TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Coding Theory and Cryptology I Tuesday 28 January 2014

Name

Student number :

Exercise	1	2	3	4	5	6	total
points							

:

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 6 exercises. You have from 14:00 - 17:00 to solve them. You can reach 50 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. The binary Hamming code $\mathcal{H}_3(2)$ has parity check matrix

and parameters [7, 4, 3].

 (b) State the weight enumerator polynomials of H₃(2) and its dual, the simplex code of length 7. 3 points (c) State the parameters of the first order Reed-Muller code RM(1,3) of length 8 = 2³. 1 point (d) What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the minimum distance of a binary, linear code of length 7 and dimension 4. 4 points (e) State the parameters (length, dimension, minimum distance) of the punctured RM(1,3) code. 1 point (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (u, u + v) construction with u ∈ H₃(2) and v in the punctured RM(1,3) code. 1 point (g) Give the parameters of the concatenated code that one obtains when using RM(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 3 points 	(a)	Correct the word $(0, 1, 1, 0, 1, 1, 1)$.	2 points				
 its dual, the simplex code of length 7. 3 points (c) State the parameters of the first order Reed-Muller code <i>RM</i>(1,3) of length 8 = 2³. (d) What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the minimum distance of a binary, linear code of length 7 and dimension 4. (e) State the parameters (length, dimension, minimum distance) of the punctured <i>RM</i>(1,3) code. (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (<i>u</i>, <i>u</i> + <i>v</i>) construction with <i>u</i> ∈ <i>H</i>₃(2) and <i>v</i> in the punctured <i>RM</i>(1,3) code. (g) Give the parameters of the concatenated code that one obtains when using <i>RM</i>(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 	(b)	State the weight enumerator polynomials of $\mathcal{H}_3(2)$ and					
 (c) State the parameters of the first order Reed-Muller code <i>RM</i>(1,3) of length 8 = 2³. 1 point (d) What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the minimum distance of a binary, linear code of length 7 and dimension 4. 4 points (e) State the parameters (length, dimension, minimum distance) of the punctured <i>RM</i>(1,3) code. 1 point (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (u, u + v) construction with u ∈ H₃(2) and v in the punctured <i>RM</i>(1,3) code. 1 point (g) Give the parameters of the concatenated code that one obtains when using <i>RM</i>(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 3 points 		its dual, the simplex code of length 7.	3 points				
 code <i>RM</i>(1,3) of length 8 = 2³. (d) What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the minimum distance of a binary, linear code of length 7 and dimension 4. (e) State the parameters (length, dimension, minimum distance) of the punctured <i>RM</i>(1,3) code. (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (<i>u</i>, <i>u</i> + <i>v</i>) construction with <i>u</i> ∈ <i>H</i>₃(2) and <i>v</i> in the punctured <i>RM</i>(1,3) code. (g) Give the parameters of the concatenated code that one obtains when using <i>RM</i>(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 	(c)	State the parameters of the first order Reed-Muller					
 (d) What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the minimum distance of a binary, linear code of length 7 and dimension 4. 4 points (e) State the parameters (length, dimension, minimum distance) of the punctured <i>RM</i>(1,3) code. 1 point (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (u, u + v) construction with u ∈ H₃(2) and v in the punctured <i>RM</i>(1,3) code. 1 point (g) Give the parameters of the concatenated code that one obtains when using <i>RM</i>(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 3 points 		code $\mathcal{RM}(1,3)$ of length $8 = 2^3$.	1 point				
binary, linear code of length 7 and dimension 4. [4 points] (e) State the parameters (length, dimension, minimum distance) of the punctured $\mathcal{RM}(1,3)$ code. [1 point] (f) State the parameters (length, dimension, minimum distance) of the code obtained by the $(u, u + v)$ construction with $u \in \mathcal{H}_3(2)$ and v in the punctured $\mathcal{RM}(1,3)$ code. [1 point] (g) Give the parameters of the concatenated code that one obtains when using $\mathcal{RM}(1,3)$ as inner code and a 2^4 -ary Hamming code with redundancy 3 as outer code. [3 points]	(d)	What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the minimum distance of a					
 (e) State the parameters (length, dimension, minimum distance) of the punctured <i>RM</i>(1,3) code. 1 point (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (u, u + v) construction with u ∈ H₃(2) and v in the punctured <i>RM</i>(1,3) code. 1 point (g) Give the parameters of the concatenated code that one obtains when using <i>RM</i>(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 3 points 		binary, linear code of length 7 and dimension 4.	4 points				
distance) of the punctured $\mathcal{RM}(1,3)$ code.1 point(f) State the parameters (length, dimension, minimum distance) of the code obtained by the $(u, u + v)$ construction with $u \in \mathcal{H}_3(2)$ and v in the punctured $\mathcal{RM}(1,3)$ code.1 point(g) Give the parameters of the concatenated code that one obtains when using $\mathcal{RM}(1,3)$ as inner code and a 2^4 -ary Hamming code with redundancy 3 as outer code.3 points	(e)	State the parameters (length, dimension, minimum					
 (f) State the parameters (length, dimension, minimum distance) of the code obtained by the (u, u + v) construction with u ∈ H₃(2) and v in the punctured RM(1,3) code. (g) Give the parameters of the concatenated code that one obtains when using RM(1,3) as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 		distance) of the punctured $\mathcal{RM}(1,3)$ code.	1 point				
punctured $\mathcal{RM}(1,3)$ code.1 point(g) Give the parameters of the concatenated code that one obtains when using $\mathcal{RM}(1,3)$ as inner code and a 2^4 -ary Hamming code with redundancy 3 as outer code.3 points	(f)	State the parameters (length, dimension, minimum distance) of the code obtained by the $(u, u + v)$ construction with $u \in \mathcal{H}_3(2)$ and v in the					
(g) Give the parameters of the concatenated code that one obtains when using $\mathcal{RM}(1,3)$ as inner code and a 2^4 -ary Hamming code with redundancy 3 as outer code. 3 points		punctured $\mathcal{RM}(1,3)$ code.	1 point				
outer code. 3 points	(g)	Give the parameters of the concatenated code that one obtains when using $\mathcal{RM}(1,3)$ as inner code and 2 ⁴ -ary Hamming code with redundancy 3 as	a				
		outer code.	3 points				

- 2. This exercise is about factoring n = 2014. Obviously, 2 is a factor, so the rest of the exercise is about factoring the remaining factor m =2014/2 = 1007.
 - (a) Use Pollard's rho method of factorization to find a factor of 1007. Use starting point $x_0 = 1$, iteration function $x_{i+1} = x_i^2 + 1$ and Floyd's cycle finding method, i.e. compute $gcd(x_{2i} - x_i, 1007)$ till a non-trivial gcd is found.

- (c) Use Pollard's p-1 factorization method to factor the number n = 1007 with base u = 2 and exponent $2^3 \cdot 3^2$. 3 points
- 3. (a) Find all affine points on the Edwards curve $x^2 + y^2 = 1 - 5x^2y^2$ over \mathbb{F}_{13} .
 - (b) Verify that P = (6, 3) is on the curve. Compute the order of P.
 - (c) Translate the curve and P to Montgomery form

$$Bv^2 = u^3 + Au^2 + u.$$

2 points

- 4. The curve $y^2 = x^3$ is not an elliptic curve over \mathbb{F}_{71} but the set of points $\{(x,y)|x,y\in\mathbb{F}_{71}^*,y^2=x^3\}\cup\{P_\infty\}$ forms a group under the addition and doubling laws on (short) Weierstrass curves.
 - (a) The point (1, 1) is on the curve. Compute 2P, 3P, 4P, and 8P.
 - (b) Compute the fractions x/y for 2P, 3P, 4P, and 8P.
 - (c) Compute the discrete logarithm of (6, 43) with base (1, 1). Make sure to justify your approach.

7 points

TU/e

5 points

4 points

4 points