2WC09 Coding & Crypto 1 Tuesday 10 sep 2013 Christiane Peters, Technical University of Denmark, email: cppet (at) dtu.dk

- *C*: code

- over an **alphabet Q** where **/Q/=q**
- q-ary code
- /C/=M size of the code

- send codeword **c** (information + redundancy). Receiver gets **c'** and will try to decode

- consider **hard-decision decoding**, i.e., no erasures, every entry in **c** is a valid symbol from the alphabet

- Maximum-likelihood decoding: decode y to the nearest codeword

- Def: Distance: d between $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ $d(x,y) = \#\{1 \le i \le n: x_i \ne y_i\}$

=number of symbols that change when going from **x** to **y**

- Error-correcting capability of a code C with min dist d is e=(d-1)/2

- If no more than *e* errors are introduced one can recover codeword with maximum-likelihood decoding correctly

Example: repetition code (1,1,1,1,1), (0,0,0,0,0) of length n=5 has minimum distance d=2. Can correct 2 errors.

- Def: Minimum distance

The minimum distance of a code *C*≠0 is

 $d=min\{d(x,y) \text{ for all } x\neq y \text{ in } C\}$

- Hamming bound last week

- **covering radius**: max distance of an arbitrary word in the ambient space to a codeword

$\rho = max \{ d(x,C) \mid x \text{ in } Q^n \}$

- every word \boldsymbol{x} in \boldsymbol{Q}^n is at distance at most $\boldsymbol{\rho}$ to some codeword, say \boldsymbol{c} , it is also inside at least one of the spheres of radius $\boldsymbol{\rho}$ around the codewords

- So spheres of radius $\boldsymbol{\rho}$ around all codewords cover \boldsymbol{Q}^n

- Spheres of radius *e=(d-1)/2* around codewords have no overlap

- So *e*≤ *ρ*

- Def: code is called **perfect** if **e**= **p**
- All spheres around codewords have no overlap

- For odd length *n* the repetition code is perfect

 $B_{[(n-1)/2]}(0,...0)$ contains all elements of $\{0,1\}^n$ with $\leq [(n-1)/2]$ 1's and $B_{[(n-1)/2]}(1,...1)$ contains all the other elements in $\{0,1\}^n$

- e.g. $n=5 \ B_2(0,...0)$ contains (0,..0) and all words with one or two 1's (5 choose 2)+(5 choose 1)+ (5 choose 0)=16 words $B_2(1,...1)$ contains (1,...,1) and all words with three or more 1's (5 choose 3)+ (5 choose 4)+ (5 choose 5)=16 words Partition of the set $\{0,1\}^n$

- There are (*n choose i*)(q-1)^{*i*} elements at distance *i*

- Thm 2.1.5 (didn't call it like this but showed the formula)

```
- Thm 2.1.7 Sphere-Packing Bound
```

Thm. Singleton-bound
Let C be a q-ary (n,M,d) code. Then
M≤q^{n-d+1}

Proof.

Erase in all codewords the last *d-1* coordinates. Because all words have minimum distance *d* in *C* the new words will still be distinct. Their length is n-(d-1)=n-d+1. However, there are only q^{n-d+1} possible words of lengt n-d+1 over an alphabet of size *q*

- Codes with parameters (*n*, *q*^{*n*-*d*+1},*d*) are called **maximum-distance separable** or simply **MDS codes**

Thm 2.1.9 Gilbert-Varshamov bound

Proof.

Let **C'** be a code with **M'** elements and minimum distance >**d**.

If $M'*sum i=0^{(d-1)} < q^n$

then the spheres of radius *d*-1 do not cover the whole space Q^n and we can find at least one element *x* in Q^n which is not in *C*' with $d(x,C) \ge d$. Build a new code C=C' join $\{x\}$ with M'+1 codewords and minimum distance *d*. QED

- Note this was a purely theoretical result. It took years to find actual examples

Linear Codes

- Want alphabets to be finite fields, i.e. *Q***=F**_q
- note: book uses notation $F_q = GF(q)$ "Galois Field", both are commonly used
- Def. A linear code is a vector space C subset $(F_q)^n$
- As vector space **C** has a dimension, denoted by **k**, so **C** has size $M = q^k$

- For a linear code we sometimes write **(***n*,*k*,*d***)-code** to say it has length *n*, dimension *k* and minimum distance *d*

- Hamming weight of a vector x in $(F_q)^n$ is the number of non-zero coordinates of c

- We have w(x) = d(x, 0) for any element x in $(F_q)^n$

- Thm 2.2.3 The minimum distance of a linear code equals the minimum weight of a nonzero codeword in C.

Proof. min distance : *d=min{d(x,y) for all x≠y in C}*

d(x,y)=d(x-y,0)=w(x-y)

Since *C* is linear *x*-*y* is a codeword in *C*.

- Recall linear algebra

- A linear code **C** is a vector space of dimension **k**.

So we can write down a basis of *C* consisting of *k* linearly independent vectors in *C*

- Write down as a *kxn* matrix (*k* basis elements, each of length *n*)

- Consider a vector m in $(F_q)^k$. Then $m \cdot G$ is just taking linear combinations of the rows of G

- Such a matrix gives an embedding of $(F_q)^k$ into $(F_q)^n$

- messages are mapped to codewords.

- Def. A generator matrix **G** for **C** is a **k x n** matrix such that

 $C = \{m \cdot G \mid m \text{ in } (F_q)^k\}$

- note G has full rank by construction

- Examples:
- Repetition code of length n

 F_q into $(F_q)^n$, $c \to (c, c, ..., c)$

has **G**=(1,1,...,1); codewords are generated as **0**·**G** and **1**·**G**

- The **binary even-weight code** (n,n-1,2) has generator matrix

(1 0	0 1)
(0 1	0 1)
()
(0 0	1 1)

(obviously independent, exactly two 1's per row, taking linear combinations of G's rows produces words of even weight)

- Any generator matrix can be written in *systematic form* (or *standard form*) $G=(I_k/Q)$ for some kx(n-k) matrix Qmapping m to $m \cdot G = (m, *****)$. If G is in systematic form, we call the first ksymbols of $m \cdot G$ information symbols and the remaining r=n-k redundancy symbols

- very important for code-based cryptography!

- Translation of bounds
- linear Sphere-packing bound
- linear Singleton bound k≤n-d+1
- linear GV bound