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Due to the emerging market of electronic commerce public key cryptosystems
gain more and more attention. Unlike for military purposes there is a need
of flexible user groups. Besides RSA most cryptosystems and protocols like
the Diffie-Hellman key exchange [1] and the ElGamal cryptosystem [3] are
based on the discrete logarithm as the underlying one-way function. Given a
cyclic subgroup of an abelian group generated by g and an integer m one can
compute g™ = b. If {g) is a group suitable for cryptographic applications then
it is computationally hard to retrieve m for given b and g. m is called the
discrete logarithm of b to the base g. The problem of determining m given b
and g is called the discrete logarithm problem. A group is suitable if

1. the group operation is fast,

2. the group order can be computed efficiently,

3. the discrete logarithm problem is hard,

4. the representation is easy and compact.
Two common kinds of groups used in practice are the multiplicative group of
a finite field and the group of points on an elliptic curve over a finite field.
To obtain a speed-up for the main operation on an elliptic curve — computing
m-folds — Koblitz [11] proposed the use of a special kind of curves. These
Koblitz or subfield curves are curves defined over a comparably small finite
field F,. They are then considered as curves over a large extension field F-,
where n is prime. The arithmetic makes use of the fact that if the curve
C is defined over F; and P = (z,y) € Fgn X Fyn lies on C then the point
o(P) = (z9,y?) lies on C, too. o is an endomorphism of the curve called
the Frobenius endomorphism. These curves have thoroughly been studied
by Koblitz [11, 12], Meier and Staffelbach [16], Miiller [17], Smart [19], and
Solinas [20, 21], where the last reference contains a detailed analysis of the
maximal speed-up achievable for curves over Fs.

In [10] Koblitz proposed the Picard group Pic’(C/F,) of a hyperelliptic curve
as a further group suitable for cryptographic applications. For genus < 4 these
groups are secure provided that the group order is sufficiently large and that
one avoids curves for which special attacks are known. The advantages over
the elliptic curves are the smaller field size and the larger variety of curves to
choose from. Due to Mumford there is a representation of the group elements
given by two polynomials of degrees bounded by g + 1 and g respectively, the
group satisfies the requirement of 4. But there are several disadvantages:

At the moment no-one is able to compute the group order of a randomly gen-
erated hyperelliptic curve over a prime field with group order ~ 2160, The
best result obtained for curves of genus two is a curve over the prime field F,,
with p = 10'® + 51 by Gaudry and Harley [8] which leads to a group order
~ 1038 ~ 2'29 which is smaller than recommended for cryptographic applica-
tions. Hence, one is forced to take special curves. In this article we investigate
hyperelliptic Koblitz curves. The idea of elliptic Koblitz curves was generalized
by Giinther, Lange, and Stein [9]. There we investigate two special examples of
binary curves of genus 2. We show in that paper that also in the hyperelliptic
case the Frobenius endomorphism can be used to achieve fast arithmetic, i.e. to
speed up scalar multiplication. The Frobenius endomorphism operates on the
divisor classes D = [a(z), b(z)] in Mumford representation by raising the coeffi-
cients of the polynomials a and b to the gth power, i.e. o(D) = [o(a),o(b)] and
o(Y a;z) =Y alzt. Hence, if the finite field Fy» is represented via a normal



basis over F; then computing the gth power of a field element just means a
cyclic shift of its representation. Thus, the computation of o(D) is performed
by at most 2g cyclic shifts. We now give evidence that the Frobenius endomor-
phism gives rise to a speed-up of at least a factor of 4 (for ¢ = g = 2) and much
more if many precomputations can be stored. The speed-up increases with ¢
and g. In the following we state the results without proofs. For details consult
Lange [14].

Let the hyperelliptic curve of genus g be given by

C:y*+h(x)y = f(x), h, f € Fyla]

and consider the curve over F ;. Let the characteristic polynomial of the Frobe-
nius endomorphism of the Picard group Pic’(C/F,) be

P(T) = T29 4+ g 72971 4+ ... + ang 4+t alqg—lT +¢9.
For the divisor classes D we have that

¢’D = —0*(D)—a 0 '(D)~----—a,0%D) - —aiq¢’ 'o(D)
= —o(---0(o(0(D) + a1 D) + a2D) + - -- + a1¢? ' D).

We now compute for each integer m a representation of mD as mD =
Zi (lJuZ !(D) where we restrict the coefficients u; to a set R. Let 7 be a

complex root of P(T). Then to any representation as given above corresponds

. -1 . .
an expansion of m = 3.~ u;7*, u; € R. Given such a representation and a

precomputed table containing u;D for all a; € R we can compute mD like in
the double-and-add method where the doublings are replaced by cyclic shifts,
hence are for free, and the multiples u;D are stored in a precomputed table.
The key to compute an expansion of m is the following lemma. Note that the
elements of Z[7] are of the form ¢ = co + 17 + -+ + 217297 with ¢; € Z.
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Lemma 1 c=co+ 17+ -+ cag_179 1 is divisible by 7 if and only if ¢%)co.

Therefore the minimal set of remainders R consists of a complete set of repre-
sentatives of Z/q9Z. Since taking the negative of a divisor class is essentially for
free (to —D corresponds [a, h — b]) we will use R = {0,£1,+£2,..., j:[qggl]} if
just a representation is needed. Note that we would not need to include —g9/2
in the case of even characteristic. But since we get it for free we will make use
of it.

The representation of m is computed making repeatedly use of

c = cotoeiT+ F oy 1T =ug+ (co —ug) F 1T+ Feag1 7!
= wg+7(c1 —daig’ " + (ca — dasg? )T + -+ - + (cog-1 — day)T*9 72 — dr?TY),
where d = (¢o — ug)/q? and ug € R is chosen such that ¢7|(co — uo).

Using the norm N (c) \/E 29 95 e =

for ¢ € Z[r] we have

Lemma 2 Let q be odd. For every m € Z[r] we have an unique expansion

k-1
m = E wir +m'k,
i=0



where u; € {0,+1,£2,. --7iqg;1}’

N(m') < gﬁqg_ =K
and
2(v/a - YN (m)
! V9
o

And for even characteristic the same holds true with % replaced by \q;

N2 is a positive definite quadratic form of 2g variables. Hence, we can use the
algorithm of Finke and Pohst [4] to find all elements of norm smaller than K.
To prove the finiteness of the representations for an individual curve it suffices
to expand all these elements to the base of 7. The experiments show that either
the expansion is cyclic of period length one (and perhaps a change of sign) or
it is finite of length at most 2g + 1. In [14] we investigate in detail the case of
genus two curves supporting these observations. In case the expansion runs into
a cycle we can still use the curve if we allow one more precomputation — for the
value of ¢y where the period starts. A period of length one can only occur if for
the curve or its twist we have [(¢? —1)/2] > d|Pic’(C/F,)|. In the experiments
only d = 1 occurred. Thus ¢ has to be fairly small and the time needed to
compute the additional coefficient +d(¢g9 — |Pic®(C/F,)|) can be neglected.

k< [2log 1+1.

Example 3 Put g = 2,q = 3. Among all the isogeny classes of curves with
irreducible P(T) only P(T) = T* £ 273 + 27?2+ 6T + 9, P(T) = T* + T3 —
272+ 3T +9, and T*+3T3 +5T? + 9T +9 lead to periodicities. The coefficients
to include are 5 in the first two cases and 6 in the last one.

In the case of even characteristic the situation is even a bit more relaxed. If we
choose coefficients from {0,£1,...,+q9/2—1,¢9/2} unless co = —q?/2 then for
all classes of curves of genus two over Fo the expansions are finite. For Fy we
run into a cycle only for P(T) = T* + 4T3 + 9T? £ 16T + 16. To deal with this
we include £10 in the set of coefficients.

If we restrict ourselves to the group Pic’(C/F,») we additionally have o”(D) =
D, hence two 7-adic expansions represent the same endomorphism if the are
equivalent modulo 7 — 1. On the subgroup of prime order I| [Pic’(C/F¢-)| we
also have that the Frobenius endomorphism cannot equal the identity thus we
can even reduce modulo (7™ — 1)/(7 — 1). On these points of order [ we have
that o(D) = sD for an integer s mod I.

Theorem 4 Let 7 be a root of the characteristic polynomial P(T) of the Frobe-
nius endomorphism of the hyperelliptic curve C defined over F,. Consider the
curve over Fyn and let m € Z. There is an element M € Z[r] such that

1. m =M mod (" —1)/(r —1), and
2.
2(ya - YN (M)
! V9
To compute (T™ — 1)/(T — 1) in Z[r] we use a recursion. The inversion can be

performed using the extended greatest common divisor of (7™ —1)/(T — 1) and
P(T).

2log <n+2g.



Algorithm 5 (Computation of m-folds using 7-adic expansions)
INPUT: m € Z,D = [a,b], a,b € Fyn[z], P(T), R the set of coefficients.
OUTPUT:mD represented by the reduced ideal H = [s,t], s,t € Fyn[z].

1. Precomputation: fori € R,i > 0 compute
D(i) :=1iD;
D(—i) := —=D(%); /¥ for free/*

2. /*compute a length reduced M € Z[7] withm = M mod (v"—1)/(7—1);*/

(a) Initialize: dg =1 and d; =0 for 1 <i<2g9—1;
eo=lande; =0 for1<i<29-1;
(b) for 1<k<mn-—1do
i dog = dag1;
it. for2g—1>141>g do
di :=d;i_1 — azg—idoia;
e :=e; +d;;
. forg—1>i>1do .
d; »=d; 1 — a;q9 " doia;
e; == e; +d;;
w. do = —q9dyg;
€y :=¢€9 t+ do;
(c) let e := > e;T%;
(d) compute €' := e~ mod P using extended GCD;
(e) compute M' :=round(m-¢€');
(f) let M =290 MyT? := m — e - M’ mod P;
3. /*compute the T-adic representation of M ;*/

(a) Puti:= 0;
(b) While for any 0 < j < 29 — 1 there exists an M; # 0 do
if ¢9\ Mo choose u; := 0;
else choose u; € R with ¢9| Mo — u;;
/*in even characteristic choose u; = My if |Mo| = ¢9/2/*
d:= (Mo — ui)/q°;
for0<j<g-—1do ‘
Mj == Mj11 —ajq 7 td;
for0<j<g—2do
Myij = Mgyje1 — ag—j—1d;
M2g—1 = —d;
ti=1+1;

4. /* compute m-fold of D;*/

(a) initialize H :=[1,0];
(b) for 1l —1<0 do
H:=0(H); /* this means cyclic shifting /*
if u; # 0 then
H := H + D(u;);



5. output(H ).

The routine round computes for an element of Q[r] the nearest element of
Z[r] in the sense that the coefficients are rounded to the nearest integer. If
the algorithm is carried out several times with the same divisor class D (like
in the first step of the Diffie-Hellman key exchange) then we need to do the
precomputations of Step 1 and the determination of e’ (i.e. most of Step 2)
only once and for all at the set-up of the system.

For estimates on the complexity we need the following theorem.

Theorem 6 (Main result on the Length )
Let C be a hyperelliptic curve of genus g and with characteristic polynomial of the
Frobenius endomorphism P(T). Let P be such that the T-adic expansion is not

0 \2
periodic and that for an element ¢ of Z[7] of norm < § ( \/%71) (respectively

2
< % (\q/gatll) for even characteristic) the T-adic expansion is no longer than
29 + 1. Then we have:

For every element m € Z we can compute a T-adic expansion of length k using

coefficients in the set R only, where

k<n+4g+2.

Besides the length the second important quantity to consider is the density
of the representation. By density we mean the number of nonzero coefficients
occurring in the representation divided by the length of the representation.
Naturally the density will depend heavily on the choice of the set R and therefore
on the number of precomputations. As stated before the minimal set R simply to
make possible the expansion is R = {0,+1,+£2,..., :l:[qT_l] }. Using this set, we
get a zero coefficient only at random, hence with a probability of 1/¢?. Therefore
the asymptotic density in that case is (¢? — 1)/¢? resulting in a complexity of
(¢? = 1)/¢'n < n.
If

P(T)=T%* +a,T? +¢° mod ¢°, a, #0
then we can also use a much larger set of coefficients, namely for ¢ even
R = {0,+1,+2,. ..,:i:g — 11\{¢%,2¢%,...,(¢¢ — 1)¢9} and for ¢ odd
R= {0,£1,+2,. ..,:tq2g2_1}\{q9,2q9, ..o, (g9 — 2)q%} of size |R| = (¢ — 1)¢9,
that guarantees that for each non-zero coefficient we obtain at least one zero.
This results in an asymptotic density of 2‘1;9__11 and a complexity of qugg__ll n < %n
All usual windowing techniques carry through to 7-adic windowing, i.e. using
bo + b17 + --- + b;7t as coefficients, as well. Using by + b;7,b; € R, R as above
also leads to the density %.

Since for integers m < |Pic’(C/F,)| ~ ¢" the binary expansion has a
complexity of 3/2gnlog,(q), the speed-up obtained using the first set of
coeflicients is %glog2 q and for the larger set 3glog, q.

Even if one compares the 7-adic method to the usual binary windowing method
with at least the same number of precomputations the speed-up is of order at
least g respectively 2g.

For timings we used the binary curve C : y?+(22+z+1)y = 2°+2*+1 with char-
acteristic polynomial P(T) = T*—2T3+3T?—4T +4 over Fyso. Its class number



is 2 - 191561942608242456073498418252108663615312031512914969, thus this
curve is appropriate for applications. For the computations we used Magma.
Unfortunately Magma does not provide a representation of the finite fields using
a normal basis. Thus instead of using the cyclic shifting as proposed we raise
each coefficient to the ¢g-th power. Thus we cannot get the whole speed-up.
We carried out 1000 random scalar multiplications using the m-adic method in
Magma. For the 7-adic method we needed only one precomputation for 2D,
thus the time and space needed for this is negligible. To compare we also used
the built-in routine for computing m-folds in Magma.

The average length of the 7-adic expansion is 90.18 and the average time to
compute the expansion is 0.005318. The complete multiplication takes 0.070261
on average. The corresponding time with the usual function is 0.146036 on av-
erage. Hence, we obtained a speed-up by a factor of 2.

The program used for this comparison FrobExample and a program to play
around with a self-defined curve FrobSelf can be obtained from
http://www.exp-math.uni-essen.de/ lange/KoblitzC.html.

To save the time needed to compute the expansion it is also possible to use
an alternative set-up where instead of computing the expansion of a given
integer one uses a string of length n — 1 of elements from R as a key which is
then identified with an expansion. In the subgroup of Pic®(C/Fy) of order
! we need not worry whether this expansion belongs to an integer since the
operation of the Frobenius endomorphism corresponds to a multiplication by s
modulo ! and, hence, there is always a corresponding integer modulo I. Note
that although the key-space is reduced this does not weaken the system unless
for a brute force attack. To make sure that the multipliers occurring are equally
distributed we do some experiments before choosing the curve. Even if some
vectors represent the same integer modulo I, the keys are still almost equally
distributed.

We consider again the above curve over Fyso and let [ be the large prime
factor of the class number. The operation of the Frobenius endomorphism
on the cyclic group of this prime order corresponds to the multiplication by
s = —109094763598619410884498554207763796660522627676801041 mod .
Choosing a sequence of 88 elements w; from R := {-1,0,1,2} at random
and computing Z?io u;s' modl we get the multiplier of D correspond-
ing to the key (ug,...,us7). If two sums represent the same integer
modulo [ then their difference has coefficients in 0,£1,4+2,4+3. To get
the correct probabilities of occurrence we used the following multi-set
U:={-3,-2,-2,-1,-1,-1,0,0,0,0,1,1,1,2,2,3} and computed 10,000,000
such sums modulo I. The zero sum never occurred.

Hence, there are no obvious weaknesses and this curve is probably suitable for
using this modified set-up.

A further important advantage of Koblitz curves is that due to the construction
the group order can be determined very efficiently. A complete list of all
isogeny classes of imaginary quadratic hyperelliptic curves of genus 2,3, and 4
for Fo and F3 and of genus 2 and 3 for F; and F5 together with their class
numbers can be obtained from

http://www.exp-math.uni-essen.de/ lange/Koblitz.html.

The computations of the class numbers were carried out using only integer



arithmetic by some recurrence sequences developed in [14]. One finds that
among the Koblitz curves there are many providing a group of cryptographic
relevance.

Hence, firstly the computation of m-folds is sped up considerably and can thus
be regarded as fast. Secondly the group order can be computed very easily.
The group elements can be represented by two polynomials of degree at most
g over Fg», thus the representation is compact and easy.

To the third point: The Picard group of Koblitz curves over F» comes along
with an automorphism group of order at least 2n — due to the Frobenius
automorphism of order n and inversion. This can be used for cryptanalysis.
The attack of Gallant, Lambert, and Vanstone [5] designed for elliptic curves
was extended to hyperelliptic curves. Duursma, Gaudry, and Morain [2] make
use of equivalence classes in Pollard’s rho method and obtain a speed-up
of v/n compared to a Picard group without automorphisms except for the
inversion. This can be dealt with by choosing n some bits larger (at most 4
bits in the range considered here). Gaudry [7] used this automorphism group
to speed-up his variant of the index-calculus method by n?. But as he remarks
in his thesis [6] the space consuming linear algebra step works only for genus > 4.

Remarks:

1. Although our approach is described for curves over arbitrary fields and
of arbitrary genus, in applications they are most likely used over small
fields with ¢ < 7 and genus 2, 3 or 4, since for larger genus the groups
are insecure and for larger field size the number of precomputations to be
stored increases, and we loose too much due to inevitable factors of the
group order. Furthermore one has to be aware of Weil descent attacks if
the degree of extension gets too small.

2. We only consider the case of hyperelliptic curves, but all this generalizes
to arbitrary abelian varieties, thus especially to those attached to Cgp-
curves, as soon as the action of the Frobenius endomorphism can be used
efficiently. This holds since we only work with the characteristic polyno-
mial not with the curves themselves.

3. When choosing a curve for “real-life” application one should not only look
for the right order and the other security issues pointed out here but also
make sure that the finite field is such that the arithmetic can be performed
efficiently. Thus the choice of curves — or more correctly field extensions
—is reduced. First of all we need to ensure that we are working in a field
for which a normal basis exists such that the arithmetic of the field is not
significantly slower than for a polynomial basis with a sparse polynomial.
Using Gauss periods and — if necessary — working with a polynomial basis
of a small extension field one obtains a field arithmetic much faster than
using a matrix based multiplication. Furthermore it is also possible to use
the Frobenius automorphism of the finite field for the arithmetic in the
ground field. This is extremely interesting if one works in characteristic 2
since then squarings in the usual square and multiply method are for free.
A generalization to composite Gauss periods was recently investigated by



Nocker [18]. It is a topic of current research to find optimal choices for a
pair curve and finite field. For hardware implementations it is also useful
to work over fields of characteristic 2.

After finishing this paper it was brought to our attention that Lee [15] has
also generalized the results of Giinther, Lange, and Stein [9] to arbitrary
characteristic. His paper does not contain a proof of the finiteness and length
of the representations obtained. Furthermore he uses larger ground fields than
we recommend and does not use the full power of the Frobenius endomorphism
since he uses only a polynomial basis and precomputes the needed powers o¢(D).
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