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Abstract

In this paper we present a kind of group suitable for cryptographic applications: the
trace zero subvariety. We describe in detail the case of trace zero varieties constructed
from genus 2 curves over prime fields. The curve is considered over an extension field of
degree 3 and one performs Weil descent from its Jacobian to the prime field leading to
a variety of dimension 6. The trace zero variety is a subvariety thereof. As a group it is
isomorphic to a subgroup of the Jacobian of the original curve. For appropriately chosen
parameters it is as secure as Jacobians of curves of genus g ≤ 3.

Its main advantage is that the complexity of computing scalar multiplication is lower
than on other curve based groups. This is achieved by making use of the Frobenius
endomorphism.

Thus the trace zero subvariety can be used efficiently in protocols based on the discrete
logarithm problem.

Keywords: Public key cryptography, discrete logarithm, hyperelliptic curves, abelian
varieties, Frobenius endomorphism, fast arithmetic

1 Introduction

To allow secret transmission of sensitive data and to secure electronic commerce one needs
to rely on protocols guaranteeing that messages cannot be read or altered by third parties
and that a signing party cannot deny his signature. A widely used mathematical primitive in
these protocols is the discrete logarithm problem: Given a cyclic group generated by D with
a given group law and a scalar multiple Q of D, determine d such that dD = Q. A group
is suitable for applications in cryptography if (i) the group operation is fast, (ii) the group
order can be computed efficiently, (iii) the discrete logarithm problem is hard, and (iv) the
representation is easy and compact.
Two common kinds of groups used in practice are the multiplicative group of a finite field and
the group of points on an elliptic curve over a finite field. The first group comes equipped
with a very fast arithmetic, but also with a subexponential algorithm for computing the
discrete logarithm. Since this index calculus attack does not carry over to elliptic curves,
only general techniques like Pollard’s rho and kangaroo methods apply, unless the curve has
a special structure (e. g. is supersingular, or the group order is divisible only by small primes,
thus weak under Chinese remaindering). In his 1989 article, Koblitz [18] proposes to take
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the Jacobian of a hyperelliptic curve as a group for cryptographic applications. If the genus
g ≤ 3 only generic attacks apply if the curve is cannot be attacked by the Frey-Rück [9, 10]
or Rück [30] attack.
As of today, point counting on curves defined over large prime fields is still a problem. The
best algorithm by Gaudry and Schost [13] needs about 1 week on one machine to compute the
order of a genus 2 curve over a prime field of 80 bits. Still, many curves need to be counted
before finding a curve with a large prime order subgroup. Alternatives are to construct the
curve via the CM-method (see Weng [42]), to restrict to fields of small characteristic (see
Kedlaya [17], Lauder and Wan [22], Vercauteren [40]), or to choose Koblitz (subfield) curves
(see Lange [20]).

The trace zero varieties were suggested for cryptographic applications by Frey [7, 8]. The
construction is based on the Weil restriction of a curve over IFpn to IFp. To obtain fast
arithmetic in the group, one makes use of efficient arithmetic in the finite field IFpn and of
the Frobenius endomorphism. This way scalar multiplications in the group can be performed
faster than on a Jacobian of same size.
In the genus 1 case these varieties were studied by Naumann [29] and Blady [3] for n = 3
and by Weimerskirch [41] for n = 5. In this article we investigate g = 2 and n = 3. The
results presented here apply to the other cases as well. Several aspects of this study are new
for those cases, too.
The results can easily be generalized to larger genera and to higher extension fields IFpn .
However, we advice against using other instances as the resulting varieties are likely to be
attacked: it might be possible to find curves of moderately large genus such that the trace zero
variety is a subvariety of their Jacobians. Then an index calculus attack can solve discrete
logarithm problem there. For Jacobians of hyperelliptic curves [12, 39] give details on index
calculus attacks; for Jacobians of more general curves similar considerations hold. For the
proposed parameters the security is equivalent to that of low genus curves over prime fields
by [6].
In the trace zero variety the computation of scalar multiples – the main operation in the
protocols – can be carried out efficiently, the group order can be determined and there are
no known weaknesses. With a little effort the size of the representation can be reduced to be
of the same bitlength as the group order plus a few bits. Our idea is especially interesting
for low security applications where one requires a group size of only 128 bits. Since in our
case the group order is p4, one can choose p to fit in a 32-bit word, leading to an efficient
arithmetic in the prime ground field.
The same implementational advantage was recently claimed for genus 4 curves. However, for
the same field size the security of genus 4 curves is lower due to recent work by Thériault [39].
Hence, for this setting our proposal proves very useful.

We remark that XTR [23] and LUC [33] are based on a similar construction starting from an
extension field and then taking a subgroup given by conditions on the norm of the elements,
which corresponds to the trace in the additive setting. However, they can base the security
on that of finite fields where there exist subexponential algorithms. Furthermore, they do not
exploit the geometric background.
Rubin and Silverberg [31] consider supersingular elliptic curves for identity based cryptosys-
tems. They independently suggest to use the trace zero subvariety of such curves to obtain
short signatures keeping the same MOV exponent. This is different from our approach, which
starts from an ordinary curve and was already given by the author in her thesis [20]. Our
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methods for speeding up the computation of scalar multiples can be applied to their setting
as well.

2 Mathematical Construction

2.1 Background Results

For a basic introduction to hyperelliptic curves see Menezes, Wu, and Zuccherato [26]. More
mathematical background can be found in Lorenzini [24] and Stichtenoth [37]. We briefly
state what is needed on general hyperelliptic curves in the sequel.
A hyperelliptic curve of genus g over a prime field of odd characteristic having at least one
IFp-rational Weierstraß point can be given by an equation of the form

C : y2 = f(x), f ∈ IFp[x],

f monic, deg f = 2g + 1 and f has no multiple zeros. The group one uses is the ideal
class group Cl(C/IFpn) of the (affine) coordinate ring of C in IFpn(x, y) which is a maximal
order. The ideal class group is the quotient group of the ideals modulo the principal ideals.
In every nontrivial class there is exactly one ideal generated by a pair u(x), v(x) − y with
u, v ∈ IFpn [x],deg u ≤ g, u monic, and deg v < deg u. One uses the ordered pair [u, v] to
represent that class. Cantor’s algorithm [4, 18] describes the arithmetic in Cl(C/IFpn). As
the curve has only a single point at infinity, the ideal class group is isomorphic to the divisor
class group of the set of points of the corresponding projective curve C̃. As f has odd degree,
there is only a single non-affine point IP∞. The relation is given by

Lemma 2.1 (Mumford Representation).
Let the function field be given via the irreducible polynomial y2−f(x), where f ∈ IFp[x], deg f =
2g + 1, and f has no multiple zeros. Each nontrivial ideal class over IFpn can be represented
by a unique ideal generated by u(x) and y − v(x), u, v ∈ IFpn [x], where

1. u is monic,
2. deg v < deg u ≤ g,
3. u|v2 − f .

Let D =
∑r

i=1 Pi − rP∞, where Pi 6= P∞, Pi 6= −Pj for i 6= j and r ≤ g. Put Pi = (xi, yi).
Then the corresponding ideal class is represented by u =

∏r
i=1(x − xi) and if Pi occurs ni

times then (
d

dx

)j [
v(x)2 − f(x)

]
|x=xi

= 0, 0 ≤ j ≤ ni − 1.

Finally, we mention that the divisor class group is isomorphic to the Jacobian of C̃, which is
an abelian variety of dimension g.
The hyperelliptic involution ι maps [u, v] to [u,−v]. A further endomorphism is the Frobenius
endomorphism σ. It operates on the classes by σ([u(x), v(x)]) = [up(x), vp(x)] for u, v ∈ IFp[x],
where the exponentiation of the polynomials is understood coefficient-wise. The characteristic
polynomial of the Frobenius endomorphism has the following form

P (T ) = T 2g + a1T
2g−1 + · · ·+ agT

g + · · ·+ a1p
g−1T + pg ∈ ZZ[T ].

Let P (T ) =
∏2g
i=1(T − τi) over C. Via |Cl(C/IFpn)| =

∏2g
i=1(1− τni ) the class numbers for all

extension fields IFpn depend only on the characteristic polynomial of σ.
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2.2 The Trace Zero Subvariety

If we consider the curve over an extension field of the field of definition, using the Frobenius
endomorphism σ of the curve is interesting to speed up the computation of scalar multiples.
This has been studied for large extensions of small ground fields in a series of papers [19, 25,
34, 35, 32, 28, 14, 20] for elliptic and arbitrary genus curves. Here, we suggest to use very
small extension degrees.
The starting point for our construction is a hyperelliptic curve of genus g defined over a prime
field IFp, where p is chosen such that pn−1 is of the desired group size. As one looks for group
sizes of more than 100 bits and n is small, we can assume that p > 5. We consider the ideal
class group over the finite field extension IFpn and restrict the computations to the subgroup
G defined by the property that its elements D are of trace zero, i. e.

G := {D̄ ∈ Cl(C/IFpn)|D̄ + σ(D̄) + · · ·+ σn−1(D̄) = 0}.

G is a subgroup of Cl(C/IFpn) as it is the kernel of the trace map. Obviously, σ is a group
automorphism of G.
Now we consider the construction from a geometric point of view. One starts with a g-
dimensional abelian variety over IFpn . The restriction of scalars transforms this to a gn-
dimensional variety over IFp. Taking the subvariety of elements of trace zero leads to a
g(n− 1)-dimensional variety G over IFp which is isomorphic to G as group.

For the remainder of the paper we restrict our attention to the case g = 2, n = 3. We can
assume f(x) = x5 + f3x

3 + f2x
2 + f1x + f0 ∈ IFp[x], as this form can be achieved easily by

replacing x by x− f4/5 otherwise.
Let the characteristic polynomial of σ be given by P (T ) = T 4 + a1T

3 + a2T
2 + a1pT + p2.

Then the group order of G is |G| = |Cl(C/IFp3)|/|Cl(C/IFp)|, explicitly:

|G| = p4−a1p
3 +(a2

1 +2a1−a2−1)p2 +(−a2
1−a1a2 +2a1)p+a2

1 +a2
2−a1a2−a1−a2 +1. (1)

Due to security and implementation issues we require that 2 - |Cl(C/IFp3)| and 3 - |Cl(C/IFp6)|.
If |G| is prime (the most interesting case for applications as the full group is used) one only
needs to check that

2, 3 - |Cl(C/IFp2)| = p4 + (a2
1 − 2a2 + 2)p2 − 2a2

1 + a2
2 + a2

1 − 2a2 + 1 (2)

to guarantee even 2, 3 - |Cl(C/IFp6)|.

2.3 Different Types of Divisor Classes on Trace Zero Subvariety

In this section we investigate what the representatives of the classes in G look like. This is
not only of theoretical interest but also of practical importance. For genus two curves explicit
formulae [27, 38, 21] are more effective than Cantor’s algorithm but several cases have to be
considered according to some properties of the input divisors. We will show that less different
cases need to be considered if we restrict the arithmetic to the trace zero subvariety. We make
use of the relation (Lemma 2.1) between the ideal class group and the divisor class group.

Theorem 2.2. Let 2, 3 - |Cl(C/IFp3)|. The nontrivial elements of the trace zero variety are
divisor classes represented by divisors of the form

P1 + P2 − 2P∞ 6∈ Div(C/IFp)0,

where P1 6= P2, σ(P2), σ2(P2).
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Proof. Recall that in the case of a genus two curve each divisor class D̄ has a unique repre-
sentative of the form D = P1 + P2 − 2P∞, D = P1 − P∞ or D = 0.
Obviously, the zero element satisfies the trace zero relation.
If the divisor class D̄ 6= 0 were defined over the ground field IFp, then σ(D̄) = D̄, but
σ2(D̄) + σ(D̄) + D̄ = 3D̄ 6= 0 by assumption. If σ(D̄) = −D̄ then σ2(D̄) = D̄, thus
σ2(D̄) + σ(D̄) + D̄ = D̄ 6= 0. Hence, such classes cannot be in G.
Therefore, σ(D̄) 6= ±D̄. Let first D = P1 − P∞, where P1 = (x1, y1) ∈ C(IFp3) \ C(IFp),
thus x1 6= σ(x1). Then the first polynomial representing D̄ + σ(D̄) is given by u = x2 −
(x1 +σ(x1))x+x1σ(x1). The divisor class is in G iff this resulting class equals −σ2(D̄). This
cannot happen as −σ2(D̄) is represented by [x− σ2(x1),−σ2(y1)] and the degrees of the first
polynomials are different. Via P 7→ P − P∞ the curve is embedded into the divisor class
group. Hence, this result shows that the curve lies completely outside the trace zero variety.
Let D = P1 +P2− 2P∞, where P2 = σ(P1). The trace zero relation means that P1 + σ(P1) +
σ(P1 +σ(P1))+σ2(P1 +σ(P1))−6P∞ equals a principal divisor div(F ). Rearranging leads to
2(P1 + σ(P1) + σ2(P1)− 3P∞) =div(F ). As above P1 + σ(P1) + σ2(P1)− 3P∞ does not equal
a principal divisor and it must be of order 2 in contradiction to the assumption. Similarly
D = 2P1 − 2P∞ could be in G only if |Cl(C/IFp3)| were divisible by 2 or 3. �

This result is interesting for the implementation of explicit formulae as it shows that several
subcases of the complete case differentiation (see Harley [15], Lange [21]) do not occur here.
For doubling only the general case is needed. In the addition of two classes [u1, v1], [u2, v2]
both deg ui = 2 and one only needs to distinguish if gcd(u1, u2) = 1 or of degree 1. The first
is the general case and the second can be transformed to it with a few operations.

3 Arithmetic

3.1 Arithmetic in the Extension Field

We sketch the implementation of the finite field arithmetic in extensions of degree 3. This
will be used to give estimates on the complexity of the arithmetic in G. We assume the
case of Kummer extensions, i. e. that p ≡ 1 mod 3. Hence, to construct IFp3 = IFp[ξ] we
use an irreducible binomial y3 − α. We abbreviate inversion, squaring, and multiplication
in the extension field by capital letters, whereas those in IFp will be denoted by i, s, and m
respectively.
Using Karatsuba multiplication we need 8m to compute 1M, as: (b2ξ2 + b1ξ+ b0)(c2ξ

2 + c1ξ+
c0) = (b1c1 + (b0 + b2)(c0 + c2)− b0c0 − b2c2)ξ2 + ((b0 + b1)(c0 + c1)− b0c0 − b1c1 + b2c2α)ξ +
b0c0 + ((b1 + b2)(c1 + c2)− b1c1 − b2c2)α. 1S can be performed similarly by 6s and 2m or as
(b2ξ2 + b1ξ + b0)2 = (b21 + 2b2b0)ξ2 + (2b1b0 − b22α)ξ + b20 − 2b2b1α by 3s and 5m using less
additions.
To compute the inverse of b ∈ IFp3 we make use of Cramer’s rule, i. e. use the resultant. Let
∆ = b32α

2 + b31α+ b30 − 3b0b1b2α. Then (b2ξ2 + b1ξ + b0)−1 = ((b21 − b2b0)ξ2 + (b22α− b1b0)ξ +
b20 − b2b1α)/∆. In total this takes 1i, 2s and 12m in IFp. Let η be a primitive third root of
unity in IFp; then σ(b2ξ2 + b1ξ + b0) = b2η

2ξ2 + b1ηξ + b0. For precomputed η2 each of σ and
σ2 takes 2m.
To have y3 − α irreducible we need to assure that α is no cube in IFp. It is highly likely that
there exists such an α of comparably small size that we need not count computing α times
an element as a multiplication but perform it by repeated addition. E. g. if α = 2 then a
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multiplication by α can be realized by a cyclic shift and (perhaps) a modular reduction. By
Chebotarev’s density theorem the probability to have both p ≡ 1 mod 3 and x3−2 irreducible
is 1/3. When the field has been chosen to allow this, the costs reduce to S=6s, M=6m, and
I=1i+3s+9m.

3.2 Arithmetic in the Group G

We now estimate the costs for computing in the trace zero subvariety. The following numbers
are based on the assumption that the arithmetic in the ideal class group is performed using
explicit formulae for genus 2. Nowadays the fastest algorithms can be found in [21] building
upon [27] and [38]. As we have seen in the previous section, inversions in IFp3 can be broken
down to one inversion and some multiplications in IFp. Thus, inversions are comparably cheap
and therefore we suggest to use affine coordinates. For implementations in more restricted
environments we refer to the other algorithms in [21]. The methods presented in the sequel
just carry through.
First we consider the arithmetic in the whole ideal class group Cl(C/IFp3) and then show how
to work in the subgroup. For hyperelliptic curves of genus two a general addition can be
performed using 1I, 3S, and 22M whereas a doubling takes 1I, 5S, and 22M. By Section 3.1
this equals 141 (194)m, 21 (20)s, and 1i in IFp for an addition. The numbers in brackets refer
to the case where no small α is available. To double we need 141 (198)m, 33 (32)s, and 1i.
The hardness of the discrete logarithm problem depends on the largest prime factor of the
group order. As it is useful for the applications we now restrict our considerations to prime
order subgroups of G. Let the prime l denote the order of this subgroup G′.
The Frobenius endomorphism in the trace zero subvariety satisfies its characteristic polyno-
mial and, by construction, also T 2 + T + 1 = 0. We propose the following alternative of com-
puting multiples of the group elements: Instead of using an integer m as the secret hidden in
mD we take a tuple (r0, r1) of integers and compute r0D+r1σ(D). Note, that in the subgroup
under consideration the operation of the Frobenius endomorphism corresponds to the multipli-
cation by an integer s modulo the group order l, i. e. for s = −(p2−a2+a1)/(a1p−a2+1) mod l
we have σ(D) = sD for all D ∈ G′. Therefore, there exists an integer r with 0 ≤ r < l such
that r0 + r1s ≡ r mod l and we see that choosing the tuple (r0, r1) is equivalent to choosing
r as multiplier. To avoid collisions we use the following theorem to bound r0 and r1:

Theorem 3.1. Let C be a hyperelliptic curve of genus two over IFp, let T 4 + a1T
3 + a2T

2 +
a1pT + p2 be the characteristic polynomial of the Frobenius endomorphism and consider a
base field extension of degree 3. Let D be a generator of a subgroup G′ of prime order l of G.
Put

r := min
{⌊

l

m

⌋
,

p2 − a2 + a1

gcd(p2 − a2 + a1, a1p− a2 + 1)

}
,

where m = max{p2 + a1p− 2a2 + a1 + 1, p2 + a1 − a1p− 1}.
Then the r2 classes r0D + r1σ(D), 0 ≤ ri < r are distinct.

Proof. For the elements of G the Frobenius endomorphism satisfies T 2 + T + 1 and its
characteristic polynomial. We can combine these equations to obtain

(a1p− a2 + 1)σ + p2 − a2 + a1 = 0 (3)

by inserting subsequently the trace zero relation.
Now assume that r0 + r1σ = r′0 + r′1σ as endomorphisms in G′. Subtracting we obtain

6



(r0 − r′0) + (r1 − r′1)σ = 0, where by construction |ri − r′i| < r. We multiply this equation by
a1p− a2 + 1 and use (3) to get

(a1p− a2 + 1)(r0 − r′0)− (p2 − a2 + a1)(r1 − r′1) = 0.

By the choice of r we have |(a1p − a2 + 1)(r0 − r′0) − (p2 − a2 + a1)(r1 − r′1)| < max{p2 +
a1p− 2a2 + a1 + 1, p2 + a1− a1p− 1} · r < l and therefore this equality not only holds modulo
l but also over the integers. But again by the choice of r and as p > 3 this implies that
(r0 − r′0) = (r1 − r′1) = 0. �

If the involved greatest common divisor is not too large and |G| is almost prime we can hope
for r2 ∼ l ∼ p4 so that there are sufficiently many elements obtainable using this construction.

We now discuss the computation of (r0, r1)-folds. To compute r0D+ r1σ(D) from the binary
representations ri =

∑ρ−1
j=0 rij2

j , rij ∈ {0, 1} we follow Naumann and use the Straus-Shamir
trick together with the trace zero property D + σ(D) = −σ2(D).

Algorithm 3.2.
INPUT: D = [u, v], r0, r1, ri =

∑ρ−1
j=0 rij2

j , rij ∈ {0, 1}, r0ρ−1 + r1ρ−1 > 0;
OUTPUT:H = r0D + r1σ(D);

1. initialize
if r0ρ−1 = 1 then

if r1ρ−1 = 0 then H = D;
else H = −σ2(D);

else H = σ(D);

2. for j = ρ− 2 to 0 do

(a) H = 2H;

(b) if r0j = 1 then
if r1j = 0 then H = H +D;
else H = H − σ2(D);

else if r1j = 1 then H = H + σ(D);

3. output (H).

Using this algorithm the computation of r0D+ r1σ(D) takes ρ doublings and asymptotically
3/4ρ additions, i. e. approximately 7/2 log2 p group operations. Although we do not use a
normal basis here, the application of the Frobenius endomorphism is cheap compared to the
costs of a usual group operation, as σ(D) and σ2(D) need only 8 multiplications in IFp each
for precomputed η2. With probability of 1/2 we need to compute either σ(D) or σ2(D).
Summing up we have:

Theorem 3.3. Let λ = log2 p. The computation of a scalar multiple in G′ using Algorithm 3.2
needs

3.5λ inversions, 94λ squarings, and 695λ multiplications

on average.
If a small α can be used only
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3.5λ inversions, 97.5λ squarings, and 501.5λ multiplications

are needed on average

Note that we need the same number of operations if we use the right-to-left algorithm start-
ing with the least significants bits. This avoids even the need to precompute the binary
expansions. Likewise one can store σ(D) and σ2(D) to save ∼ 8λ multiplications.
In the trace zero variety the negative of an element can be computed efficiently. To further
speed up the computations one can allow signed expansions which are especially efficient if
one can allow to store a few, namely 3, precomputations. Solinas [36] proposes the Joint
Sparse Form (JSF) which is a generalization of a NAF to two multipliers allowing 0,±1 as
coefficients. Important properties the JSF are that the density of the expansion, i. e. the
number of non-zero columns divided by the total number of columns is 1/2, that the length is
not increased, and that this density is minimal. Computing the JSF of two integers is easily
accomplished. Having (r0, r1) in JSF we perform a left-to-right algorithm to compute the
multiple like in Algorithm 3.2. If enough storage is available we suggest to precompute all
“columns” σ(D),−σ2(D), and D−σ(D). Then only table-look-ups and negations are needed.
Plainly, like before, one can use the trace zero relation and only precompute D − σ(D).

Theorem 3.4. Let λ = log2 p. The computation of a scalar multiple in G′ using JSF with
precomputed σ(D),−σ2(D), and D − σ(D) needs

3λ inversions, 84λ squarings and 590λ multiplications

on average. The precomputations take 1 inversion, 20 squarings, and 210 multiplications.
If a small α can be used only

3λ inversions, 87λ squarings and 423λ multiplications

are needed on average. In this case the precomputations take 1 inversion, 21 squarings, and
157 multiplications.

Without the precomputations we need more field operations. The JSF is especially interesting
if some storage is available. Avanzi [1] gives a study of techniques to obtain even faster
scalar multiplications allowing more precomputations. In our situation the trade off between
performance and on-line precomputations is optimal when we store all 10 occurring ’double-
columns’ and use a sliding window of width 2 to lower the number of additions. This reduces
the number of group additions to 3/4λ leading to a total of 2.75λ inversions, 81.75λ squarings
and 387.75λ multiplications in IFp if α is small, and to 2.75λ inversions, 79λ squarings and
541.5λ multiplications otherwise.

4 Example

In this section we provide a curve for which the group G is suitable for cryptographic applica-
tions. Let p = 281474976710491 and C : y2 = x5+193146284752606x3+201439328331345x2+
221507195424471x+ 23552822732639.
Over the ground field |Cl(C/IFp)| = 79228161018801250124621690911. Note that 2(p−1)/3 =
8833911861698, i. e. 2 is not a third power in IFp so we can construct the extension field IFp3
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by y3 − 2, i. e. we are in the case where the field arithmetic is especially fast. Over IFp3 we
have:

|Cl(C/IFp3)|
|Cl(C/IFp)|

= |G| = 6277101853847397790150936843143247036285274358626659637071.

The number on the right hand side, is a 192 bit prime, thus, |G| itself is prime.
The characteristic polynomial of the Frobenius endomorphism is
T 4−5312621T 3−328479937050639T 2−1495369872246665406911T+79228162514171450851229461081.
Therefore
r = min {79228162514171807555090156430, 79228162514171779331161199099}

= 79228162514171779331161199099.
Hence, there are r2 ∼ 2192 different elements obtainable by the strategy described above,
which means that r2 ∼ |G|. A basepoint for G is
D = [x2 + (190908433677287ξ2 + 124971512810887ξ + 269332975121032)x + 56707541465516ξ2 +
124248126629783ξ+114802966638327, (208311975739313ξ2+64280784374740ξ+159345756325112)x+
12218460484198ξ2 + 196610653413911ξ + 115774257113001]. Further examples can be obtained
by either taking random curves and computing their group order until a suitable one is found
or via the CM method.

5 Security and Comparison

Before being able to compare this group to other suitable ones we need to investigate the
security parameters. We recall that G is isomorphic to a four dimensional abelian variety
G over the prime field IFp. Other varieties of dimension four are e. g. the Jacobians of
hyperelliptic curves of genus four for which there exist attacks [39] that, while still being
exponential, have smaller asymptotic complexity than the square-root attacks. Note, however,
that by Diem [5], G is in general not principally polarized. Hence, it is not the Jacobian of
a hyperelliptic curve. In more detail Diem and Scholten [6] show that if 3 - |Cl(C/IFp2) then
G is a subvariety of the Jacobian of a genus 6 curve and of no curve of smaller genus. For
primes up to 45 bits Thériault’s results imply that the generic attacks are still fastest.

From what was said above we can compare the arithmetic on G to that of the ideal class group
of a genus two curve defined over a field IFq, where q = p′2 ∼ p2 or q = p′, p′ a prime, and also
to that of an elliptic curve defined over a field of size ∼ p4. This field can be assumed to be
prime or of extension degree 2 or 4. The trace zero variety itself is defined over a prime field.
Therefore we choose curves over prime fields for comparison. Certainly we need to be aware
of the efficient-to-compute group endomorphism. It is of order 3 in G leading to a speed-up
of Pollard’s rho method by a factor of

√
3. As a countermeasure we choose slightly larger p

to increase the group size by one bit. Gallant, Lambert, and Vanstone [11] propose to use
curves over prime fields having efficient endomorphisms to speed up the scalar multiplication.
We do not choose these curves for comparison as they are far more special.
Thus, we now compare the cost for arithmetic on elliptic and genus 2 curves over prime fields
to that on the trace zero variety, all varieties having the same group order. We choose the
double-and-add method to compute m-folds there if we compare to Algorithm 3.2. We also
take into consideration the effects of using a NAF of the multiplier and 3 precomputations to
compare with the effects of using a JSF. For both groups – the elliptic curve as well as the ideal
class group of the genus two curve – the group-size is ∼ p4, therefore we assume that the binary
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representation of the multiplier is on average of length 4 log2 p. In the double-and-add method
we need 4 log2 p doublings and 2 log2 p additions. Using the NAF with 3 precomputations i. e.
window width 4, we need 4/5 log2 p additions and again 4 log2 p doublings (cf. Solinas [35]).

Like before we use affine representations. For a general addition on an elliptic curve E : y2 =
x3 +Ax+B we need 1 inversion, 1 squaring, and 2 multiplications in the finite field IFp′′ , p′′ ∼
p4 prime. To double a point we need one more squaring. For the genus two curve we again
use the explicit formulae in IFp′ , p′ ∼ p2.
For scalar multiples of size m ∼ p4, p′′ ∼ p4, p′ ∼ p2, λ = log2 p this results in the following
table. Note that the operations are given in the respective finite fields. From now on we
assume that we are in the case that the α used to construct IFp3

∼= IFp[y]/(y3 − α) is small.

Elliptic, Op. in IFp′′ Genus 2, Op. in IFp′ Trace zero, Op. in IFp
Inv. Sqr. Mult. Inv. Sqr. Mult. Inv. Sqr. Mult.

Add. 1 1 2 1 3 22 1 21 141
Doub. 1 2 2 1 5 22 1 33 141
m-fold 6λ 10λ 12λ 6λ 26λ 132λ 3.5λ 97.5λ 501.5λ
NAF/JSF 4.8λ 8.8λ 9.6λ 4.8λ 22.4λ 105.6λ 3λ 87λ 423λ

To make a theoretical comparison we need to give ratios of the costs of operations in IFp′
and IFp′′ to those in IFp. For the relatively small kind of fields we consider, multiplications
are usually performed by the schoolbook method. Multiplying two numbers of w words
each has complexity O(w2). A consequent use of Karatsuba’s trick leads to an asymptotic
behavior of O(wlog2 3). To play fair we assume the later for the comparison, as this is in
favor of the arithmetic on the elliptic and hyperelliptic curves1. Inversions are performed as
extended greatest common divisor computations and thus their relative complexities behave
like multiplications.
We consider group sizes between 120 and 300 bits. For 160 bit the situation is rather extreme
– elements in IFp′′ need 5 words, those in IFp′ 3 words and in IFp 2 words. This is the worst case
for the trace zero variety as then a multiplication in IFp requires 3 multiplications of words,
one in IFp′ needs 6 and one in IFp′′ needs 15. The general case which also holds asymptotically
is that assuming an element of IFp needs w words, one of IFp′ needs 2w words and one in
IFp′′ is four times as long, then the ratios are 3 and 9 respectively. This situation occurs for
example in low security applications with group order ∼ 128 bits, then the elements of IFp fit
in one word, and likewise for groups of more than 200 bits, especially 256 bits. We make the
common assumption that one squaring needs ∼ 0.8 multiplications in the respective field. The
following table lists the approximate number of inversions and multiplications scaled down to
IFp using the indicated ratios.

Elliptic curve Genus 2 curve Trace zero
ECmin ECmax HECmin HECmax

ratio 5 9 2 3
Inv. Mult. Inv. Mult. Inv. Mult. Inv. Mult. Inv. Mult.

m-fold 30λ 100λ 54λ 180λ 12λ 306λ 18λ 458λ 3.5λ 580λ
NAF/JSF 24λ 83λ 43λ 150λ 10λ 250λ 14λ 371λ 3λ 493λ

1However, for operands of the considered sizes the schoolbook method is fastest, so we are favoring the
curves over the larger fields.
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To decide which group is more suitable for a given environment, one needs to take into
account the inversion-multiplication-ratio I = cost of 1 inversion

cost of 1 multiplication. In general we have
the following diagram which visualizes the costs of scalar multiplications depending on I.
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The pictures show that in the ordinary cases ECmax and HECmax the trace zero variety is
advantageous to use for I ≥ 8 in the case of binary expansions and for I ≥ 10 for sparse
expansions. Due to the much smaller contribution of inversions to the total running time,
the trace zero variety allows faster arithmetic compared to the other varieties with increase
of I. In the less likely cases ECmin and HECmin, I would need to be unusually large to give
faster arithmetic on trace zero varieties, but on constrained environments like smart cards
this situation occurs frequently.
Note, that the diagrams are based on assumptions friendly towards the standard groups of
elliptic and hyperelliptic curves. Experimental results, which will be published in a joint work
with Roberto Avanzi [2], support our theoretical considerations: In a software implementation
over prime fields, the trace zero varieties of genus g curves are faster than the Jacobian
varieties of curves of the same genus and of comparable group size.

6 Practical Aspects

6.1 Protocols

As we changed the way of computing scalar multiples we now study the consequences for the
cryptographic applications. In the Diffie-Hellman key-exchange and in the ElGamal cryp-
tosystem, one simply replaces the secret integers in the range of the group order, i. e. the
private key as well as the random nonce, by tuples of the above kind (r0, r1), 0 ≤ ri < r. The
integer s corresponding to the Frobenius should be included in the public parameters as well.
If all users agree on the same curve then s can as well be hard-coded.
In electronic signature protocols we also need the multiplier as an integer modulo l. Thus
if we choose the tuple (k0, k1) as the nonce in the signature scheme we also compute k ≡
k0 +k1s mod l, which amounts to one further multiplication and one addition modulo l. Also
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the private key is needed as both integer and tuple. Thus, it is wise to store (d0, d1) and
d = d0 + d1s as private parameters.

6.2 System Set-Up

To set up a system based on the trace zero subvariety one performs the following steps: First
one chooses a prime p of appropriate size, then randomly picks a nonsingular curve C over
IFp given by y2 = f(x),deg f = 5, f4 = 0, then computes the characteristic polynomial of the
Frobenius endomorphism, and thus obtains the group order by (1). If the group order is not
good, i. e. |G| has no large prime factor or (2) is not satisfied, then one discards the curve
and tries with a new one. After some unsuccessful attempts one can also choose a new p.
An alternative approach would be to construct the curve by the CM-method.
If we assume that |G| = l is prime, G is cyclic and any nonzero element generates the
whole group. To find an element of G one proceeds as follows: pick a random element
D̄′ ∈ Cl(C/IFp3)\Cl(C/IFp), and compute D̄ = D̄′−σ(D̄′). Since D̄′ 6= σ(D̄′) we have that D̄
is nonzero and in the trace zero subvariety. If the order of G is almost prime, i. e. |G| = cl, l
prime and c small, one takes the same approach starting from D̄′ ∈ Cl(C/IFp3)\Cl(C/IFp) and
obtains D̄ as D̄ = c(D̄′ − σ(D̄′)) additionally checking whether D̄ = [1, 0]. In this extremely
unlikely case D̄′ is rejected and one starts with a further random choice of D̄′.
We suggest to start with [u′, v′], u′ monic of degree 2 as we propose to implement arithmetic
only for G (see Section 2.3). It can be built by randomly choosing X1, X2 ∈ IFp3 until
f(X1) = Y 2

1 and f(X2) = Y 2
2 are squares, thus (X1, Y1), (X2, Y2) ∈ C(IFp3). Then u′ =

x2 − (X1 +X2)x+X1X2 and v′ = ((Y1 − Y2)x+ (X1Y2 −X2Y1))/(X1 −X2).
Depending on the chosen degree of compression it might be necessary to compute and include
further equations in the set of parameters (see below).

6.3 Compression of Group Elements

For applications it is necessary to store elements from G. On a restricted device with limited
storage capacities, such as a smart card, it might be wise to compress the representation of
the elements. First of all, compression works like for general hyperelliptic curves in the sense
that one can represent v by some cleverly chosen bits as given in [16]. However, again G is
advantageous as we need to consider fewer cases like in Section 2.3.
Additionally, we can exploit that from the trace zero relation the IFp-coefficients uij (ui =
ui0 +ui1ξ+ui2ξ2) are related. On the cost of computing resultants and factoring a polynomial
the number of such coefficients can be reduced from the remaining 6 to 4. We suggest to
transmit only u12, u11, u10, and u02 as this choice leads to equations of lowest degree.
Let the class of D̄ be represented by the divisor D. For ¯[D ∈ G we have that D+σ(D)+σ2(D)
equals a principal divisor div(F ), F = F1(x) + F2(x)y ∈ IFp(x, y)/(C). For D = [u, v] the
product uσ(u)σ2(u) equals the norm of F . This leads to the identity

uσ(u)σ2(u) = F 2
1 − F 2

2 f.

Since the left-hand-side is monic of degree 6, deg f = 5, monic, we have that degF1 = 3,
monic and F2 is constant. Hence, F1 = x3 + F12x

2 + F11x+ F10, F
2
2 = F20, Fij ∈ IFp.

Upon sorting with respect to the powers of x, this leads to the following 6 equations in the
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10 variables uij , Fij , where η denotes a primitive third root of unity:

P1 = 3u10 − 2F12 + F20,

P2 = 3(u00 + u2
10 − ηu11u12)− F 2

12 − 2F11,

P3 = u3
12η

2 + u3
11η + u3

10 − 3(u12u11u10η + u12u01η + u11u02η − 2u10u00)− 2(F10 + F12F11) + f3F20,

P4 = 3(u2
12u02η

2 − η(u12u11u00 + u12u10u01 − u2
11u01 + u11u10u02 + u02u01) + u2

10u00 + u2
00 + f2F20)

−2F12F10 − F 2
11,

P5 = 3(u12u
2
02η

2 − u12u01u00η − u11u02u00η + u11u
2
01η − u10u02u01η + u10u

2
00) + f1F20 − 2F11F10,

P6 = u3
02η

2 + u3
01η + u3

00 − 3u02u01u00η + f0F20 − F 2
10.

For a given curve (thus fixed fi, η, and p), using resultant computations or more powerful
Groebner bases it is no problem to eliminate the additional variables Fij . This leads to two
equations – E1 involving all remaining 6 variables uij and E2 in which u01 does not occur.
These equations depend only on the curve and can be computed once and for all at the setup
of the system.
To compress a class the sender inserts the actual values of u12, u11, u10, u02 into E2, solves for
u00, inserts u12, u11, u10, u02, u00 into E1, and solves for u01. Then he transmits 〈u12, u11, u10, u02, a, b〉,
where a (b) gives the place of the root of E1 (E2) coinciding with u01 (u00) according to a
fixed ordering of IFp. The receiver recovers the missing values by first inserting into E2,
solving for u00 and finding the correct value using b. Then u01 is obtained from E1 using
u12, u11, u10, u02, a and the value for u00 obtained before.

7 Conclusions

We have presented details on trace zero varieties of genus 2 curves over IFp3 . First we con-
sidered mathematical aspects of the construction and detailed the arithmetic in IFp3 and in
G. This was used to give a fair theoretical comparison between elliptic and genus 2 curves
over prime fields and the trace zero group. Finally, we dealt with practical aspects to enable
cryptographic applications of the trace zero varieties.
These considerations also hold true for other degrees of extension and other genera. A ref-
erence implementation taking into account trace zero varieties of elliptic curves over IFp3

and IFp5 , too, shows that these groups indeed offer faster computations of scalar multiples.
Therefore, these groups are really very interesting for cryptographic applications, especially
on restricted devices.
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