TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Coding Theory and Cryptology I Friday 27 January 2012

Name

Student number :

Exercise	1	2	3	4	5	6	total
points							

:

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 6 exercises. You have from 14:00 - 17:00 to solve them. You can reach 50 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a simple, non-graphical pocket calculator. Usage of laptops and cell phones is forbidden.

- 1. What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the dimension of a binary, linear code of length 11 and minimum distance 5.
- 2. Let the public key of user U in the McEliece system be

over \mathbb{F}_2 and let w = 1 (the number of errors one can add in the encryption). Demonstrate the usage of the McEliece cryptosystem by encrypting m = (100).

- 3. This exercise is about constructing codes starting from a Hamming code. Let C be a binary Hamming code of dimension 4.
 - (a) State the parameters (length, dimension, redundancy, minimum distance) and parity check matrix of C. 2 points
 - (b) State the parameters (length, dimension, minimum distance) and parity check matrix of the extended code C^{ext} of C. 2 points
 - (c) Give the parameters of the concatenated code that one contains when using C^{ext} as inner code and a 2⁴-ary Hamming code with redundancy 3 as outer code. 5 points
- 4. This exercise is about computing discrete logarithms in some groups.
 - (a) The integer p = 10037 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 1234. You observe $h_a = 2345$ and $h_b = 4567$. What is the shared key of Alice and Bob? 4 points
 - (b) The order of 5 in \mathbb{F}_{73}^* is 72. Charlie uses the subgroup generated by g = 5 for cryptography. His public key is $g_c = 2$. Use the Pohlig-Hellman method to compute an integer c so that $g_c \equiv g^c \mod 73$. 10 points

- 5. (a) Find all affine points on the Edwards curve $x^2 + y^2 = 1 - 3x^2y^2$ over \mathbb{F}_{11} .
 - (b) Verify that P = (2, 2) is on the curve. Compute the order of P. 3 points
 - (c) Translate the

e curve and P to Montgomery form	
$Bv^2 = u^3 + Au^2 + u.$	
	2 points

6. The Hill cipher is a secret-key system based on matrices. It takes a message in the English alphabet (26 characters), translates the characters into numbers as given below, and then encrypts the message by encrypting n numbers at a time as follows:

Let the secret key M be an $n \times n$ matrix over $\mathbb{Z}/26\mathbb{Z}$ which is invertible and let the plaintext a be the vector $(a_1, a_2, \ldots, a_n) \in (\mathbb{Z}/26\mathbb{Z})^n$. The corresponding ciphertext is $c^T = Ma^T$. To decrypt compute $a^T = M^{-1}c^T.$

(a) Let

$$M = \left(\begin{array}{rrrr} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 3 & 1 \end{array}\right).$$

Encrypt the text CRY PTO

3 points

(b) Let M be a 2×2 matrix. You know that $(1,3)^T$ was encrypted as $(-9, -2)^T$ and that $(7, 2)^T$ was encrypted as $(-2, 9)^T$. Find the secret key M.

6 points	6	points
----------	---	--------

А	B	C	D	E	F	G	Н	I	J	K	L	M
О	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	Q	R	S	T	U	V	₩	X	Ү	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

4 points