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Ingredients in PALOMA

• PALOMA is a code-based cryptosystem using Goppa codes.

• Parameters: m, n, and t.
• m = 13.
• n < 2m is code length.
• t is number of errors code can efficiently correct.

• pk is a mt × (m −mt) matrix M over IF2.

• pk expands to mt × n matrix Ĥ = [I |M].

• Encryption: ŝ = Ĥê, for wt(ê) = t.

• Decryption uses Goppa decoder to retrieve ê from ŝ.

• Assumption: Ĥ = SHP ′ hides structured Goppa matrix H
(P ′ random permutation matrix, S invertible matrix to get Ĥ = [I |M]).
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• Assumption: Ĥ = SHP ′ hides structured Goppa matrix H
(P ′ random permutation matrix, S invertible matrix to get Ĥ = [I |M]).
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PALOMA encapsulation

Image credit: PALOMA Team
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PALOMA decapsulation

Image credit: PALOMA Team
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Reaction attacks

• Goes back to turn of century
• “Reaction Attacks Against Several Public-Key Cryptosystems” (Hall, Goldberg,

Schneier)
• “Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece

cryptosystem” (Verheul, Doumen, Tilborg)

• Send specially crafted ciphertext, watch for reaction.

• Learn encrypted message (for codes) or key (lattices) from adaptive queries.

• Goppa decoder decodes up to and including t errors, fails for more.

• Change ŝ = Ĥê to , where column of Ĥ.

• s ′ is encryption of .

• Decryption works iff e ′ has weight ≤ t, i.e., if position j flipped from 1 to 0.

• Learn ê in at most n − 1 steps.

• Our attack with Alex Pellegrini from 13 April against the PALOMA software used
the reaction that some decryption attempts crashed the program.
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PALOMA decapsulation

Image credit: PALOMA Team
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CCA attack on PALOMA

• Attack seems to be stopped: we don’t know e ′ and r̂ is obtained from e∗ by
one-way function ROG .

• Observation:1 Goppa decoder often returns (00 · · · 0) on random input.

• Any permutation of (00 · · · 0) remains (00 · · · 0).

• κ = ROH(e∗, r̂ , ŝ) with r̂ = ROG (e∗) is computable for guessed e∗.

• Let e = (00 · · · 0), r = ROG (e).
• For j in 0, 1, 2, ..., n

• if decapsulation of (r , ŝ + hj) returns ROH(e, r , ŝ + hj) then we know êj = 0.

• Now know êj = 0 for 40 – 70% of all j .

• ŝ + hi + hj matches e ′ of weight t iff exactly one of positions i and j is 1.

• Use pairs of columns to identify all positions in original ê.
Obtain e∗ using r̂ . Our attack software takes 0.5 – 7 minutes.

• Same recovery as with Pellegrini. New: valid fake ciphertexts, predicting κ.

1
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• ŝ + hi + hj matches e ′ of weight t iff exactly one of positions i and j is 1.

• Use pairs of columns to identify all positions in original ê.
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• Now know êj = 0 for 40 – 70% of all j .
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Binary Goppa code

Let q = 2m. A binary Goppa code is defined by

• a list L = (α1, . . . , αn) of n distinct elements in IFq, called support.

• a square-free polynomial g(x) ∈ IFq[x ] of degree t with g(αi ) 6= 0 for all
1 ≤ i ≤ n. g(x) is called Goppa polynomial.

The corresponding binary Goppa code is{
c ∈ IFn

2

∣∣∣∣S(c) =
c1

x − α1
+

c2
x − α2

+ · · ·+ cn
x − αn

≡ 0 mod g(x)

}
• Congruence mod g defines t × n parity check-matrix over IFq.

• Use explicit basis of IFq/IF2 to get nt × n matrix H.

• Restrict code words to having entries in IF2.

• Code has length n, dimension k ≥ n −mt and minimum distance d ≥ 2t + 1.
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KeyGen in PALOMA

PALOMA chooses
g(x) =

∏
α∈T

(x − α)

for T ⊆ IFq \ {α1, α2, . . . , αn} with |T | = t. Hence, g(x) splits completely over IFq.

PALOMA KeyGen, main secret is string r :

1 (α1, α2, . . . , αq) = shuffler (IFq).

2 L = (α1, α2, . . . , αn), T = (αn+1, αn+2, . . . , αn+t).

3 Compute g and parity-check matrix H.

4 Pick random permutation matrix P ′, compute HP ′ & bring to systematic form,
repeat this step if fails.

Secrets are L, g , and P ′; sk includes S with Ĥ = SHP ′ = [I |M].
Public key is M, the rightmost n −mt columns of Ĥ.
P ′ effectively changes order of elements in L.
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Partial key recovery attack

• Goppa codes can efficiently correct up to t errors.

• Let (α′1, α
′
2, . . . , α

′
n) = P ′L.

• Observation:2 Decoder used in PALOMA has exception:

Hej decodes to (00 · · · 0) iff α′j = 0.

• Let e = (00 · · · 0), r = ROG (e).
• Attack algorithm:

1 For j in 1, 2, 3, ..., n:
• If decapsulation of (r , hj) returns ROH(e, r , hj): return “α′

j = 0”.

2 Return “0 is not in support”.

• This takes at most n steps and will find the position of 0 if included.

2Also easily explained from details on decoder.
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Bonus slides
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Patterson decoding of c + e in Γ(L, g)

s(x) =
n∑

i=1

(ci + ei )/(x − αi )

≡

 n∑
i=1

ei
∏
j 6=i

(x − αj)

 /

n∏
i=1

(x − αi ) mod g(x).

• Put f (x) =
∏n

i=1(x − αi )
ei with ei ∈ {0, 1}, then f ′(x) =

∑n
i=1 ei

∏
j 6=i (x − αj)

ej .
• Thus s(x) ≡ f ′(x)/f (x) mod g(x). We want to find f .
• Split f (x) into odd and even terms: f (x) = A2(x) + xB2(x) with f ′(x) = B2(x).
• Thus

B2(x) ≡ f (x)s(x) ≡ (A2(x) + xB2(x))s(x) mod g(x)

B2(x)(x + 1/s(x)) ≡ A2(x) mod g(x)

• Put v(x) ≡
√
x + 1/s(x) mod g(x), then A(x) ≡ B(x)v(x) mod g(x).

• Can compute v(x) from s(x).
• Use XGCD on v and g , stop when deg(A) ≤ bt/2c, deg(B) ≤ b(t − 1)/2c in

A(x) = B(x)v(x) + h(x)g(x).
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n∏
i=1

(x − αi ) mod g(x).

• Put f (x) =
∏n

i=1(x − αi )
ei with ei ∈ {0, 1}, then f ′(x) =

∑n
i=1 ei

∏
j 6=i (x − αj)

ej .
• Thus s(x) ≡ f ′(x)/f (x) mod g(x). We want to find f .

• Split f (x) into odd and even terms: f (x) = A2(x) + xB2(x) with f ′(x) = B2(x).
• Thus

B2(x) ≡ f (x)s(x) ≡ (A2(x) + xB2(x))s(x) mod g(x)

B2(x)(x + 1/s(x)) ≡ A2(x) mod g(x)

• Put v(x) ≡
√
x + 1/s(x) mod g(x), then A(x) ≡ B(x)v(x) mod g(x).

• Can compute v(x) from s(x).
• Use XGCD on v and g , stop when deg(A) ≤ bt/2c, deg(B) ≤ b(t − 1)/2c in

A(x) = B(x)v(x) + h(x)g(x).
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Extended Patterson decoder
PALOMA uses extended Patterson decoder for reducible g , dealing with gcd(g , s) 6= 1.

• Let s̃ = 1 + xs and g1 = gcd(g , s), g2 = gcd(g , s̃), g12 = g/(g1g2).

• Compute s̃2 = s̃/g2 and s1 = s/g1.

• Replace u(x) = x + 1/s(x) by

u = g1s̃2/(g2s1) mod g12

• Deal with complication of computing v =
√
u mod g12 for reducible g12.

• Let half-gcd return A′,B ′, put

f (x) = (A′g2)2 + x(B ′g1)2.

• Put e = (00 · · · 0).

• For j in 1, 2, . . . , n: if f (αj) = 0 put e = e + ej .

• Random polynomial has 0 roots in L with probability ≈ (1− 1/q)n.
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