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- C: code 

- over an alphabet Q where |Q|=q 

- q-ary code 

- |C|=M size of the code 

- send codeword c (information + redundancy). Receiver gets c' and will try to 

decode 

 

- consider hard-decision decoding, i.e., no erasures, every entry in c is a valid 

symbol from the alphabet 

 

- Maximum-likelihood decoding: decode y to the nearest codeword 

 

- Def: Distance: d between x=(x1,...,xn) and y=(y1,...,yn) 

d(x,y)=#{1≤i≤ n: xi≠ yi} 

=number of symbols that change when going from x to y 

 

- Error-correcting capability of a code C with min dist d is e=(d-1)/2 

- If no more than e errors are introduced one can recover codeword with 

maximum-likelihood decoding correctly 

 

- Example: repetition code (1,1,1,1,1), (0,0,0,0,0) of length n=5 has minimum 

distance d=2. Can correct 2 errors. 

 

- Def: Minimum distance 

The minimum distance of a code C≠0 is 

d=min{d(x,y) for all x≠y in C} 



- Hamming bound last week 

 

- covering radius: max distance of an arbitrary word in the ambient space to a 

codeword 

ρ=max{ d(x,C) | x in Qn} 

 

- every word x in Qn
 is at distance at most ρ to some codeword, say c, it is also 

inside at least one of the spheres of radius ρ around the codewords 

- So spheres of radius ρ around all codewords cover Qn 

- Spheres of radius e=(d-1)/2 around codewords have no overlap 

- So e≤ ρ 

 

- Def: code is called perfect if e= ρ 

- All spheres around codewords have no overlap 

 

- For odd length n the repetition code is perfect 

B[(n-1)/2](0,...0) contains all elements of {0,1}n with ≤[(n-1)/2] 1's and 

B[(n-1)/2](1,...1) contains all the other elements in {0,1}n 

 

- e.g.  

n=5 B2(0,...0) contains (0,..0) and all words with one or two 1's 

(5 choose 2)+(5 choose 1)+ (5 choose 0)=16 words 

B2(1,...1) contains (1,...,1) and all words with three or more 1's 

(5 choose 3)+ (5 choose 4)+ (5 choose 5)=16 words 

Partition of the set {0,1}n 

 

- There are (n choose i)(q-1)i elements at distance i 

 

- Thm 2.1.5 (didn't call it like this but showed the formula) 

 

- Thm 2.1.7 Sphere-Packing Bound 



 

Thm. Singleton-bound 

Let C be a q-ary (n,M,d) code. Then 

 M≤qn-d+1 

 

Proof. 

Erase in all codewords the last d-1 coordinates. Because all words have minimum 

distance d in C the new words will still be distinct. Their length is n-(d-1)=n-

d+1. However, there are only qn-d+1 possible words of lengt n-d+1 over an 

alphabet of size q 

 

- Codes with parameters (n, qn-d+1,d) are called maximum-distance separable 

or simply MDS codes 

 

Thm 2.1.9 Gilbert-Varshamov bound 

 

Proof. 

Let C' be a code with M' elements and minimum distance >d. 

If  M'*sum i=0^(d-1)<q^n 

then the spheres of radius d-1 do not cover the whole space Qn and we can find 

at least one element x in Qn which is not in C' with d(x,C)≥d. Build a new code 

C=C' join {x} with M'+1 codewords and minimum distance d. 

QED 

 

- Note this was a purely theoretical result. It took years to find actual examples 

 

 

 

 

 

 



Linear Codes 

- Want alphabets to be finite fields, i.e. Q=Fq 

- note: book uses notation Fq=GF(q) "Galois Field", both are commonly used 

- Def. A linear code is a vector space C subset (Fq)n 

- As vector space C has a dimension, denoted by k, so C has size M=qk 

- For a linear code we sometimes write (n,k,d)-code to say it has length n, 

dimension k and minimum distance d 

 

- Hamming weight of a vector x in (Fq)n is the number of non-zero coordinates 

of  c 

- We have w(x)=d(x,0) for any element x in (Fq)n 

 

- Thm 2.2.3 The minimum distance of a linear code equals the minimum weight 

of a nonzero codeword in C. 

 

Proof. min distance : d=min{d(x,y) for all x≠y in C} 

d(x,y)=d(x-y,0)=w(x-y) 

Since C is linear x-y is a codeword in C. 

------------------------------------------------------------------------------------------ 

- Recall linear algebra 

- A linear code C is a vector space of dimension k. 

So we can write down a basis of C consisting of k linearly independent vectors 

in C 

- Write down as a kxn matrix (k basis elements, each of length n) 

- Consider a vector m in (Fq)k . Then m∙G is just taking linear combinations of 

the rows of G 

 

- Such a matrix gives an embedding of (Fq)k into (Fq)n 

- messages are mapped to codewords. 

 

 



- Def. A generator matrix G for C is a k x n matrix such that 

C={m∙G | m in (Fq)k} 

- note G has full rank by construction 

 

- Examples:  

- Repetition code of length n 

Fq into (Fq)n , c --> (c,c,...,c)  

has G=(1,1,...,1); codewords are generated as 0∙G and 1∙G 

- The binary even-weight code (n,n-1,2) has generator matrix 

(1 0  0 1) 

(0 1  0 1) 

(       ) 

(0 0  1 1) 

(obviously independent, exactly two 1's per row, taking linear combinations of G's 

rows produces words of even weight) 

 

- Any generator matrix can be written in systematic form (or standard form) 

G=(Ik|Q) for some kx(n-k) matrix Q 

mapping m to m∙G=(m,******). If G is in systematic form, we call the first k 

symbols of m∙G information symbols and the remaining r=n-k redundancy 

symbols 

- very important for code-based cryptography! 

 

- Translation of bounds 

- linear Sphere-packing bound 

- linear Singleton bound k≤n-d+1 

- linear GV bound 


