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1 Data Security and Arithmetic

Cryptography is, in the true sense of the word, a classic discipline: we find
it in Mesopotamia and Caesar used it. Typically, the historical examples
involve secret services and military. Information is exchanged amongst a
limited community in which each member is to be trusted. Like Caesar’s
chiffre these systems were entirely symmetric. Thus, the communicating
parties needed to have a common key which is used to de- and encrypt. The
key exchange posed a problem (and gives a marvelous plot for spy-novels)
but the number of people involved was rather bounded. This has changed
dramatically because of electronic communication in public networks. Since
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each pair of participants needs a secret key, a network of n users needs n(n−
1)/2 keys. Besides the storage problem, one cannot arrange a key exchange
for each pair of participants for the huge number of users in today’s networks.
The solution to this problem came in 1976 with the ground breaking paper
by Diffie and Hellman [15]. They propose public key cryptosystems. This
way, parties can agree on a joint secret key over an insecure channel. This
key is then used with modern symmetric ciphers like AES [12]. The concept
of public key cryptography relies heavily on one way functions. We give an
informal definition:

Definition 1.1 Let A and B be two sets and f a map from A to B. f is a
one way function if one can “easily calculate” f(a) but for “essentially all”
elements b ∈ Im(f) it is “computationally infeasible” to find an a ∈ A such
that f(a) = b.

In a public key cryptosystem, each member A of the network has two keys:
a private key sA produced by himself, never leaving the private secure en-
vironment and a public key pA published in a directory. The public key pA

is related to sA by a (publicly known) one way function. In a protocol, A
uses both keys (and the public key of the partner B if necessary). One has
to ensure that the function to derive pA from sA is one way, and the pro-
tocols have to be designed in a manner that there is no usable leakage of
information about sA, sB from the publicly accessible values.

Today, messages are stored and transmitted as numbers. This makes it
possible to apply Arithmetic to construct candidates for one way functions,
to bring them in such a shape that computation is fast, and to analyze
possible attacks.

We shall concentrate on systems based on the Discrete Logarithm (DL). For
a general overview of applied cryptography including protocols see [41]

2 Abstract DL-Systems

To give mathematical sound definitions we first describe DL-systems in an
abstract setting. We give the minimal requirements needed for key exchange
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and signatures. For the remainder of this section we assume that A ⊂ N1

and that B ⊂ Endset(A), the set of endomorphism of A. Hence, for any
a ∈ A and any b ∈ B we have b(a) ∈ A.

2.1 Key Exchange

Assume that the elements of B commute: for all a ∈ A and b1, b2 ∈ B we
have

b1(b2(a)) = b2(b1(a)).

Then we can use A,B for a key exchange system in the following way:

We fix a (publicly known) base point P0 ∈ A. Each participant Si chooses an
si ∈ B and publishes pi := si(P0). Then si(pj) = sj(pi) is the shared secret
of Si and Sj.

The security depends (not only) on the complexity to find for any randomly
chosen a ∈ A and a1, a2 ∈ B ◦ {a} all elements b ∈ B with b(a) = a1 modulo
FixB(a2) = {b ∈ B : b(a2) = a2}.
The efficiency depends on the “size” of elements in A,B and on the complex-
ity of evaluating b ∈ B.

2.2 Signature Scheme of El Gamal-Type

In addition we assume that there are three more structures:

1. h : N → B, a cryptographic hash function 2

2. µ : A×A → C a map into a set C in which equality of elements can be
checked fast

3. ν : B × B → D ⊂ Homset(A, C)

with ν(b1, b2)(a) = µ(b1(a), b2(a)) for all a ∈ A, bi ∈ B.

1This is also important for practical application as one can represent a natural number
as a string of bits on a computer.

2We require h to be one way and collision resistant.
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Signature Let a base point P0 ∈ A be given (or introduced as part as
the public key). Like before, each participant Si has his private key si and
publishes his public key pi := si(P0).

To sign a message m, the signer Si chooses a random element k ∈ B and
computes φ := ν(h(m) ◦ si, h(k(P0)) ◦ k) ∈ D using the knowledge of his
private key si. Then he sends (φ,m, k(P0)) as the signature of the message
m.

Verification The verifier V looks up si(P0), computes

µ (h(m)(si(P0)), h(k(P0))(k(P0))) ,

and compares it to φ(P0).

The signature is valid if the results are equal.

2.3 The Most Popular Realization

In practice we often encounter the following situation: Let p be a prime and

consider an injective map (Z/p, +)
f→ N. Let A = Im(Z/p) be the image of

f . Then, A becomes a group with the composition ⊕ by the rule:

a1 ⊕ a2 := f(f−1(a1) + f−1(a2)).

Note that in general ⊕ does not coincide with the usual addition in N. For
an element P ∈ A we define

kP = P ⊕ P ⊕ · · · ⊕ P
︸ ︷︷ ︸

k times

.

We require ⊕ to be computable in A, i. e. without going back to Z/p. Then
A with the operation ⊕ is called a group with numeration.

We show how this matches with our previous definitions.
Choose f(0 + pZ) 6= P0 ∈ A. B = AutZ(A) ∼= (Z/p)∗ is identified with
{1, . . . , p − 1} via b(P ) := bP . We let C = A, µ = operation ⊕ in A, ν =
addition of endomorphisms, and h = a hash function from N to {1, . . . , p−1}.

4



Signature scheme We translate the abstract scheme to this situation: S
chooses randomly and secretly his private key s ∈ {1, ..., p−1} and publishes
his public key PS := sP0. This key pair is used for many messages.

To sign a message m, S chooses a random number k, which is only used for
this one message, and computes

r :≡ h(m)s + h(kP0)k mod p.

The signed message consists of (r,m, kP0).

To check the authenticity of the message one looks up S’s public key and
computes

R = rP0, T = h(m)PS, H = h(kP0)kP0.

and checks whether
R = T ⊕ H.

The security considerations for the crypto primitive boil down to estimating
the complexity of computing Discrete Logarithms:

The Discrete Logarithm Problem (DLP) is as follows: For a given cyclic group
with numeration A and for randomly chosen P,Q ∈ A compute k ∈ N with
Q = kP .

We need to construct groups with numerations of large prime order p, which
are secure and efficient. Note, that these aims can be contradictory. One
requires that the time or space needed (probabilistically) to compute discrete
logarithms is exponential in log(p). But time and space needed to write down
the elements and to execute a group composition must be polynomial in
log(p).

2.4 Generic Attacks

We have motivated that for some protocols it is useful to use the algebraic
structure “group”. However, every additional structure opens the door to
attacks. Assuming no special properties of A, i. e. dealing with a so-called
black-box group allows “generic” attacks. Shoup [56] proved that such a black-
box group has security at least

√

|A|. We present two algorithms having this
complexity.
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To solve the DLP on input Q = kP , both aim at retrieving an equal-
ity between multiples of P and Q. From m1Q = m2P one obtains k ≡
m2/m1 mod p. Since these algorithms are inevitable we say that a group is
suitable for cryptographic applications, if only these algorithms (or ones with
similar running-time) apply. As one is able to find such suitable instances,
one should avoid using groups with more powerful attacks unless they of-
fer special advantages like easier implementation or faster algorithms, but a
careful security analysis is needed.

Shanks’ Baby-Step-Giant-Step Method This method is a determinis-
tic algorithm to solve the DLP, first proposed by Shanks [55].

Baby step: For i = 0, ...,m ≤ √
p compute (i · P, i). These values are stored

in a list ordered by the first argument.

Giant step: For j = 0, ...,m ≤ √
p compute (Q 	 jm · P, j).

Then one compares the two lists looking for matching pairs. (In practice
only one list is stored and each result of the giant step is compared to this.)
If i · P = Q 	 jm · P then k = i + jm and we have solved the DLP. This
algorithm has complexity O(

√
p) but there is a disadvantage – it needs O(

√
p)

space.

Pollard’s ρ-Algorithm Pollard’s algorithm [48] is a probabilistic algo-
rithm in the sense that the output is always correct but the computations
involve random choices and thus the complexity analysis involves probability
assumptions.

The principle behind this algorithm is that for randomly drawn elements of G
the expected number of draws before an element is drawn twice is

√

πp/2 due
to the birthday paradox. To get information out of this we use a controlled
random walk, which we now present in the simplest version: The result xi of
the i-th step should depend only on xi−1. So partition the group “randomly”
into three sets Tj of size ≈ p/3 and take

xi = P ⊕ xi−1 if xi−1 ∈ T1,
xi = Q ⊕ xi−1 if xi−1 ∈ T2,
xi = 2xi−1 if xi−1 ∈ T3.
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There are efficient methods to detect collisions. Like Shank’ method this
algorithm has complexity O(

√
p) but requires far less memory.3

Security hierarchy To have a more precise statement on the complexity
of algorithms we measure it by the function

Lp(α, c) := exp(c(log p)α(log log p)1−α)

with 0 ≤ α ≤ 1 and c > 0.

The best case for a cryptosystem is α = 1 – then one has exponential com-
plexity, this means that the complexity of solving the DLP is exponential in
the binary length of the group size log p. The worst case is when α = 0 – then
the system only has polynomial complexity. For 0 < α < 1 the complexity is
called subexponential.

2.5 Very Special Examples

We now describe some groups and analyze their security. In all cases we take
numerations based on (Z/p, +) as cyclic group but the image space A of the
numeration and therefore the induced operation ⊕ differs.

Example 1 The numeration f : Z/p → {1, . . . , p} is given by f(r + pZ) :=
[r]p where [r]p is the smallest positive representative of the class of r modulo
p.

The function ⊕ is given by

r1 ⊕ r2 = [r1 + r2]p

which is easy to compute from the knowledge of ri.

Security?
We are given b with b = [na]p and have to solve

b = na + kp

with k ∈ Z. The Euclidean algorithm solves this in O(log(p)) operations in
Z/p, therefore, α = 0! We do not get a secure DL-system.

3Using such generic low storage methods the current “world record” w.r.t. Certicom
challenge was solved: Compute DL in an 109-bit elliptic curve over a prime field.

7



Example 2 Choose a prime q such that p divides q−1. Choose ζ 6= 1 in Z/q
with ζp = 1 (i.e. ζ is a primitive p-th root of unity). We represent elements
of Z/q by their smallest representative in {1, . . . , q}. The numeration is given
by f(i + pZ) := [ζ i]q. Denote the group of p-th roots of unity by µp.

For ai = f(xi + pZ) ∈ {1, . . . , q − 1} let

a1 ⊕ a2 = [ζx1+x2 ]q = [a1 · a2]q.

To set up such a system, one starts with a prime q and searches for large
prime divisors p|q − 1 since finding primes q such that q ≡ 1 mod p for a
given prime p is a hard task. This way it is very easy to find appropriate
parameters p and q. An obvious generalization is to work in extension fields
with q = ln0 , p|ln0 − 1 for l0 prime. To represent the finite field Fln

0
one fixes

an irreducible polynomial h(x) ∈ Fl0 [x] and uses the isomorphism Fln
0

∼=
Fl0 [x]/h(x) to get a numeration of Fq, and hence of 〈ζ〉 in N.

Security?
For fixed root of unity a ∈ µp and random b ∈ µp find k in N with b = [ak]q.
The best known methods to compute this discrete logarithm are subexponen-
tial [1, 11, 52]. We shall come back to this in Section 6.

Example 3 The most important examples for us are Elliptic Curves. An
elliptic curve E over a field K is a regular plane projective cubic with at least
one rational point. For simplicity we shall assume that char(K) is prime to
6. Then we find an equation

E : Y 2Z = X3 + AXZ2 + BZ3

with A,B ∈ K and 4A2 + 27B2 6= 0.

A very special property of elliptic curves is that their points form an abelian
group. We normalize the points by dividing through the Z-coordinate (X :
Y : Z) 7→ (x, y) := (X/Z, Y/Z). Thereby we loose the point (0 : 1 : 0),
which corresponds to the neutral element P∞. For an elliptic curve over R

the group law on these affine points can be visualized as follows:
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P

R

−(P ⊕ R)

P ⊕ R

This addition is easily transformed into formulas valid over any field. Given
P1 = (x1, y1), P2 = (x2, y2) 6= ±P1 on E their sum P3 = P1 ⊕ P2 is given by

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, where λ =
y1 − y2

x1 − x2

. (1)

For P1 = P2 we have the doubling formula

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, where λ =
3x3

1 − A

2y1

. (2)

Consider an elliptic curve over a finite field K := Fq. Using the numeration
of Fq we can numerate Fq × Fq, e. g. using the lexicographical ordering, and
therefore the points of E(Fq) \ {P∞}. Choose any number n∞ which is not
used for the numeration of E(Fq) \ {P∞} and use it as label for P∞. Let
P = (x, y) ∈ E(Fq) be a point of prime order p, and let g : E(Fq) → N

be the numeration. Then it is obvious that 〈P 〉 is a group with numeration
isomorphic to Z/p, the operation induced by ⊕ and f(r + pZ) = g(rP ).

Elliptic curves are called “good” for cryptographic applications if the group
order of the Fq-rational points is almost prime, i. e. equal to a prime times a
small co-factor. To find such curves is a hard problem. We have to solve the
following Diophantine problem:

Find a finite field Fq with q elements and an elliptic curve E such that the
group of Fq-points has (almost) prime order.

Security?
The state of the art is as follows: for “generic” elliptic curves over “generic”
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finite fields the complexity of the computation of discrete logarithms in the
group of rational points is exponential. But special elliptic curves are weak
(see Section 5).

2.6 Numeration by Algebraic Groups

We now generalize and systematisize the examples, namely, we consider nu-
merations by algebraic groups over finite fields Fq where q = ln0 is a power of
a prime l0.

Definition 2.1 (Algebraic Groups) An algebraic group G over a field K
is an algebraic reduced, non-singular, Noetherian scheme with an addition
law, i. e. there is a morphism (in the category of schemes)

m : G × G → G,

an inverse, i. e. a morphism

i : G → G,

and a neutral element, i. e. a morphism

e : Spec(K) → G,

satisfying the usual group laws:

m ◦ (idG × m) = m ◦ (m × idG) (associativity),

m ◦ (e × idG) = pr2

where pr2 is the projection of Spec(K) × G to G, and

m ◦ (i × idG) ◦ δ = je

where δ is the diagonal map from G to G × G and je is the map which sends
G to e(Spec(K)).
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Let L be an extension field of K. Let G(L) denote the set of L-rational points.
It is a group in which the sum and the inverse of elements are computed by
evaluating morphisms which are defined over K, which do not depend on L,
and in which the neutral element is the point 0 := e(Spec(K)) ∈ G(K).

Because of the Noether property of G it follows that it has only finitely many
connected components. For cryptographic purposes it is useful to restrict to
the case that G is connected. Furthermore, we require m to be commutative.
We now describe how to explicitly compute in algebraic groups.

By definition G can be covered by affine open subvarieties U given by coor-
dinate functions X1, . . . , Xl (l depending on U) which satisfy polynomial re-
lations {f1(X1, . . . , Xl), . . . , fk(X1, . . . , Xl)}. The L-rational points U(L) ⊂
G(L) are the elements (x1, . . . , xl) ∈ Ll, where the polynomials fi vanish
simultaneously. The morphism m induces a morphism

mU : U × U → G.

For generic points of U × U the image of mU is again contained in U . The
map can be described via rational functions Ri ∈ K(X1, . . . , Xl; Y1, . . . , Yl)
sending pairs of L-rational points (x1, . . . , xl) × (y1, . . . , yl) in U × U to

(R1(x1, . . . , xl; y1, . . . , yl), . . . , Rl(x1, . . . xl; y1, . . . , yl)).

This is a birational description of the addition law which is true outside
proper closed subvarieties of U × U . The set of points where this map is
not defined is of small dimension and, hence, with high probability one will
not run into it by chance. But it can happen that we use pairs of points on
purpose (e.g. lying on the diagonal in U × U) for which we need an extra
description of m.

Now let K and L be finite fields and use a numeration of L to get a nu-
meration of the L-rational points of the affine parts U of G. Then we get a
partial numeration of (G,m). In many cases this is enough for cryptographic
applications. For the performance of the cryptosystem the choice of (U,mU)
is crucial. To have short representations and fast to compute group opera-
tions we require small l and low degree of the relations fi as well as of the
Ri defining the group operation.

If we can take U = G then G is an affine group scheme. The other important
kind of group schemes are projective, i. e. they can be embedded into a
projective space Pn/K and are closed in it. They are called abelian varieties.
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Example 1 corresponds to the additive group Ga. The scheme is the affine
line with coordinate function X and no relations. One can identify Ga(L)
with L and R(X,Y ) := X + Y . Hence, Ga as group is isomorphic to the
additive group of L.

Example 2 corresponds to the multiplicative group Gm given by coordinate
functions X1, X2 with relation X1 · X2 = 1. The group law is given by

R1(x1, x2; y1, y2) = x1y1, R2(x1, x2; y1, y2) = x2y2.

Gm(L) can be identified with L∗.

Both are affine group schemes.

Example 3 is an abelian variety of dimension 1. Choose U = E \ {P∞} with
coordinate functions X,Y and relation Y 2 − X3 −AX −B. The addition
formulae given above are a birational description for points (x1, y1), (x2, y2)
with x1 6= x2. On the diagonal in U ×U we need a special addition law given
by the doubling formula (2).

2.7 Manageable Algebraic Groups

Having this abstract background in mind we now look for instances that
can actually be applied. The first task to solve is to describe (birationally)
algebraic groups and the addition laws in a time and space efficient way.

Since we have assumed that G is connected and commutative we can use
a classification theorem which yields that G is an extension of an abelian
variety by an affine group scheme. So, for cryptographic purposes we can
assume that G is either affine or an abelian variety.

Affine group schemes have composite factors which (after finite ground field
extensions) are isomorphic to copies of Ga and Gm. Since Ga leads to totally
insecure systems (see Example 1) we can assume that only copies of Gm occur.
Hence, G is a torus. In some cases (see Section 3.4) we find an efficient way
to present higher dimensional tori and the addition law on it.

In the center of our interest are abelian varieties. In general it seems to be
hopeless to present affine parts and the addition law on them:
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Results of Mumford and Lange-Ruppert show that the number of coordinate
functions and the degree of the addition formulas both grow exponentially
with the dimension of the abelian variety. Therefore, we have to use special
abelian varieties.

The first specialization is to take A as Jacobian variety JC of a curve C or
a closely related object. The elliptic curve in Example 3 was a first instance
of this strategy. The next section takes a different approach, starting from
ideal class groups of orders, and establishes a relation to Jacobians of curves.
The (combined) treatment is continued there.

3 DL-systems and Orders

3.1 Ideal Class Groups of Orders

Let O be a commutative ring with unit 1 without zero divisors. Two ideals 4

A,B of O different from 0 can be multiplied:

A · B = {Σaibi : ai ∈ A, bi ∈ B}.
Clearly · is associative. To be able to compute Ak efficiently we need some
minimal assumptions. We require O to be Noetherian, i. e. every A is a
finitely generated O-module. A generating system of the product of two
ideals should be computable in finitely many steps from generators of the
factors. (Note that in general these systems tend to become longer and
longer. . . ) Furthermore, O should be a finitely generated algebra over an
Euclidean ring B. Then ideals A have a basis over B, and by linear algebra
over B one can compute a basis of a product of ideals. But there are infinitely
many possible choices of bases. Thus we require that there is a canonical
basis for each ideal and B has a numeration. Then one can numerate ideals
in O. But to come to a structure usable for DL-systems we have to go one
step further and consider isomorphism classes of projective rank-1-modules
Pic(O) and factor- or subgroups, respectively.

Definition 3.1 Let A1, A2 be two O-modules in the quotient Quot(O) of
O. We define an equivalence relation by A1 ∼ A2 if there is an element
f ∈ Quot(O)∗ with A1 = f · A2.

4A ⊂ O is an ideal of O if it is an O-module
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Let A be an ideal of O. A is invertible iff there is an ideal Ã of O such that
A · Ã ∼ O.

Pic(O) is the set of equivalence classes of invertible ideals of O. It is an
abelian group, where the group operation ⊕ is inherited from the multiplica-
tion of ideals.

To apply systems based on Pic(O) there has to be a very fast algorithm
to find distinguished elements in ideal classes. This is possible if we have
“reduction algorithms”, or we can use the geometric background of Pic(O)
which leads to group schemes and abelian varieties (cf. Section 2.6). The
most interesting cases are those for which both methods can be used!

We want to embed Z/p into Pic(O) in a bit-efficient way. To this end we
need a fast method for the computation of the order of Pic(O) to know which
values of p can be used and (at least) a heuristic that with reasonably high
probability this order is almost a prime, hence, p is large.

Above all, we need to exclude attacks.

3.2 ”Generic attack”: Index Calculus

There is a kind of generic attack for DL-systems based on Pic(O). It uses
the structure introduced by this special choice. We stress that this approach
need not be successful in reducing the complexity of the problem. So, there
are instances of the DLP based on Pic(O) for which the best known attacks
are the generic attacks described in Section 2.4, and it will be an important
task to discuss this carefully.

By the choice of Pic(O) we have introduced additional structure. We have
distinguished ideals in O, namely the prime ideals, and we have the arithmetic
structure of B. Since we have to be able to define reduced elements (i. e.
ideals) in classes, we have in all known cases a notion of “size” which behaves
reasonable with respect to addition. Such a setting is always susceptible to
Index-Calculus.

The abstract principle behind this attack is that we find a “factor base” B
consisting of relatively few elements and compute in the group as a Z-module
given by the free abelian group generated by the elements of the factor base
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modulo relations. One needs to prove that with reasonable high probability
every element can be written (fast and explicitly) as a sum of elements in
the factor base. Such elements are called smooth with respect to B.

The important task in this method is to balance the number of elements
in the factor base to make the linear algebra over Z manageable and to
“guarantee” smoothness of enough elements with respect to this base.

The expected complexity of this attack is subexponential, i. e. estimated by

LN(α, c) := exp(c(log N)α(log log N)1−α)

with 0 < α < 1 and c > 0 for a number N closely related to |Pic(O)|, but
it is only practical under the assumption that one can actually balance the
size of B and find a means to express elements over this factor base.

Existing Systems All DL-Systems used today fit into the following two
classes:

• B = Z, and O is an order or a localization of an order in a number field

• B = Fl0 [X], and O is the ring of holomorphic functions of a curve
defined over a finite extension field of Fl0 .

3.3 The Number Field Case

Orders O in number fields were proposed very early in the history of public
key cryptography by Buchmann and Williams [9]. We restrict ourselves to
maximal orders (i. e. the integral closure) OK of Z in number fields K.

OK is a Dedekind domain, its class group Pic(OK) is finite. The size of ideals
is given by their norm. The Theorem of Minkowski states that in every ideal
class there are ideals of “small” norm. How small the (logarithmic) norm is
depends on

gK := log(2−r1−r2π−r2w
√

|∆K |),
where ∆K is the discriminant of OK/Z, r1 is the number of real embeddings
of K, r2 is the number of complex embeddings of K, and w is the number of
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roots of unity contained in K (see [68], p.238). Due to the analogy with the
geometric case (see below), gK is referred to as the genus of K.

The background is the “Geometry of numbers” (Minkowski). By lattice
techniques it is possible to compute an ideal of small norm in each class, and
for such an ideal one finds a “small” basis.

The most difficult part is to compute the order of Pic(OK). One uses ana-
lytic methods (L-series) in connection with most powerful tools from com-
putational number theory.

Remark 3.2 There is a (probabilistic) estimate. The order of Pic(OK) be-
haves (in an erratic way) exponentially in gK.

This system suffers from the disadvantages that for given g there are not
many fields with gK = g and that to have a large group Pic(OK) the genus
of K has to be large. The parameter gK can be split into two components:
the degree n := [K : Q] of the extension field and the ramification locus of
K/Q. If n is large the arithmetic in OK is complicated (it is hard to deal
with fundamental units, the lattice dimension grows, . . . ), therefore large gK

should be obtained by large ramification.

Theory of Gauß The most practical example of Pic(OK) is when K is an
imaginary quadratic field of discriminant −D. Then K = Q(

√
−D). The

expected size of Pic(O) is ≈
√

D.

To perform the arithmetic in Pic(OK) one uses a result due to Gauß , namely
that Pic(OK) corresponds to classes of binary quadratic forms with dis-
criminant D. Hence, multiplication of ideals corresponds to composition
of quadratic forms. Reduction of ideals corresponds to the (unique) reduc-
tion of quadratic forms: In each class we find (using Euclid‘s algorithm) a
uniquely determined reduced quadratic form

aX2 + 2bXY + cY 2

ac − b2 = D, −a/2 < b ≤ a/2, a ≤ c and 0 ≤ b ≤ a/2 if a = c.
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Remark 3.3 These systems bear a big disadvantage: The index-calculus-
attack works very efficiently! Assuming the generalized Riemann hypothesis,
the complexity to compute the DL in Pic(OK) is

O(LD(1/2,
√

2 + o(1))).

This is no worse than the complexity of solving the DLP in finite fields but
for the additional structure there was almost no gain in return.

3.4 The Geometric Case

Now let B = Fp[X], and O is the ring of holomorphic functions of a curve
CO defined over a finite extension field Fq of Fp. Intrinsically behind this
situation is a regular projective absolutely irreducible curve C defined over
Fq whose field of meromorphic functions F (C) is given by Quot(O). Here, C
is the desingularisation of the projective closure of the curve CO. This relates
Pic(O) closely to the points of the Jacobian variety JC of C and explains the
role of abelian varieties in cryptosystems used today.

Curves with singularities We assume that O is not integrally closed
and hence CO is a singular curve. The generalized Jacobian variety of the
projective closure of CO is an extension of JC by linear groups. Examples
of groups based on singular curves (or which can also be obtained this way
although they were introduced in a different context) contain the following:

1. Pic(Fq[X,Y ]/(Y 2 − X3)) corresponds to the additive group Ga of Fq.

2. Pic(Fq[X,Y ]/(Y 2 + XY − X3)) corresponds to Gm, the multiplicative
group.

3. For a non-square d, Pic(Fq[X,Y ]/(Y 2 + dXY − X3)) corresponds to a
non split one-dimensional torus.

4. More generally, we apply scalar restriction to Gm/Fqk and get tori of
higher dimension. An example of this construction, which is actually
used in practice, is XTR [38]. It uses an irreducible two-dimensional
piece of the scalar restriction of Gm/Fq6 to Fq. Although there is an
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algebraic group (torus) in the background, the system XTR seems not
to use it: it uses traces of elements instead of elements in the multi-
plicative group of extension fields and even the variant [63] working in
Fq6 does not use the geometric background. A further example of this
family is LUC [60].

To understand what is going on in 4., Silverberg and Rubin [58] analyze ratio-
nal parametrizations of (non-)split tori. They are able to explain systems like
LUC and related ones and present a new system called CEILIDH. In addition
they come to interesting questions (conjectures) about tori (Vroskresenskii).
They also show limits of the method, i. e. they analyze for which degrees k a
field extension Fqk allows to work efficiently in a subgroup defined via norm
conditions.

Security?
We can get tori by two different methods: by scalar restriction and as gen-
eralized Jacobian of curves of geometric genus 0 and arithmetic genus larger
than 0. This raises the question, whether this structure can be used (as in
the case of non singular curves, see below) for attacks.

Curves without singularities Assume that C is a projective curve over
Fq without singularities. Let the corresponding curve CO be an affine part of
C with ring of holomorphic functions O which is integrally closed in F (C) :=
Quot(O). The inclusion Fq[X] → O corresponds to a morphism CO → A1

which extends to a map π : C → P1, where A1 is the affine line and P1 =
A1 ∪ {∞} is the projective line. For simplicity of our presentation we shall
assume that there is at least one Fq-rational point P∞ in π−1(∞).

The Fq-rational divisors of C are formal sums of points (over Fq) of C which
are invariant under GFq

:= Aut(Fq/Fq). The degree of a divisor D is the sum
of the multiplicities of the points occurring in it and is denoted by deg(D). A
divisor is effective if all multiplicities are non negative. We define the divisor
class group by the following rule: two divisors are in the same class iff their
difference consists of the zeroes and poles (with multiplicity) of a function
f ∈ F (C), i. e. they differ only by the principal divisor (f) attached to f .
The Fq-rational points of the Jacobian variety of C, JC(Fq), correspond to
the Fq-rational divisor classes of degree 0 of C.
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JC is an abelian variety. The following result makes it possible to describe
it (with addition law) by objects like points and functions of C. The reason
behind is the Theorem of Riemann-Roch (see e. g. [64]) which rules the
arithmetic of curves and their function fields.

One consequence of this theorem is:

Lemma 3.4 Let D =
∑

niPi be a Fq-rational divisor of C of degree ≥ g.
Then there is a function f ∈ F (C) which has poles of order at most ni (hence
zeroes of order at least −ni if ni < 0) in the points Pi and no poles elsewhere.
In other words: the divisor D + (f) is effective.

This yields

Lemma 3.5 In every Fq-rational divisor class of degree 0 of C there exists

a divisor D − g · P∞ with D =
∑k

i=1 niPi with ni ∈ N and
∑

ni = g.

Proof. Take a divisor class c of degree 0 and any divisor D′ ∈ c. We can split
D′ = D1 − D2 as difference of two effective Fq-rational divisors. In the first
step we choose l large enough such that l − deg(D2) > g and by Lemma 3.4
a function f1 such that −D2 + (f1) + l · P∞ is effective.

By replacing D′ by D′ + (f1) we can assume that D′ = D − k · P∞ with
D effective and k = deg(D). If k > g (otherwise we are done) we apply
Lemma 3.4 to the divisor D − (k − g) · P∞ and find a function f such that
D−(k−g)·P∞+(f) := D0 is effective and therefore D+(f)−k·P∞ = D0−gP∞

is an element of c of the required form. �

In geometric language this is the

Theorem 3.6 The Jacobian JC of C is birationally isomorphic to

(C × · · · × C)/Sg, (3)

where g is the genus of C and Sg is the symmetric group in g letters.

A surjective map ϕ from (C × · · · × C)/Sg(Fq) to JC(Fq) is given by the

following rule: Take natural numbers n1, . . . , nk with
∑k

i=1 ni = g and points

Pi ∈ C(Fq) such that the divisor D :=
∑k

i=1 niPi is Fq-rational. Then ϕ(D)
is the divisor class of D − g · P∞.

By Lemma 3.5 ϕ is surjective.
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To describe a relation between points on JC and elements of Pic(O), we first
relate ideals of O to divisors. We shall use that O is a Dedekind ring. This
implies that every ideal 6= (0) is a product of powers of maximal ideals M in
a unique way and that to every maximal ideal M there corresponds a unique
normed discrete valuation vM such that M is the intersection of the valuation
ideal with O. Moreover O is the intersection of all valuation rings related to
maximal ideals and every discrete valuation of F is either equivalent to vM

for some M or to an extension of the infinite valuation on A1 to C.

Let B ⊂ F (C) be a projective O-module of rank 1. For a maximal ideal
M < O define vM(B) := max{k ∈ Z : B ⊂ M k}. Then

B =
∏

M maximal in O

M vM (B)

and B < O iff all vM(B) ≥ 0. The classes of two O-ideals B1 and B2 are
equal iff there is a function f ∈ F (C) with vM(B1) = vM(B2) + vM((f)) for
all maximal ideals M of O.

For a point P ∈ CO(Fq) define MP := {f ∈ O : f(P ) = 0}. This is a
maximal ideal in O. It is easy to see that MP = MP ′ iff P is conjugate
to P ′ under the action of GFq

. So it makes sense to relate the Galois orbit
DP := GFq

·P to MP . The degree of DP is equal to the degree of MP defined
as dimFq

(O/MP ).

Conversely a maximal ideal M < O defines a homomorphism from O to a
finite extension field kM := O/M of Fq. Let σ be an embedding of kM into Fq.
Then the image under σ of the coordinate functions defining CO corresponds
to a point on CO(Fq), and so M corresponds to a Galois orbit of points in
CO(Fq). Since O is integrally closed this correspondence is one-to-one.

In general, there is a one-to-one correspondence between proper ideals A < O
and effective Fq-rational divisors D of C in which only points of CO occur. If
A corresponds to D then deg(D) = logq(|O/A|) =: deg(A). Now we apply
the Theorem of Riemann-Roch to ideal classes of O to get

Lemma 3.7 Let c be an element of Pic(O). Then c contains an ideal A < O
with deg(A) ≤ g.

Proof. Let A′ ∈ c be an O-ideal and assume that deg(A′) > g. Take the
effective divisor DA′ associated to A′ and a function f such that D′ :=
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(f) + DA′ − (deg(A′) − g)P∞ is effective of degree g. Let D′′ be the di-
visor obtained from D′ by removing points in π−1(∞) and let A be the ideal
obtained from D′′. Then A ∈ c and deg(A) ≤ g. �

We are now ready to define a homomorphism from JC to the ideal class group
Pic(O).

Result 3.8 Define φ : JC(Fq) → Pic(O) by the following rule: in the divisor
class c take a representative D′ of the form D′ = D − g P∞, D effective.
Remove from D all points in π−1(∞) and define A as ideal in O like above.
Then φ(c) is the class of A in Pic(O). By Lemma 3.7 φ is surjective.

For applications one is usually interested in the case that the kernel of φ is
trivial. Then we can use the interpretation via ideal classes for computations
and via the abelian varieties for the structural background.

The result sums up the steps we have performed so far: Starting from the non
singular curve C we derived the ring of holomorphic differentials O of CO.
In an affine part of the Jacobian JC , the group operation can be performed
via ideal multiplication (using the map φ) whereas the reduction procedure
is based on the effective version of the Riemann-Roch Theorem as described
in the proof of Lemma 3.5 (this replaces Minkowski’s theorem in the number
field case). Both steps can be performed algorithmically or be (symbolically)
translated to formulae. From the formulae it might be possible to derive the
birational description of the group operation on JC .

The computation of the order of Pic(O) and the construction of suitable
curves is done by using properties of abelian varieties or Jacobians of curves,
respectively.

Example Assume that there is a cover

ϕ : C → P1; deg ϕ = d,

in which one point (P∞) is totally ramified and induces the place (X = ∞)
in the function field Fq(X) of P1. Let O be the normal closure of Fq[X] in
the function field of C. Then φ is an isomorphism.
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Examples of curves having such covers are all curves with a rational Weier-
straß point, especially Cab-curves and most prominently hyperelliptic curves
including elliptic curves as well as superelliptic curves.

Compared with the number theory case we have won a lot of freedom. The
parameters are:

1. l0 = characteristic of the base field,

2. n = degree of the ground field over Fl0 ,

3. gC = g = the genus of the curve C (resp. of the function field Quot(O)).

There are about l3gn
0 curves of genus g over Fln

0
and we can vary all three

parameters independently.

Theorem 3.9 (Structural relation: Hasse-Weil) The size of the Jaco-
bian is related to the parameters as

|JC(Fln
0
) | ∼ lng

0 .

For cryptographic applications this implies a key length (i. e. number of bits
needed to represent a key) of O(ng log(l0)) with small constants.

4 Hyperelliptic Curves

In this section we want to apply the previous results to hyperelliptic curves,
elliptic curves (g = 1) are included. So far these are the most prominent
non-singular curves used in practice and so for the convenience of the reader
we shall go a bit into details.

Definition 4.1 (Hyperelliptic Curve)
Assume that C is a projective irreducible non singular curve of genus g ≥ 1
with a generically étale morphism π of degree 2 to P1. Then C is a hyperel-
liptic curve.
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In terms of function fields this means, the function field F (C) of C is a sepa-
rable extension of degree 2 of the rational function field Fq(X). Let ω denote
the non trivial automorphism of this extension. It induces an involution ω on
C with quotient P1. The fixed points P1, . . . , P2g+2 of ω are called Weierstraß
points. They are the points in which π is ramified.

Assume that we have a Fq-rational Weierstraß point P∞ = P2g+2. We choose
∞ on P1 as π(P∞). Then the ring of holomorphic functions O on C \ P∞ is
equal to the integral closure of Fq[X] in F (C):

O = Fq[X,Y ]/fC(X,Y )

where fC(X,Y ) = Y 2 + h(X)Y − f(X) and h, f are polynomials in X with
deg(h) ≤ g and deg(f) = 2g + 1.

Theorem 4.2 With the notations and the assumptions mentioned above we
have

1. JC(Fq) is isomorphic to Pic(O) under the isomorphism φ defined in
Result 3.8.

2. In every ideal class c of O there is exactly one ideal A < O of degree
t ≤ g with the property: The only prime ideals which could divide both
A and ω(A) are those resulting from Weierstraß points.

3. Let A be as above. Then A = Fq[X]u(X) + Fq[X](v(X) − Y ) with
u(X), v(X) ∈ Fq[X], u monic of degree t, deg(v) < t, and u divides
v2 + h(X)v − f(X).

4. u(X) and v(X) are uniquely determined by A and hence by c. So [u, v]
can be used as coordinates for c.

Proof. 1. follows immediately from Result 3.8, and moreover we get that
every Fq-rational point on JC can be represented by an ideal A < O of degree
≤ g.

Since for every ideal B we get that B ·ω(B) is a principal ideal we can reduce
A repeatedly until the condition in 2. is satisfied without changing its class.
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After this process we call A reduced.
Now assume that deg(A) ≤ g, deg B ≤ g, with A,B reduced and that
A ∼ B. Then A · ω(B) is a principal ideal in O and so it is equal to (b) with
b ∈ F (C) having only one pole of order ≤ 2g in P∞. By Riemann-Roch all
such functions lie in an Fq-vector space of dimension g + 1, and a basis of
this space is given by {1, X,X2, . . . , Xg}. So b ∈ Fq[X] and A · ω(B) is the
conorm of an ideal in Fq[X]. Since A and B are reduced this means that
A = B and 2. is proved.

3. Let A ∈ O be an ideal of degree t. Recall that {1, Y } is a basis of
O as Fq[X]-module. We choose any basis {w1 = f1(X) + f2(X)Y, w2 =
g1(X) + g2(X)Y } of A as Fq[X]-module. We find relative prime polynomials
h1, h2 with f2h1 − g2h2 = 0 and choose u1, u2 ∈ Fq[X] with u1h1 − u2h2 =
1. Now take w′

1 := h1w1 + h2w2 =: u′(X), w′
2 = u2w1 + u1w2. Since the

determinant of this transformation is 1 the pair {u(X), w′
2 = v1(X)+v2(X)Y }

is again a basis of A. Since the rank of A is 2, v2(X) is not equal to 0.
So A

⋂
Fq[X] is generated by u′. Since A is reduced the degree of A is

equal to the degree of u′ and we can and will take u monic. Now write
v1 = au + v with deg v < t. By replacing w′

2 by w2 − a v we get a basis
{u(X), v(X) + v2(X)Y } of A. Since the degree of A is equal to u(X)v2(X)
we get: v2(X) is constant, and so we can assume v2(X) = −1. The element
(v +Y )(v−Y ) = v2 +h(X)Y − f(X) = (v2 +h(X)v− f(X))−h(X)(Y − v)
lies in A and so the last claim of 3. follows.

4. From the proof of 3. we have that u(X) is determined by A as monic
generator of A

⋂
Fq[X]. Now assume that v′−Y ∈ A with deg(v′) < t. Then

v′ − v ∈ A
⋂

Fq[X] and hence v′ − v = 0.

Remark 4.3 We are in a very similar situation as in the case of class groups
of imaginary quadratic fields. In fact, Artin has generalized Gauß’s theory
of ideal classes of imaginary quadratic number fields to hyperelliptic func-
tion fields connecting ideal classes of O with reduced quadratic forms of dis-
criminant D(fC) and the addition ⊕ with the composition of such forms.
Theorem 4.2 and its proof can easily be translated into this language.

The description of JC(Fq) resp. Pic(O) by the “coordinates” [u, v] is the
basis for Cantor’s algorithm [10, 32] which can be written down “formally”
and then leads to addition formulas or can be implemented as algorithm. It
works as follows:

24



Let Ai (i = 1, 2) be given by the bases {wi
1, w

i
2} = {ui(X), vi(X) − Y } as

above. Then A1 ·A2 has a basis {u′
3(X), v′

3(X)+w′
3(X)Y } which is computed

by Hermite reduction from the generating system {w1
j · w2

k; 1 ≤ j, k ≤ 2}.
The next step is to find a reduced ideal of degree ≤ g in the class of A1 · A2

and for this the Gauß algorithm can be used in a completely analogous way.

Example To give a flavor and, at the same time, an example, we present
explicit formulas by Lange [35] for addition of ideal classes for a genus 2
curve.

Let the affine curve CO be defined over Fq, given by

CO : y2 + h(x)y − f(x), deg f = 5, deg h ≤ 2.

First look at the (real) picture:

P1

P2

Q1

Q2

ω(R1)

ω(R2)

R1

R2

(P1 + P2 − 2P∞) ⊕ (Q1 + Q2 − 2P∞) = R1 + R2 − 2P∞

Each point on JC(Fq) can be represented as [u, v]. The formulae use only
the coefficients of u and v, the case given below is the most common one.
The paper [35] contains a study of different coordinate systems for scalar
multiplication on genus 2 curves.
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Addition, deg u1 = deg u2 = 2
Input [u1, v1], [u2, v2], ui = x2 + ui1x + ui0, vi = vi1x + vi0

Output [u′, v′] = [u1, v1] ⊕ [u2, v2]

Step Expression Operations
1 compute resultant r of u1, u2: 1S, 3M

z1 = u11 − u21, z2 = u20 − u10, z3 = u11z1 + z2;
r = z2z3 + z2

1
u10;

2 compute almost inverse of u2 modulo u1 (inv = r/u2 mod u1):

inv1 = z1, inv0 = z3;
3 compute s′ = rs ≡ (v1 − v2)inv mod u1 (special case if s′

1
= 0): 5M

w0 = v10 − v20, w1 = v11 − v21, w2 = inv0w0, w3 = inv1w1;
s′
1

= (inv0 + inv1)(w0 + w1) − w2 − w3(1 + u11), s′
0

= w2 − u10w3;
4 compute s′′ = x + s0/s1 = x + s′

0
/s′

1
and s1: I, 2S, 5M

w1 = (rs′
1
)−1(= 1/r2s1), w2 = rw1(= 1/s′

1
), w3 = s′

2

1
w1(= s1);

w4 = rw2(= 1/s1), w5 = w2

4
, s′′

0
= s′

0
w2;

5 compute l′ = s′′u2 = x3 + l′
2
x2 + l′

1
x + l′

0
: 2M

l′
2

= u21 + s′′
0
, l′

1
= u21s

′′

0
+ u20, l′

0
= u20s

′′

0

6 compute u′ = (s(l + h + 2v2) − k)/u1 = x2 + u′

1
x + u′

0
: 3M

u′

0
= (s′′

0
− u11)(s

′′

0
− z1 + h2w4) − u10 + l′

1
+ (h1 + 2v21)w4 + (2u21 + z1 − f4)w5;

u′

1
= 2s′′

0
− z1 + h2w4 − w5;

7 compute v′ ≡ −h − (l + v2) mod u′ = v′

1
x + v′

0
: 4M

w1 = l′
2
− u′

1
, w2 = u′

1
w1 + u′

0
− l′

1
, v′

1
= w2w3 − v21 − h1 + h2u

′

1
;

w2 = u′

0
w1 − l′

0
, v′

0
= w2w3 − v20 − h0 + h2u

′

0
;

total I, 3S, 22M

On first view these formulae look much more involved than those for elliptic
curves (1). However, due to Theorem 3.9 the field elements involved are of
half size only. Therefore, the speed of scalar multiplication on elliptic and
genus 2 curves is similar and the decision which system (or even more subtle,
which kind of coordinates) to take will depend on the used computing device.

There are explicit formulae available for genus 3 hyperelliptic curves [47].
The same considerations hold.

An Outlook: Non hyperelliptic curves of genus 3 One can also base
DL-systems on Picard curves or more generally on plane curves of genus 3
given by an equation

Y 3 + f1(X)Y = f(X)

with deg(f) = 4. For these curves there is an efficient arithmetic available,
too (cf. e. g. Flon-Oyono [20]) for which some further techniques [5] can be
applied.
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4.1 Index-Calculus

As in the analogous situation in number theory there exists a subexponential
“attack” based on the index-calculus principle. But there is one essential
difference. Recall: in the number field case the subexponential function
was a function in |D | and therefore depending on the order of the class
group. Due to Weil, the analog would be a dependency in qg. But in the
known index-calculus algorithms one cannot look at q and g as independent
variables. E. g. if g = 1 is fixed then we do not get a subexponential attack
for any q → ∞! This is the reason for writing “attack” above.

Gaudry, Enge, and Stein [17, 18, 19] analyzed the complexity of the basic
index-calculus algorithm.

Theorem 4.4 For g/ log(q) > t the discrete logarithm in the divisor class
group of a hyperelliptic curve of genus g defined over Fq can be computed
with complexity bounded by

Lqg

(

1

2
,

5√
6

((

1 +
3

2t

)1/2

+

(
3

2t

)1/2
))

.

For large genera this is a strong result. For practical use, i. e. moderately
small genera, the results of Gaudry [25] and more recently of Thériault [66]
are more serious. For hyperelliptic curves of relatively small genus (in prac-
tice: g ≤ 9) there is an index-calculus attack of complexity

O(g5q2− 2

g+1
+ε)

with “reasonable small” constants and even for g = 3 and 4 the security is
reduced.

The main additional ingredient to the generic index-calculus attack described
above is to further reduce the size of the factor base. One uses only prime
divisors of small degree (e. g. 1) as factor base and Thériault even proposes
to only take a subset thereof.

Remark 4.5 We can summarize the results:

27



• Orders related to curves of genus ≥ 4 or closely related abelian varieties
should be avoided!

• State of the art: We have only three types of rings O which avoid serious
index-calculus attacks and for which Pic(O) in manageable. These are
the maximal orders belonging to curves of genus 1,2,3. Even for g = 3
one needs to take into account the group size to compare the complexities
of the generic attacks and Thériault’s large prime variant of the index
calculus attack.

5 Galois Operation

Till now we used results from algebraic geometry applied to curves over finite
fields but we only mildly made use of the additional structure induced by the
Galois operation of GFq

, q = ln0 on geometric objects attached to curves. In
this section we shall explain how this can be used in a constructive way but
also investigate its application to attacks.

We shall investigate linear structures induced by the action of the Frobenius
automorphism Πq ∈ GFq

on vector spaces attached to curves resp. semi linear
structures induced by the Frobenius automorphism Π of the prime field of
Fq as well as bilinear structures given by duality of algebraic groups.

5.1 Point Counting

Examples for representation spaces of Πq are spaces of holomorphic differen-
tials or more generally of differentials with prescribed poles and cohomology
groups.

De Rham cohomology, étale cohomology and crystalline cohomology are es-
pecially interesting.

There are most important theorems (Hasse, Deligne-Weil, Lefschetz) saying:
Let Πq operate on the first étale resp. crystalline cohomology groups attached
to a projective non singular curve C of genus g. Then its characteristic
polynomial is independent of the choice of the cohomology and is a monic
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polynomial of degree 2g with coefficients in Z. Its zeroes are algebraic integers
with absolute value q1/2. It is called the L-series LC(s) of C resp. JC .

By elementary linear algebra one sees:

|LC(1)| = |JC(Fq)|

and so the computation of the L-series of C solves the problem to determine
the divisor class number of C.

A first method to do this computation is to use the concrete realization of the
étale cohomology as Tate module of JC for primes l different from p. By defi-
nition Tate-modules Tl(JC) are modulo l isomorphic to the l−torsion points,
and on this fact the strategy of Schoof’s algorithm [53] relies: compute the
Frobenius action modulo small primes (and their powers if possible) and then
use the Chinese remainder theorem to determine the L-series. This algorithm
is polynomial (in n log l0). Nevertheless it is not working fast enough even
for elliptic curves without further tricks (see [54] for an overview). In the
moment we can use it only to count the points on randomly chosen elliptic
curves in cryptographic relevant regions. By rather sophisticated implemen-
tations Gaudry and Schost can determine divisor class numbers of random
curves of genus 2 [27] in ranges of cryptographic interest. According to their
timings it takes ∼ one week on a single computer to do this, and so it is still
far less efficient than point counting on elliptic curves.

A way out is the choice either of special curves or of special fields.

5.1.1 Reduction of global curves

Though one is interested in curves over finite fields one starts with a curve
over a number field K with the special property that its Jacobian has complex
multiplication. Then explicit class field theory (theory of Shimura-Taniyama
of CM fields) is available. This allows to compute the minimal polynomials
of the curve invariants. Again by class field theory one can rapidly compute
the trace of the Frobenius acting on the reduction of the curve modulo places
of K. Hence, the order of the group of rational points on the Jacobian of C
after reduction is known even before writing down the equation of the curve.
Finally, when one has found a place of K leading to a good group order, one
computes the equation of the curve modulo the prime from the invariants,
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e. g. by using a method of Mestre [43]. Initially this method was proposed by
Atkin and brought to applications together with Morain [2, 3] to find curves
of smooth group order to factor integers. For cryptographic applications,
where the aim is to construct curves with large prime group order the CM
method was detailed by Spallek [62] for elliptic curves; for larger genera see
Weng [69].

It is obvious that the degree of K must not be too large and so the method
described will lead to curves over fields with small degree over their prime
fields and hence to large characteristics.

Another complication is that for genus-3-curves we shall not get hyperelliptic
curves if we choose the CM-field without special properties and so we have
even more special choices to make. An open question is whether the special
properties of the constructed curves can be used for serious attacks. Till now
no such attack is known.5

5.1.2 Fields with small characteristic

We come back to random curves but over special fields Fq with q = pn and
p very small (typically equal to 2). During the last years a very interesting
series of papers appeared which all use certain parts of p-adic information ob-
tained by rigid p-adic analysis and transform it into efficient algorithms. For
instance instead of Tate modules one uses the Dieudonné module of JC as re-
alization of the crystalline cohomology or one goes to affine parts of the curves
for which it is possible to compute the action of Π on de Rahm cohomology
groups of completions of coordinate rings using “classical” work of Monsky-
Washnitzer and of Dwork. This approach was proposed by Satoh [51] and
generalized or refined by Satoh, Skjerna, Taguchi, Gaudry, Harley, Fouquet,
Mestre, Ritzenthaler, Kedlaya, Vercauteren, Lauder, Wan, Gerkmann,. . . (see
[21, 44, 49, 31, 67, 37, 28]).

Now we specialize the curves we use, too. We assume that the curve is defined
over a field Fq0

which is small enough to use generic methods to determine the

5Another special class of global curves are those with real multiplication. We get an
interesting link to modular forms and Hecke operators but till now the complexity of the
algorithms involved does not allow to come to cryptographically relevant regions.
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L-series. It is then easy to compute the group order over extension fields. To
reach a suitable group size one makes a constant field extension. The main
advantage of this construction is a speed-up of the scalar multiplication by
using the Frobenius endomorphism (see [4, 33, 45, 59, 61] for elliptic and [34]
for general curves). 6

5.2 Scalar Restriction

In 5.1.2 we have used the extra structure that the absolute Frobenius endo-
morphism Π is acting on objects attached to the curve. Can we use this for
attacks?

One method to exploit it is the scalar restriction. It can be applied to transfer
discrete logarithms in the rational points of abelian varieties over extension
fields to discrete logarithms in the rational points of abelian varieties of larger
dimension but defined over a smaller field, and this problem could be easier.
For instance one could end up with a Jacobians of a curve of “moderate”
genus over the small field for which the index-calculus method works.

It seems to be clear that this approach does not work for random curves over
random fields or for extensions of large prime degree (which is not a Mersenne
prime). There are also some fields over which all curves are weak [42].

We now describe the main principles behind scalar restriction. There are
basically two variants.

Variant 1: Let L be a finite Galois extension of the field K. Assume that
C is a curve defined over L, D a curve defined over K and

ϕ : D × L → C

a non constant morphism defined over L.

Then we have a correspondence map

φ : Pic0(C) → Pic0(D), φ := NL/K ◦ ϕ∗.

6If q0 is very small we have a direct generalization of a suggestion of Koblitz. The idea
can also be applied to small degrees (n = 3, 5) of extension and leads to secure instances
if one avoids special choices of curves [6, 14, 36].
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If ker(φ) is small then the (cryptographically relevant) part of Pic0(C) is
mapped injectively into Pic0(D) and we have a transfer of the DLP in Pic0(C)
into a (possibly easier) DLP in Pic0(D).

It seems that this variant works surprisingly well if C is a (hyper)elliptic
curve of characteristic 2 not defined over K (cf. work of Galbraith, Smart,
Hess, Gaudry, Diem Thériault,... under the key word GHS attack [24, 26, 23,
13, 65]).

In general this method relates the DLP to the highly interesting theory of
fundamental groups of curves over non algebraically closed ground fields and
so to inverse Galois theory.

A powerful tool to study this topic is the theory of Hurwitz spaces. A dis-
cussion can be found in [14].

Variant 2: Again assume that C is defined over L. We apply scalar re-
striction from L to K to the (generalized) Jacobian variety of C and get a
[L : K]-dimensional (group scheme) Abelian variety A over K.

Now we look for curves D in K-simple factors B of A. As B is a factor of
Jac(D) we can hope to transfer the DLP from Jac(C) to Jac(D).

It is not clear whether this variant can be used in practice. But it leads to
interesting mathematical questions:

Which curves have the scalar restriction of an abelian variety (e.g. an elliptic
curve) as Jacobian?

Bouw, Diem, and Scholten, [8] have found families of curves related to the
last question.

5.3 Pairings

We shall use properties of abelian varieties with Galois action to build up a
bilinear structure related to our DL-system in special cases. This structure
allows to transfer the DLP to the Brauer group of local and global fields.
Under appropriate conditions this transfer will end up with the “classical”
discrete logarithm in finite fields not far away from the ground field. This
can be used in attacks but also to construct e. g. identity based schemes.
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5.3.1 Bilinear structures

We shall begin with a general notion.

Definition 5.1 Assume that a DL-system A is given (and hence A is a cyclic
group of prime order with a numeration) and that there is a group A′ in which
we can compute “as fast” as in A. Assume moreover that B is another DL
system and that a map

Q : A × A′ → B

satisfies the following requirements

• Q is computable in polynomial time (this includes that the elements in
B need only O(log |A|) space),

• for all n1, n2 ∈ N and random elements a1, a
′
2 ∈ A × A′ we have

Q(n1 · a1, n2 · a′
2) = (n1n2) · Q(a1, a

′
2),

• Q(., .) is non degenerate. Hence, for random a′ ∈ A′ we have Q(a1, a
′) =

Q(a2, a
′) iff a1 = a2 .

Then we call (A,Q) a DL-system with bilinear structure.

There are two immediate consequences:

• The DL-system A is at most as secure as the system B.

• Assume that A = A′ and hence

Q(a0, a0) 6= 0.

Then for all triples (a1, a2, a3) ∈ 〈a0〉3 one can decide in polynomial
time in log(p) whether

loga0
(a3) = loga0

(a1) · loga0
(a2)

holds. Hence the decision Diffie-Hellman (DDH) problem is easy.

These are negative aspects of bilinear DL-systems but very interesting pro-
tocols due to Joux [29] (tripartite key exchange) and Boneh-Franklin [7] use
such structures in a constructive way.
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5.3.2 Evaluations of functions

We used rational points on principally polarized abelian varieties (namely
Jacobians of curves) for the realization of DL-systems. These objects come
with a duality theory which will be exploited now. To make this practical
we first explain how to evaluate functions attached to points of order p at
given points. We shall have to solve the following problem:

Let C be a curve of genus g defined over some ground field K, let E be a
K-rational divisor of degree 0 on C and c a K-rational divisor class of degree
0 and of order n on C. Let D1 = A1 − gP0 ∈ c be a divisor where A1 is
an effective divisor of degree g. Any multiple i · c can be represented in a
similar way by Di := Ai − gP0. We assume that the support of E is prime
to the support of all divisors Di. Especially the divisor nD1 is the principal
divisor of a function f on C which has no poles and zeroes in the points in
the support of E. Hence c(E) := f(E) is a well defined element in K∗.

We want to compute this element fast and follow an idea which – for elliptic
curves – V. Miller has written in an unpublished letter and which in the
general case is inspired by Mumford’s theory of Theta groups of abelian
varieties.

The basic step for the computation is: for given effective divisors A,A′ of
degree g find an effective divisor B of degree g and a function h on C such
that A + A′ − B − gP0 = (h). We can assume that this step can be done
fast for otherwise we could not use JC for DL-systems. As a measure for the
complexity of our algorithm we shall take the needed amount of such steps.

Define the following group law on 〈c〉 × K∗:

(i · c, a1) ◦ (j · c, a2) := ((i + j) · c, a1a2 · hi,j(E)),

with Ai + Aj − Ai+j − gP0 = (hi,j). The assumptions on E guarantee that
each hi,j(E) ∈ K∗. The degree of hi,j is at most g. It can be easily seen by
induction that l ·(c, 1) = (lc, hl−1(E)) where hl−1 is a function on C satisfying
lA − Al−1 − (l − 1)gP0 = hl−1. Hence the n-fold application gives the result
(0, f(E)), where f is a function on C with (f) = nD1.

Now we can use the group structure on 〈c〉 × K∗ and apply the square- and
multiply algorithm to evaluate f at E in O(log(n)) basic steps.
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5.3.3 The Tate pairing

Let K be a field with absolute Galois group GK and let A be a principally
polarized abelian variety over K. We assume that n is a prime p different
from char(K). 7

By µp we denote the group of p-th roots of unity in the separable closure Ks

of K (regarded as GK module). We have the exact sequence of GK-modules
(Kummer sequence)

0 → A(Ks)[p] → A(Ks)
·p→ A(Ks) → 0.

Application of Galois cohomology gives the exact sequence

0 → A(K)/pA(K)
δ→ H1(GK , A(Ks)[p])

α→ H1(GK , A(Ks))[p] → 0.

Next we use that A(Ks)[p] is self dual (in fact the Weil pairing induces the
duality) as GK-module (since A is principally polarized) and so we can use
the cup product to get the Tate-pairing

<,>K : A(K)/pA(K) × H1(GK , A(Ks))[p] → H2(GK , µp)

given by
< P + pA(K), γ >K= δ(P + pA(K)) ∪ α−1(γ).

H2(GK , µp) is a very important group for the arithmetic of K. It is isomor-
phic to H2(GK , K∗

s )[p] and hence consists of the elements of order dividing
p of the Brauer group Br(K) of K.

The information we can obtain from the Tate-pairing depends on the infor-
mation given by the Brauer group and on its degree of non-degeneracy. For
instance if K = Fq is a finite field, the Brauer group is {0}. The situation
changes if we take K as an l-adic field with residue field Fq. Then we have
the following theorem:

Theorem 5.2 (Tate)
The pairing <,>K is non-degenerate.

7The case p = char(K) is much easier. In this case one can break the DL-system in
polynomial time (cf. [50]).
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Hence, for principally polarized abelian varieties over l-adic fields we have
transferred the DL-problem in A(K)[p] to the corresponding problem in
Br(K)[p] provided that we can evaluate the pairing in polynomial time. This
implies especially the ability to describe H1(GK , A(Ks))[p] and Br(K)[p] and
to compute in it. Let us assume that K contains a primitive p-th root of unity
ζp, i. e. p | (q − 1).

Standard calculations with cohomology groups yield:

Corollary 5.3 Let Lp be a ramified extension of K of degree p.

There is a non-degenerate pairing

<,>: A(K)/pA(K) × Hom(G(Lp/K), A(K)[p]) → Br(K)[p]

induced by the Tate pairing.

5.3.4 Application to Jacobian varieties over finite fields

Now we start with a finite field Fq and a prime p dividing q − 1. Let C be a
projective curve defined over Fq and let JC be its Jacobian. We lift (C, JC)
to (C̃, JC̃) over an l-adic field K with residue field Fq and apply Corollary 5.3
to JC̃ .
Moreover we can apply Hensel’s lemma in various forms and get

• JC̃(K)/pJC̃(K) is canonically isomorphic to JC(Fq)/pJC(Fq).

• JC̃(K)[p] is canonically isomorphic to JC(Fq)[p].

• Let τ be a generator of G(Lp/K). Then ϕ ∈ Hom(G(Lp/K), JC̃(K)[p])
is uniquely determined by ϕ(τ) and hence is (not canonically) isomor-
phic to JC(Fq)[p].

• Br(K)[p] is (again not canonically since one has to fix Lp and τ) iso-
morphic to F∗

q/F∗p
q .

For this situation we describe the Tate pairing (up to sign) in a version due
to Lichtenbaum.
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Theorem 5.4 (Lichtenbaum) Let τ be a generator of G(Lp/K). Let P1, P2

be points of JC̃(K) with P2 a point of order p. Let ϕ be the homomorphism
of G(Lp/K) to JC̃(K)[p] mapping τ to P2. Represent Pi by coprime divisors
Di in the divisor class group of C̃, and let f2 be a function on C̃ with divisor
pD2.

Then
< P1 + p · JC̃(K), ϕ >= f2(D1) · NLp/K(L∗

p).

K∗/NLp/K(L∗
p) is isomorphic to F∗

q/F∗p
q .

Corollary 5.5 There is a non-degenerate pairing

<,>Fq
: JC(Fq)/pJC(Fq) × JC(Fq)[p] → F∗

q/F∗p
q

given by the following rule:

Let P1, P2 be points of JC(Fq) with P2 a point of order p. Represent Pi by
coprime divisors Di in the divisor class group of C, and let f2 be a function
on C with divisor pD2.

Then
< P1 + pJC(Fq), P2 >= f2(D1) · F∗

q/F∗p
q .

Now we use the results in Section 5.3.2 and see that we can transfer the DLP
in JC(Fq)[p] to the discrete logarithm in F∗

q in polynomial time.

We end this section with a remark:
It may look strange that in order to prove a result on curves over finite
fields we have to go to the theory of abelian varieties over l-adic fields. In
fact having the pairing in Corollary 5.5 one can prove directly that it is
not degenerate using only Kummer theory. But firstly we have seen already
in the point counting algorithms that lifting varieties to local and global
fields can give more information, secondly it was easier to find the pairing
by going to the well studied local setting and most importantly the pairing
in Corollary 5.5 is only a special and somewhat disguised part of a general
picture showing for instance the importance of Brauer groups for DL systems.
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5.3.5 Consequences

We have seen how to reduce discrete logarithms in JC(Fq)/pJC(Fq) to discrete
logarithms in Br(K)[p] for an l-adic field K with residue field Fq if ζp ∈ Fq.
In general put

k := [Fq(ζp) : Fq]

and let K be a l-adic field with residue field Fqk . Then discrete logarithms in
JC(Fq)/pJC(Fq) can be transferred to discrete logarithms in Br(K)[p] with
costs O(log(|Fq(ζp)|)) = O(k log q).

This is no practical result if k is large. In general, the conditions that K –
and hence also the residue field Fq – contains p-th roots of unity and that JC

has points of order p rational over Fq which are cryptographically interesting
will not be satisfied at the same time.

For elliptic curves we can formulate this more precisely:

Proposition 5.6 Let E be an elliptic curve defined over Fq and p a prime.
Let π be the Frobenius endomorphism of E(Fq). Then Z/p can be embedded
into E(Fq) iff the trace of π is congruent to q + 1 modulo p and the corre-
sponding discrete logarithm in E(Fq) can be reduced to the discrete logarithm
in 〈ζp〉 in the field Fqk where k is the smallest integer such that the trace of
πk becomes congruent to 2 modulo p.

In general it is easy to avoid elliptic curves with small k and it is an interesting
Diophantine problem to construct elliptic curves with small k if we want to
avoid supersingular elliptic curves. The trace of the Frobenius acting on
such curves is divisible by char(Fq), and they are defined over the quadratic
extension of the prime field. So one knows quite well their L-series.

For instance if E is supersingular and defined over the prime field Fl with
characteristic l larger than 3 then the characteristic polynomial of the Frobe-
nius is X2 + l. It follows immediately that if E[p](Fq) 6= {0} then after an
extension of degree at most 2 the p-th roots of unity are rational and hence
k ≤ 2. For l0 = 2 one gets: k ≤ 4, and for l0 = 3 : l ≤ 6 [40]. For other
curves one has

Theorem 5.7 Let A be a supersingular abelian variety of dimension g over
Fq with a non-trivial point of order p. Then there exists an integer k(g) such
that the degree k is bounded by k(g).
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For g ≤ 8 Galbraith [22] explicitly determines k(g). Cryptographically in-
teresting are g = 2, 3. There one has k(2) = 12 and k(3) = 30. As result we
get:
Supersingular curves (and some others) lead to DL-system which are only
subexponentially secure.

5.3.6 The role of isogenies

If we want to apply the bilinear structure to the Diffie-Hellman decision
problem (destructively) and to tripartite key exchange and ID-based systems
(constructively) we need more: we really need a pairing on one group of order
p. In general the Tate pairing cannot be used directly. But sometimes one
can use a trick:

Proposition 5.8 Assume that there are an endomorphism η of JC and a
point P0 ∈ JC with η(P0) of order p satisfying

• < P0 + pJC(Fq), η(P0) >= ζp,

• η can be computed in polynomial time.

Then (DDH) can be solved in A[p], and A[p] can be used for an identity based
system.

Let E/Fq be an elliptic curve. If the group of Fq-rational points of order
p is cyclic, k is small, and if there exists an endomorphism η 6∈ EndFq

(E),
which can be efficiently evaluated on E[p] the conditions of the proposition
are satisfied.

Example: Let E be a supersingular elliptic curve and assume that Fq = Fln
0

has n odd and p does not divide q−1. If End(E) has small discriminant, the
conditions are satisfied. To give a more concrete example: Let additionally
l0 ≡ 3 mod 4 and consider the curve

E : Y 2 = X3 − X.

Since
√
−1 6∈ Fq such an η is given by

η : X 7→ −X,Y 7→
√
−1Y.

Remarks:
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• If the order of the rational points of E is not a smooth number we have
examples of groups in which (DDH) is weak (of polynomial complexity)
but the DLP is believed to be subexponentially hard. Explicit examples
have been given by Joux and Nguyen [30].

• It is clear that both efficiency and security of the ID-system based on
the example are critical.

• Higher dimensional examples are constructed Rubin and Silverberg [57]
by using supersingular abelian varieties.

• Instead of using supersingular elliptic curves it would be much better
to use ordinary elliptic curves with k ≈ 8. Results in this directions
are contained in [16].

6 Brauer groups and the classical Discrete

Logarithm

6.1 Brauer group of local fields

In the last section we have seen that the duality theory of abelian varieties
links the discrete logarithm in Mordell-Weil groups of abelian varieties over
finite fields Fq to the Brauer group of local fields K with residue field Fq.
Elements of order p in Brauer groups are represented by cyclic algebras:
Each c ∈ Br(K)[p] is identified with an isomorphism class of central sim-
ple algebras C with center K which becomes isomorphic to the algebra of
p× p-matrices after tensorizing with some cyclic extension field L (the split-
ting field) of degree p. This algebra is determined by a 2-cocycle f from
G(L/K) =:< σ > to L∗ given by

f(σi, σj) =

{
a : i + j ≥ p
1 : i + j < p.

}

with a ∈ K∗.
The class of C and hence c is determined by the pair (σ, a mod NL/KL∗).
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6.1.1 Invariants

Let Lu be the unique unramified extension of K of degree p. Its Galois group
over K has as canonical generator a lift of the Frobenius automorphism of
Fq which we denote again by Π.

Assume that c is as above and split by Lu. Hence it can be given by a pair
(Π, a) and c is uniquely determined by v(a) modulo p. Thus, v(a) ∈ Z/p is
the invariant invK(c) of c.

The key result of local class field theory is: Every element of c in Br(K)[p]
is equivalent to a cyclic algebra split by Lu. So we can associate to c its
invariant and we get an isomorphism

invK : Br(K)[p] → Z/p.

The discrete logarithm in Br(K)[p] would be trivial if we could compute
invariants.

But to do this, cyclic algebras have to be given with respect to Π! In general
two cases will occur:

1. c is given by a pair (τ, a) and τ is another generator of G(Lu)/K. We
have to determine n with τn = Π.

2. c is given by (σ, a) with σ a generator of a ramified extension of degree
p. We have to find an equivalent pair of the form (Π, b). (This is the
case resulting from the Tate pairing if p|(q − 1).)

It can be verified that in both cases we have to solve discrete logarithms in
finite fields. In the second case this is the discrete logarithm in the group
of p-th roots of unity in Fq, a result which we know already. But it shows
from another angle the intimate relation between the computation inside of
Brauer groups of local fields and the discrete logarithm in the multiplicative
group of its residue field. For details see [46].

6.2 Global fields

We go one step further and lift local fields to global fields.
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6.2.1 Index-Calculus in Brauer groups

Let K be a global field (i. e. a number field or a function field of one variable
over a finite field) with localizations Kv which are the completions of K
with respect to (non archimedian) places (i. e. equivalence classes of non
archimedian valuations) v of K, with residue fields kv and decomposition
groups Gv. These are subgroups of the absolute Galois group GK of K
consisting of the elements which act continuously with respect to the v-adic
topology. One can identify Gv with the absolute Galois group of Kv and we
can restrict cocycles on GK with values in K∗ to cocycles in Gv with values
in K∗

v . We denote these restrictions by ρv.

We have the most important exact sequence due to Hasse-Brauer-Noether:

0 → Br(K)[p]
⊕v∈ΣK

ρv−→
⊕

v∈ΣK

Br(Kv)[p]
Σv∈ΣK

invv−→ Z/p → 0.

where ΣK is the set of places of K.

Now we fix v ∈ ΣK and assume that Av is a given cyclic algebra corresponding
to cv ∈ Br(Kv)p. We want to lift Av to a cyclic algebra A defined over K.

Then we can use the equation

−Σv′∈ΣK\v invv′(ρv′(A)) = invv(Av).

and hope that we can exploit the relations obtained in this way to compute
invv(Av).

For the existence of liftings we need existence theorems for cyclic extensions of
K with prescribed ramification, and such results are delivered by global class
field theory (in an explicit way e. g. by CM theory). Using these results we
can hope to do index-calculus in Brauer groups of global fields and use this for
the computation of local invariants and so, eventually, for the computation
of discrete logarithms in finite fields. For details we refer again to [46]. In
order to explain the principle in more detail we shall restrict ourselves to the
simplest case. We now present an example.

6.2.2 Example: K = Q

First ΣQ is identified with the primes l in Z. The global class field theory of
Q is completely determined by the theorem by Kronecker and Weber:
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Theorem 6.1 (Kronecker–Weber) Every abelian extension K/Q of Q is
contained in a cyclotomic extension Q(ζn)/Q. There exists an extension
K/Q of degree p ramified exactly at l0 iff p|l0 − 1, and then it is uniquely
determined.

We now consider a global algebra A of the form A = (K/Q, σ, a). If a =
∏

lnl

the theorem by Hasse–Brauer–Noether leads to a relation of the form

invl0(a) +
∑

l 6=l0

flnl ≡ 0 mod p. (4)

Here, the factors fl are defined as follows:
Let Kl/Ql denote the extension of local fields belonging to K/Q. We can
identify G(Kl, Ql) with the decomposition group Gl. Since G has prime order
p, it is obvious that Gl is either trivial (if l splits completely in K) or is equal
to G (if l is inert in K).

Assume the latter case. As Kl/Ql is unramified we can identify G(Kl/Ql)
with the Galois group G(Flp/Fl).

Let σ denote a (fixed) generator of G. Define fl by Πl = σfl (Πl the Frobenius
automorphism at l) modulo p.

The congruence (4) can be seen as a linear equation relating the indetermi-
nates fl, invl0(a). Hence, we have to produce equations of this form in order
to apply linear algebra modulo p to compute enough factors f ′

ls, the term
“enough” depending on how many smooth numbers with respect to a bound
M are to be expected (cf.[39]. Here one should become aware of the analogy
to the usual way to factor large numbers.

6.2.3 An algorithm for K = Q

Choose a smoothness bound M and compute the factor basis S consisting of
the primes less or equal to M .

Put d = d
√

de. For δ ∈ L := [0, ..., l] take a1(δ) := d + δ.
a2(δ) := c0 + 2δd + δ2) (≡ a2 modulo p) with c0 = d2 − p.

Assume that for δ ∈ L both a1(δ) and a2(δ) are M -smooth. Then we get
a relation for fq with q in the factor base. To find such δ ∈ L we can use
sieves.
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Having enough relations for a large enough factor base we can proceed as
usual: for random a we take small powers of a and hope that modulo p such
a power yields a smooth number. Then we can compute the invariant of the
corresponding algebra and so the invariant of a and use this for computing
discrete logarithms.

This approach (detailed in [46]) unifies methods and results obtained by
various authors (Coppersmith, ElGamal, Schirokauer, Adleman-Huang us-
ing different and quite complicated methods for different cases. The most
advanced amongst them are called number field sieve and function field sieve.

So Brauer groups and class field theory of global fields can be seen as back-
ground for the DLP in finite fields, and this point of view could open new
possibilities for more advanced attacks. For instance we can try to lift from
local Brauer groups to global Brauer groups in a more intelligent way.
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