Exercise sheet 6, 18 December 2014

For this exercise sheet you should not use your computer for more functions than a pocket calculator offers you (though with more digits) – unless explicitly stated.

The first six exercises are to recap finite fields and groups; skip them if you feel comfortable in that area – or just do them quickly.

The next three exercises use a bad choice of group – and you will find out why. Do not use the additive group of a finite field for DH systems!

The last exercises use a better choice – the multiplicative group of a finite field. For these small sizes you can break the system but for primes of 2048 and more bits that's beyond current computation power.

- 1. Write all elements of $\mathbb{Z}/13$. For each element determine the order in $(\mathbb{Z}/13, +)$. What orders do you observe; what orders could be possible?
- 2. Write all elements of $\mathbb{Z}/6$. For each element determine the order in $(\mathbb{Z}/6, +)$. What orders do you observe; what orders could be possible?
- 3. Write all elements of $(\mathbb{Z}/13)^*$. For each element determine the order in $((\mathbb{Z}/13)^*, \cdot)$. What orders do you observe; what orders could be possible?
- 4. Write all elements of $(\mathbb{Z}/6)^*$. For each element determine the order in $((\mathbb{Z}/6)^*, \cdot)$. What orders do you observe; what orders could be possible?
- 5. Show that $\mathbb{F}_{61}^* = \langle 2 \rangle$, i.e. show that the order of 2 in \mathbb{F}_{61} is 60.
- 6. Determine the smallest generator $g \in (\mathbb{Z}/4969)^*$ that is larger than 1000. Do this by testing whether 1000+i is a generator, starting from i = 1 and incrementing *i* if it is not. Try to make each test as cheap as possible. For this exercise I suggest you use modular exponentiation on your computer but don't just ask it for the order.
- 7. The integer p = 103 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 2. You observe $h_a = 23$ and $h_b = 42$. What is the shared key of Alice and Bob?
- 8. The integer p = 103 is prime. You are the eavesdropper and know that Charlie and Dave use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 2. You observe $h_a = 21$ and $h_b = 39$. What is the shared key of Alice and Bob?
- 9. The integer p = 10007 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 1234. You observe $h_a = 2345$ and $h_b = 4567$. What is the shared key of Alice and Bob?
- 10. This problem is about the DH key exchange. The public parameters are that the group is $(\mathbb{F}_{1009}^*, \cdot)$ and that it is generated by g = 11.
 - (a) Compute the public key belonging to the secret key b = 548.
 - (b) Alice's public key is $h_a = 830$. Compute the shared DH key with Alice using b from the previous part.
 - (c) Alice and Bob keep the prime but change the generator to g = 1008. Simulate one round of DH key exchange. Why would you avoid this generator in practice?
- 11. The integer p = 17 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in \mathbb{F}_{17}^* with generator g = 3. You observe $h_a = 12$ and $h_b = 14$. What is the shared key of Alice and Bob? It's OK if you use a brute force attack here.