and know that start of the message was 80 and hexadecimal encoding

0 -> 0000 a -> 1010 1 -> 0001 b -> 1011 2 -> 0010 c -> 1100 ... 9 -> 1001 f -> 1111

was used. The ciphertext is the xor of the message with the output stream of the LFSR and the stream starts from the left.

a) Compute the first 8 bits of the LFSR output and state the initial-				
ization vector.	4 points			
(b) Compute the feedback coefficients of the LFSR.	16 points			
(c) Compute the next hexadecimal digit after 80.	4 points			