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1 Introduction

Due to the emerging market of electronic commerce public key cryptosystems gain
more and more attention. Unlike for military purposes there is a need of flexible
user groups. Besides RSA most cryptosystems and protocols like the Diffie-
Hellman key exchange [3] and the ElGamal cryptosystem [5] are based on the
discrete logarithm as the underlying one-way function. Given a cyclic subgroup
of an abelian group generated by ¢g and an integer m one can compute ¢™ = b. If
(g) is a group suitable for cryptographic applications then it is computationally
hard to retrieve m for given b and g. m is called the discrete logarithm of b to
the base g. The problem of determining m given b and g is called the discrete
logarithm problem. A group is suitable if

1. the group operation is fast,
2. the group order can be computed efficiently,

3. the discrete logarithm problem is hard,
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2 1 INTRODUCTION

4. the representation is easy and compact.

Two common kinds of groups used in practice are the multiplicative group of a
finite field and the group of points on an elliptic curve over a finite field. The first
group comes equipped with the fast arithmetic developed for finite fields but also
with a subexponential algorithm for computing the discrete logarithm. Since
this index calculus attack does not carry over to the elliptic curves, only general
techniques like Pollard’s rho and kangaroo method (see [40, 43, 44, 60]) apply,
unless the curve has a special structure, for example is supersingular (see Frey
and Riick [8] and Menezes, Okamoto, and Vanstone [32]) or the group order is
divisible only by small primes, thus weak under the Pohlig-Hellman attack [41].
But there is a big drawback — one addition on an elliptic curve takes either 2
multiplications, 1 squaring, and 1 inversion or 12 multiplications and 4 squarings
depending on the chosen representation of the curve. Doubling causes mainly
the same complexity. To obtain a speed-up for the main operation — computing
m-folds — Koblitz [22] proposed the use of a special kind of curves. These Koblitz
or subfield curves are curves defined over a comparably small finite field F,,.
They are then considered as curves over a large extension field Fy., where n is
prime. The arithmetic makes use of the fact that if the curve C is defined over
F,and P = (z,y) € Fg» x Fjn lies on C then the point o(P) = (2%, y?) lies on C,
too, as can be seen by direct computation. Note that this only holds since the
curve is defined over the small field. ¢ is an endomorphism of the curve called
the Frobenius endomorphism. On the coordinates of the points it operates like
the Frobenius automorphism of the underlying field Fy» over F,. These curves
have thoroughly been studied by Koblitz [22, 23], Meier and Staffelbach [31],
Miiller [36], Smart [51], and Solinas [52, 53], where the last reference contains a
detailed analysis of the maximal speed-up achievable for curves over Fs.

In [21] Koblitz proposed the Picard group Pic’(C/F,) of a hyperelliptic curve
as a further group suitable for cryptographic applications. The advantages over
the elliptic curves are the smaller field size and the larger variety of curves to
choose from. The representation of the group elements is given by polynomials
of bounded degrees. Hence, the group satisfies requirement 4. But there are
several disadvantages:

At the moment no-one is able to compute the group order of a randomly
generated hyperelliptic curve over a prime field with group order ~ 2!, The
best result obtained for curves of genus two is a curve over the prime field F,
with p = 10 + 51 by Gaudry and Harley [14] which leads to a group order
~ 1038 ~ 2'% which is smaller than recommended for cryptographic applications.
Hence, one is forced to take special curves. Generalizing Atkin, Spallek [54]
suggested the use of curves with complex multiplication, so called CM-curves.
This approach was investigated in more detail by Weng [61] again for genus two.
Recently she generalized it to work also for genus 3 curves but in both cases the



curves are defined over finite prime fields of odd characteristic or small extension
fields (of degree at most 12). We propose a different class of curves in this article
which allows to work in characteristic 2 as well.

Furthermore the group operation for a generic hyperelliptic curve is slower than
for an elliptic curve. For larger genus there exists an index-calculus like method
for computing the discrete logarithm by Adleman, DeMarrais, and Huang [1],
Miiller, Stein, and Thiel [37], and Enge [6]. Gaudry [13] modified this algorithm
and gave a detailed analysis showing that his attack is faster than Pollard’s rho
method for ¢ > 4. For smaller genus these groups are secure provided that the
group order is sufficiently large and that one avoids curves for which special
attacks are known.

In this article we investigate hyperelliptic Koblitz curves. The idea of elliptic
Koblitz curves was generalized by Giinther, Lange, and Stein [17]. There we
investigate two special examples of binary curves of genus 2. We show in that
paper that also in the hyperelliptic case the Frobenius endomorphism can be
used to achieve fast arithmetic, i.e. to speed up scalar multiplication. This
generalization offers a larger variety of curves to choose from. To compare
— there are up to isogeny only two non supersingular elliptic curves over Fy
whereas one can choose from 6 different curves of genus 2 over Fy and there are
even much more curves for higher genus. We provide a list of suitable curves for
genus 2,3, and 4 in this paper.

And we give a detailed analysis that the Frobenius endomorphism gives rise to
a speed-up of at least a factor of 4 (for ¢ = ¢ = 2) and much more if many
precomputations can be stored. The speed-up increases with ¢ and g.

A further important advantage of Koblitz curves is that due to the construction
the group order can be determined very efficiently. Since the group order
corresponding to the field of definition F, always divides the group order over
F,» the best one can hope for are almost prime orders, i.e. orders being a
product of this inevitable factor and a large prime. Experiments with various
subfields and genera give evidence that among the Koblitz curves there are many
providing a group of cryptographic relevance.

Hence, firstly the computation of m-folds is sped up considerably and can thus
be regarded as fast. Secondly the group order can be computed very easily. The
group elements can be represented by two polynomials of degree at most g over
F,n, thus the representation is compact and easy.

To the third point: The Picard group of Koblitz curves over F,» comes along
with an automorphism group of order at least 2n — due to the Frobenius
automorphism of order n and inversion. This can be used for cryptanalysis.
The attack of Gallant, Lambert, and Vanstone [11] designed for elliptic curves
was extended to hyperelliptic curves. Duursma, Gaudry, and Morain [4] make
use of equivalence classes in Pollard’s rtho method and obtain a speed-up of /n
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compared to a Picard group without automorphisms except for the inversion.
This can be dealt with by choosing n some bits larger (at most 4 bits in the
range considered here). Gaudry [13] used this automorphism group to speed-up
his variant of the index-calculus method by n?. For genus 2 and 3 this does not
affect the security of our system. But for genus 4 we need to be aware of that
effect and either avoid these curves or choose a larger exponent.

Furthermore there is an attack on anomalous curves investigated by Semaev [48]
(see also Satoh and Araki [47], and Smart [50]) for elliptic and by Riick [46] for
hyperelliptic curves. This works for groups of order a multiple of p" where p is
the characteristic of the ground field. But the hyperelliptic Koblitz curves we
use do not lead to a curve which is weak under that attack since we work in the
subgroup of large prime order and the characteristic of the fields is small, thus
we always work in the prime to p part.

Certainly one has to be aware of the Frey-Riick attack [8]. It can be applied
whenever the order of ¢”, i.e. the cardinality of the finite field one works in,
modulo [ is small, where [ is the order of the subgroup of the Picard group.
Thus one has to compute this order before accepting a curve. All the examples
of curves proposed here satisfy this requirement.

The Weil descent attack described for elliptic curves in [15] applies also to
hyperelliptic curves. Thus we need to ensure that we consider curves over fields
where the exponent is a prime and for characteristic 2 is not of the form 2! — 1
(see [34]) — or more generally — leads to a curve with such a large genus that
the attack gets infeasible. Although Gaudry, Hess, and Smart [15] say that their
attack does not work for curves defined over the ground field one can modify the
curve to get an isogenous one defined over the extension field.

However we only consider prime degree extensions since otherwise the class
number would contain more prime factors.

Hence, Koblitz curves provide a large source of hyperelliptic curves for every
genus with an easy to compute group order and they allow the use of fields over
characteristic two which is advantageous in implementations. And the security
requirements are fulfilled as well.

Remark:

1. Although our approach is described for curves over arbitrary fields and of
arbitrary genus in applications they are most likely used over small fields
with ¢ < 7 and genus 2, 3 or 4, since for larger genus the groups are
insecure and for larger field size the number of precomputations to be stored
increases and we loose too much due to inevitable factors of the group order.



2. We only consider the case of hyperelliptic curves, but all this generalizes to
arbitrary abelian varieties, thus especially to those attached to Cg;-curves,
as soon as the action of the Frobenius endomorphism can be used efficiently.
This holds since we only work with the characteristic polynomial not with
the curves themselves.

The remainder of this paper is organized as follows. In the next section we provide
the necessary mathematical background followed by two sections dealing with the
computation of the group order. We then give some experimental data concerning
group orders of Koblitz curves over several finite fields. Section 6 is devoted to the
standard ways of computing m-folds which will be used to compare our results
with. In Section 7 we show how to make use of the Frobenius endomorphism
to achieve a speed-up in computing m-folds. Sections 8, 9 and 10 give details
on the algorithms and theoretical results concerning the length and density of
expansions related to the Frobenius endomorphism. The following section lists
some results on Koblitz curves and gives numerical evidence for the assumptions.
In Section 12 we compare the new method with the standard double-and-add
method. Then we investigate what happens if we cannot store precomputed
values. In the following section we deal with a different set-up for cryptosystems
based on Koblitz curves which is useful in implementations. Finally we give an
outlook on what can be done as well.

After finishing this paper it was brought to our attention that Lee [26] has also
generalized the results of Giinther, Lange, and Stein [17] to arbitrary charac-
teristic. His paper does not contain a proof of the finiteness and length of the
representations obtained. Furthermore he uses larger ground fields than we rec-
ommend. We say more about this in Section 15.

2 Mathematical Background

This section provides the necessary background on algebraic curves with empha-
sis on hyperelliptic curves. Usually the results are stated for arbitrary curves
respectively functions fields and the examples deal with the special case. Many
results presented here have analogies in number theory. We decided to take a
more algebraically motivated approach, hence, starting from function fields since
the arithmetic we use later is based on this representation. On the other hand
we make use of the geometric background as well to derive results concerning
the structure. In the following we state the results without proofs. We follow
the lines of Lorenzini [29] and also adopt his notation. Most of the results can be
found as well in the book of Stichtenoth [58]. For the more geometric approach
see the book of Fulton [9]. You can as well consider Gaudry’s thesis [12] which
contains a nice introduction with several pictures.

The reader only interested in the computational aspects might consult the intro-
duction by Menezes, Wu and Zuccherato [35] to get an insight in hyperelliptic
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curves and skip the first subsection. Furthermore Silverman’s book [49] contains
a lot of the theory not only for elliptic curves.

2.1 Notation and Definitions

Throughout this article let £ denote a perfect field. Some of the results mentioned
below hold also for arbitrary fields but since we consider hyperelliptic curves over
finite fields in the other sections this means no restriction for us and eases to
state the theorems. Our starting point is the following definition.

Definition 2.1 A field L containing k is called a function field over k if the field
L is a field of transcendence degree 1 over k, and k is algebraically closed in L.

Example 2.2 Let k = F5 and consider f = y> — a3 —x — 1. f is absolutely
wrreducible, 1. e. irreducible over k and any extension field. Thus f defines a
function field k(z,y).

We now consider special maps from L* to the integers called valuations

Definition 2.3 A valuation of L is a map v : L* — Z such that the following
properties are satisfied:

1. v(zy) = v(z) +v(y) for all z,y € L*,
2. v(x +y) > min{v(x),v(y)} for all x,y € L*.

A wvaluation is called surjective if v is surjective.
A wvaluation is called trivial on k if v(k*) = {0}.
v is extended to L by putting v(0) = co.

For example the map v(z) = 0 for all z € L* is a valuation. This valuation is
called the trivial valuation. An example for a non-trivial valuation is the map
k(x)* — Z where v(a) = deg(a) with the usual meaning of degree.

Let B be a Dedekind domain with field of fractions L. Let M be a maximal
ideal of B. Then we can define the valuation for &« = g/h € L, g,h € B via
v(a) = v(g) —v(h) and define v(g) for g € B to be the largest i such that g € M".
Thus to each maximal ideal corresponds a valuation. Now let v be a valuation
such that v(B) > 0. Consider the set O, = {a € L|v(a) > 0}. One can show
that O, is a local principal ideal domain and that M, = {« € L|v(«a) > 0} is
the maximal ideal in O,. Put M = M N B. Then M is a maximal ideal of B.
In fact one can show that the set of surjective valuations v with v(B) > 0 is in
bijection with the set of maximal ideals of B.
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Let V(L/k) be the set of all surjective valuations trivial on k. It is this set that
we will consider as points of a curve. Before we give the formal definition let’s
see how this fits with the intuitive definition of a point as a zero of a given
polynomial and a curve as a set of these zeros plus maybe some additionally
elements at infinity.

Example 2.4 Assume that k is an algebraically closed field. Since L/k is
a function field we can find an element x € L such that L/k(x) is a finite
extension. Let a be a defining element of this extension, hence L = k(z, «), and
consider the minimal polynomial f(y) € k(z)[y| of a. Without restriction we
can assume that « is algebraic over k(x), thus, f is monic in y and k[z,y]/(f)
is a Dedekind domain. Now let a,b € k with f(a,b) =0. P = (z —a,y —b) is
a mazimal ideal in klx,y]/(f). Then P defines a valuation vp as seen above.
Since k s algebraically closed we can in fact find all valuations corresponding
to maximal ideals this way. The set of these valuations is an example of an
affine curve. But we are missing some valuations of L, namely those valuations
that are extensions of the degree map deg from k(z) respectively those that do
not result from klz,y]/(f) but from the other ring k[1/x,y]/(f) contained in L.
Taking [ as the defining equation of a curve over k and considering the zeros of
f as points of the curve one is used to add points at infinity corresponding to the
solutions of f(t, y) at t = 0 after the change of variables t = 1/x. Considering
the polynomial ring klt, y]/(f) one obtains the corresponding valuations of L* in
a similar manner as above.

The other way round one can associate to each valuation v a local principal ideal
domain O, and its mazimal ideal M,. Assume that M = M, N k[x,y]/(f) is
nonempty. Since k[x,y|/(f) is a Dedekind domain we can find a basis of M
consisting of (at most) two elements as M = (x — a,y —b). Then we find a zero
of f namely f(a,b) = 0. If M, contains no elements of k[x,y|/(f) then it does

of k[1/xz,y]/(f), thus corresponds to a point ‘at infinity’.

If k is algebraically closed we obtain each maximal ideal of k[z, y]/(f) (and there-
fore such a valuation) via the zeroes of f. But if £ is not algebraically closed we
do not find all maximal ideals this way. If the basis of M, N k[z,y]/(f) consists
of polynomials of higher degree then the valuation corresponds to a class of con-
jugate points of a finite extension of k. The connection is as follows:

Denote by k an algebraic closure of k. Let a,b € k and put

@(a,b) : k[xvy] - k7 g(ﬂf,y) = g(a” b)

Denote the restriction to k[x,y] by ¢(p)- One can show that for any maximal
ideal M of k[z,y] there exists a pair (a,b) € k x k such that M =Ker(¢(,p)-
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Furthermore let the minimal polynomial of a over k£ be g(z). Since g is irre-
ducible, k[z,y]/(g(z)) is a principal ideal domain and M/(g(x)) is generated by a
single element, say by the class of h(x,y). Therefore M = (g(x), h(z,y)). Hence,
every maximal ideal is generated by two polynomials and both statements hold
true when we restrict to the ring k[z,y|/(f) with the additional property that
f(a,b) = 0 for the tuple (a,b) € k x k such that M =Ker(p())-

The correspondence of zeros of f — or more generally for non-closed fields maximal
ideals of k[z,y]/(f) —, valuations, and local principal ideal domain is fundamental
for the definition of curves.

Definition 2.5 A nonsingular complete curve X /k over k is a pair (X, k(X)/k))
consisting in a function field k(X)/k over k, and a set X identified with the set
V(k(X)/k) through a given bijection. An element P of X is called a point.
The field k(X) is called the field of rational functions on X. To each point P
corresponds a valuation vp of V(k(X)/k), and a local principal ideal domain
Op = O,,, with mazimal ideal Mp. The ring Op is called the ring of rational
functions defined at P. An element of Op is called a function on X defined at P.
The domain of o € k(X) is the set of points in X where « is defined. IfU C X,
then we let Ox(U) := NpeyOp, and we call this ring the ring of functions on X
defined everywhere on U.

Note that with this definition we have Ox(X) = k since k is algebraically closed
in k£(X).

As an example for a complete curve we consider the following definition

Definition 2.6 The projective line over k is a nonsingular complete curve P'/k
such that the field of functions k(P') is isomorphic, as k-algebra, to the field of
rational functions in one variable.

If k = C, thus algebraically closed, all valuations of k(z) come from the ideals
(x — a),a € C except for the valuation v, which is the degree-valuation. Hence,
P! /k can be identified with the Riemann sphere, i.e. C plus an additionally
point.

In general we have

P'/k = {vgw)|g(z) € k[z], irreducible and monic } U {v},

since the maximal ideals of k[x] are generated by the irreducible polynomials.
Usually one denotes the point vy, of P! simply by oo.

Let X/k be the nonsingular complete curve associated to the field £(X)/k. Let
x € k(X) such that k(X)/k(z) is a finite extension. Since Op is local for every P
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we have that either z € Op or 1/x € Op. Now let U and U’ denote respectively
the domain of z and 1/x in X. Then we have

X=UUU".

Furthermore Ox(U) is equal to the integral closure of k[z] in k(X). The
complement of U in X is the set of points P such that Op O k[1/x](1/), where
k[1/x](1/z) denotes the localization of k[1/x] at (1/z).

Under the ’bijection’ occurring in the definition of a curve we can thus understand
for example that we consider the maximal ideals of Ox (U) and Ox (U') as points
with the relation to valuations shown above.

Definition 2.7 Let X/k and Y/k be two nonsingular complete curves over k.
A morphism ¢ : X — Y of nonsingular curves over k is a map given by a
homomorphism of k-algebras ¢* : k(Y) — k(X) in the following way: if P €
X corresponds to the valuation vp then o(P) corresponds in Y to the unique
surjective valuation attached to the valuation vp o ©*.

The degree of ¢ is defined to be [k(X) : ¢*(k(Y))].

Let P € X and consider the rings associated to P and ¢(P). We define the
integer ep by MypyOp = MT'.

Definition 2.8 P € X is unramified over Y if ep = 1. Otherwise P is called
ramified. The integer ep s called the ramification index of ¢ at P. Let Q) € Y.
The fiber of Q is the set of points ¢ 1(Q) of X mapped to Q under .

If o* : k(X) — k(X) is an automorphism of k-algebras, then the corresponding
morphism of curves is called an automorphism of X/k.

Let k(X)/k(x) be a finite extension. Then we obtain a natural morphism 7 :
X — P! which maps via the embedding 7* : k(x) — k(X). The degree of 7 is
equal to [k(X) : k(z)].

Definition 2.9 A complete nonsingular curve X/k over k is called a hyperel-
liptic curve if it is not the projective line and if the corresponding function field
k(X) contains an element x such that [k(X) : k(x)] = 2.

Alternatively one calls a curve X/k hyperelliptic if it is not the projective line
and there exists a morphism 7 : X — P! over k of degree 2. For char(k) # 2 a
hyperelliptic curve X/k is given via k(X) = k(z)[y]/(f), where f(z,y) = y* —
g(x) € klz,y] and g(z) is squarefree. In characteristic 2 an extension of degree
2 of k(z) means that we have an Artin-Schreier extension, thus an irreducible
polynomial f is usually given in the following form f(z,y) = y* — y — g(z) with
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g(z) € k(x). Clearing denominators and changing variables one can as well obtain
a representation via f(u,v) = v® 4+ h(u)v — §(u) such that the partial derivatives
of f do not vanish simultaneously at any (a,b) € k? with f(a,b) = 0, where k
denotes the algebraic closure of k.

Example 2.10 Let k = Fy. The complete curve defined via f(z,y) = y*+ (2? +
T+ 1)y — 2° — 2* — 1 is a hyperelliptic curve.

Let P € P'/k. Consider the fiber of m over P, i.e. the set 7='(P). If 7 is of
degree n and this set contains less then n points, then P ramifies in X. The
ramified points of X are called Weierstrass points.

The ramification behavior of oo, i.e. the extensions of the degree-valuation, will
be important for the group we consider later on. Let vg,,..., vy, denote the
distinct elements in the fiber of co.

Example 2.11 Let char(k) # 2 and let g(x) € k[z] be a squarefree polynomial
of degree d, put aq the leading coefficient of g. Consider the function field L =
k(x)(v/g(z)) and the associated nonsingular complete curve X/k. Via the change
of variables t :== 1/x one can study the behavior at infinity t = 0. Denote by B’
the integral closure of k[t] in L. Remember that we associated to each valuation a
mazimal ideal. To the extensions of vy correspond the factors of the ideal (tB').
We have

PR LS d is even and ag = b? forab € k
(tB") =< P:=(tB') d is even and aq # b* for all b € k
B2 d 1s odd

IftB' splits into two different ideals then L is called a real quadratic function field,
otherwise it is called imaginary quadratic. These notations are used since the

respective fields share many properties with the corresponding quadratic number
fields.

Let k' be a finite extension of k. Any curve defined over k can also be considered
as a curve over k’. The topic of this article are Koblitz curves, these are curves
which are defined over a small finite field and are then considered over a large
extension field. Thus we need to define what we mean by this.

Definition 2.12 Let X/k be a nonsingular complete curve. Let k(X) denote the
function field of X, and fiz an algebraic closure k(X) of k(X). Let k'/k be any
algebraic extension of k contained in k(X). Let k'(X) := k' - k(X). Let Xy /K
denote the nonsingular complete curve associated to the function field k'(X)/k'.
The curve is said to be obtained from X/k by a constant field extension or by
extension of the scalars, or by base change. The extension k'(X)/k(X) is called
a constant field extension.
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If k' /k is a Galois extension in k one can show that the groups Gal(k'(X)/k(X))
and Gal(k'/k) are isomorphic.

The other way round we also need to define

Definition 2.13 Let k C E be two fields. Let X/E be a nonsingular complete
curve. We say that X /E is defined over k if the function field E(X)/E contains
a function field L/k such that EL = E(X).

Let X/k be a complete nonsingular curve and let P € Xi. For all o € Gal(k/k)
let 0(P) be such that Oy(py = 0(Op). Put Stab(P) := {o € Gal(k/k)|o(P) = P}.
The field of definition of P is k(P) := kS%() We call deg(P) := [k(P) : k| the
degree of P.

It may happen that for two curves X/k and Y/k the curves X/k and Y/k are
isomorphic as nonsingular curves over k. Then the curve Y is called a twist
of X. As we have seen at the beginning the maximal ideals M of k[z,y]|/(f)
for an absolute irreducible polynomial f can be given as Ker(y¢(, ) for a pair
(a,b) € k x k with f(a,b) = 0. Since M C k[x,y]/(f) we could use any of the
conjugates of (a,b) under Gal(k/k) instead of (a, b). More precisely one can show

Lemma 2.14 Let X/k be a nonsingular complete curve. Consider the map
I:X;— X, P P, such that Op := Op N k(X).

The map I is surjective and X is in bijection with the set of orbits of Xj under
the action of Gal(k/k).

We also can extend the morphisms for a base change.

Definition 2.15 Consider a morphism of curves over k ¢ : X — Y, given by
the inclusion k(Y) C k(X). Now let k be the algebraic closure of k contained
in k(X) and let k'/k be an extension of k contained in k. Using the inclusion
E'(Y) C k'(X) the morphism can be extended to the morphism ¢’ : X — Y.

Consider again the example 2.11.

Example 2.16 Let f(z,y) = y*> — g(z) with g(z) € klz], deg(g) = d odd,
and char(k) # 2. We consider the function field k(X) and the corresponding
morphism 7 : X — PY(k) of degree 2 which is an extension of the morphism
considered above. Let V denote the domain of x in X. By the previous example —
g has odd degree — we know that X\V consists of a single point which is mapped
to oo under T, hence T is ramified at this point with ramification index 2. All
other points of X correspond to mazimal ideals M of k|x,y]/(f), and since k is
algebraically closed M = (z — a,y — b), f(a,b) = 0 with image under @ corre-

sponding to (x — a). Since f is of degree 2 in y, the only ramification points of T
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correspond to the d zeros of f of the form (a;,0),g(a;) = 0. Thus, the morphism
s ramified at d + 1 points with ramification index 2.

If the degree e of g is even and the leading coefficient is a square in k, then X\V
consists of two points mapped to oo under ™. Hence, T is unramified at this point.
Therefore the only ramification points correspond to the e zeros of f of the form
(a3,0), g(a;) = 0.

Thus, in both cases the number of ramification points is even and if in the second
case one of the ramification points lies in k one can transform the equations such
that the same curve is described by an equation with g of odd degree e — 1. A
transformation from the first to the second case is always possible.

We now introduce a class group related to the curve X called the Picard group
of X/k or the divisor class group of X/k. First we need the following definition.

Definition 2.17 Let L/k(x) be a finite extension and consider the set of surjec-
tive valuations of L that are trivial on k, namely V(L/k). When V(L/k) # 0,
the free abelian group Div(L/k) generated by the set {x,|v € V(L/k)},

DlV(L/k) = 69vEV(L/Ic)Z331n
is called the group of divisors of L/k.

An element D is written as a sum ) a,z, with a, € Z and a, = 0 for all but
finitely may v € V(L/k).

Such a divisor is called effective if a,, > 0 for all v € V(L/k).

We now attach to a function a divisor defined by the map

divy : I* = Div(L/k), f Y v(f)z,
veV(L/k)

Divisors resulting from functions are called principal divisors.

Definition 2.18 The Picard group Pic(L/k) is the quotient of the group
Div(L/k) by the image of the map divy. The following sequence of abelian groups
18 exact:

1) — () O — L* =% Div(L/k) - Pic(L/k) — (0).
veV(L/k)

Let X/k be the curve associated to the function field k(X)/k. Using the
identification of valuations and points we let Div(X/k) := @pexZP.

Let P € X and consider the local principal ideal domain Op in k(X) correspond-
ing to P. The degree of P is defined by deg(P) = [Op/Mp : k]. Note that this
definition coincides with the one given above for ) € Xj;. Without restriction
let k(X)/k(x) be finite and let P be in the domain of z. Let the maximal ideal
M =Kerp(qp) correspond to P and let () correspond to (z — a,y — b). Then the
degree of Q € X(k), i.e. [k(Q) : k] is equal to deg(P) as defined above.
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Definition 2.19 The degree of a divisor D € Div(X/k) is defined to be deg(D) =
> apdeg(P).

Actually it will be the subgroup Pic’(X/k) of degree zero divisors modulo the
group of principal divisors that we will use as a group in cryptography. Note
that this definition makes sense since the principal divisors have degree 0. For a
finite field & and a nonsingular complete curve X/k we have that Pic’(X/k) is
finite. The order of Pic’(X/k) is then called the class number of X/k.

Using the obvious group law would result in sums containing more and more
terms if we do not have a powerful reduction theory. Furthermore to use this
group in the applications we need some kind of unique representation of these
divisor classes and an efficient group law on the reduced classes.

Therefore we now investigate a further class group associated to the function
field L/k, or more generally to an extension field. Let B be a Dedekind domain.
Consider the following equivalence relation on the set of non-zero ideals of B:

I = J if and only if there exist o, 8 € B\{0} such that (o)l = (5)J.

The equivalence classes of these ideals modulo the principal ideals form a group
Cl(B) called the ideal class group of B.

Now let L/k be the field of fractions of B and let £ C B. We define

Div(B) 1= @vevir/x) Ly,

v(B)>0

and
divg : L* - Div(B), f = Y v(f)z,

vEV(L/k)
vw(B)>0

Then the following map defines a group homomorphism (also called cl like above)
cl : Div(B) — Cl(B), z, — class of M, N B.

In fact, this map induces a group isomorphism from Div(B)/divg(L*) to Cl(B)
and therefore provides an additive description of the ideal class group.

For the restriction map

res : Div(L/k) — Div(B), Z Gy Ty — Z (y Ty
veV(L/k) veV(L/k)
v(B)>0
we have res o divy = divpg.
This leads to the following lemma.
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Lemma 2.20 Let k' := ﬂvev(L/k) Oy. The map res induces the following com-
mutative diagram with exact rows:

v

1) — (&) — L* % Div(L/k) — Pic(L/k) — (0)
{ I | res !
1) — B — L &8 Diy(B) — CIB) — (0)

We consider the case of a nonsingular complete curve X/k corresponding to the
function field k(X)/k. Let z € k(X) such that k(X)/k(z) is finite and let B
be the integral closure of k[z] in k(X). Then B is a Dedekind domain and
due to the definition of a function field we have nveV(L/k) O, = k. For the
morphism 7 : X — P! defined above let 7 '(c0) = {P,..., P} and define
U :={P € X|Op C B}. Then 7 !(c0) is the complement of U in X.

The above lemma holds as well if we consider only the divisors of degree 0, denoted
by Div®(X). Thus we have the following commutative diagram with exact rows:
1) —  — kX)) L% Div®(X) — Pi%X) — (0)

{ I . | res 1
(1) — B* — k(X) &8 Div(B) — CI(B) — (0)

We will use the correspondence between Pic’(X) and Cl(B) to obtain an efficient
arithmetic since the multiplication of ideals can be performed using operations in
the polynomial ring k[z,y]. And as we have seen at the beginning each maximal
ideals of k[z,y]/(f) can be generated by two elements, hence we can also find
a representative for each class by two polynomials. We discuss this in the next
subsection in more detail.

Denote the map from Pic’(X) to CI(B) by . It is given by

¢ : Pic’(X) — CI(B), class of Z apP — H (class of Mp N B)**.

pPeX pPeU

If ¢ is bijective we can identify the groups. This is the most interesting case for
applications. However this cannot be the case if B* is strictly larger than £*,
hence if r > 1, since one can show for finite fields £ that B* has rank r» — 1 and
torsion group k*.

Let k(X)/k(x) be a function field and consider the fiber of co, hence the points
Py, ..., P. of X that map to co under 7. The regulator R is an integer associated
to these valuations providing information about the group of units B*. If r =1
we put R = 1. We do not go into the details here since we will be concerned
with the imaginary quadratic case, hence with R = 1. The definition can be
found like the other results in Lorenzini [29]. For the use of function fields of
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unit rank > 1 and a comparison of both cases we refer to Paulus and Riick [42]
and several works of Stein, for example [56].

The following lemma holds

Lemma 2.21
ICI(B)| - R = |Pic°(X)| - | [ deg(P,) - 1og(q)"~".
i=1

Example 2.22 Consider the setting of Fxample 2.11.

In the first case, i. e. the real quadratic case, r = 2 and the degree of each point
at infinity is 1. In this case the requlator is nontrivial and the groups Cl and
Pic® can be of very different cardinality. In the third case we have that r = 1,
hence, R =1 and the point at infinity has degree 1. Thus the groups have equal
cardinality and in fact Ker(p) = {0}.

By a change of variables we can transform a defining equation of the first kind
into one of the third if there exists a k-rational Weierstrass point, i.e. a point
defined over k such that the map m : X — PY(k) is ramified at this point.

Before we conclude this section we introduce a further invariant of the curves
we will need — the genus of the curve. Take for example the hyperelliptic curves
in odd characteristic. For all of them the function field can be defined via a
polynomial y* = f(z), f(z) € k[z]. However we can further discriminate by
considering the degree of f. In the case of hyperelliptic curves this is just what
the genus does. This invariant occurs for example in the formula for the size
of Pic’(X). We define it via the Theorem of Riemann-Roch. First we define a
space associated to an effective divisor.

Definition 2.23 Let D be an effective divisor. Consider the following partial
order > on Div(L):

D' > D <= D' — D is an effective divisor.
Define for a divisor D
H®(D) := {a € L|div(a) + D > 0}.
This set actually is a finite space over k. Put h°(D) = dim H°(D).

Hence, this dimension is the same for all elements of a divisor class. We do not
further motivate the following theorem but a detailed treatment can be found in
almost any book on the topic.
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Theorem 2.24 (Riemann-Roch) Let X/k be a nonsingular complete curve.

Then there exists a divisor K € Div(k(X)) and a non-negative integer g such
that for all D € Div(k(X)) we have

hO(D) = deg(D) + 1 — g+ h°(K — D).

Definition 2.25 The integer g occurring in the Riemann-Roch Theorem is called
the genus of the curve X/k. A nonsingular complete curve of genus 1 is called
an elliptic curve.

An important property of the genus is that it does not chance with scalar
extensions of the ground field.

For an arbitrary given curve it is hard to find the genus, however there are some
examples where it can be read off from the polynomial defining the corresponding
function field.

Example 2.26 Let the curve X/k be given by a polynomial

y> — f (=),

where f is squarefree and char(k) # 2. Let deg(f) =2g9+¢, e =1 or 2. Then
the genus of X equals g.

In characteristic 2 we have seen that the defining equation of a quadratic function
field is of the form y> + h(zx)y — f(x). Let deg(f) =2g+¢, e =1 or 2. Then the
genus of X equals g and we even have that degh < g.

2.2 Algorithms for the Ideal Class Group

To summarize the previous subsection we state the case of function fields we
consider in this article as a definition. Furthermore note that from now on we
let k = F, be a finite field of characteristic p. We deal with hyperelliptic curves
in imaginary representation only, hence with those having at least a F -rational
Weierstrass point. Thus the class number and |Cl| are equal.

Definition 2.27 Let F (X)/F, be a quadratic function field. Let F (X) be de-
fined via an equation

y? + h(z)y = f(z) in Flz,y], (1)

where f(x) € Fylz] is a monic polynomial of degree 2g + 1, h(z) € F,[z] is a
polynomial of degree at most g, and there are no solutions (x,y) € Fq X Fq which
simultaneously satisfy the equation y*> + h(x)y = f(x) and the partial derivative
equations 2y + h(z) = 0 and h'(z)y — f'(z) = 0. The curve C/F, associated to
this function field is a hyperelliptic curve of genus g defined over F,.
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We have seen that for odd characteristic is suffices to let A(z) = 0 and to have f
squarefree.
We now provide some very basic examples.

Example 2.28 Curve of genus 1 (elliptic curve) over Fig0;
C: y* =2’ 4 598z + 1043.
Curve of genus 2 over Fy = Fo(a), > =a+1
C:y’+ @ +az+l)y=2"+azx* +2° + 2> + o+ 1.
Curve of genus 3 over F100000007

C:y* = 2" —32%+32°+ 25000003 2*
449999999 x> + 75000009 z2
+50000002 z + 25000002.

Curve of genus 4 over Faro
C: v +z'y=a"+22+2°+2.

Note that if P is defined over Fy- and P does not correspond to the valuation
vp, — the extension of deg under m — this means that we can find a basis of
the corresponding maximal ideal of Fy [z,y]/(y* + h(z)y — f(z)) of the form
(x —a,y —b), a,b € Fp. Hence, for the points defined over a fixed extension
field we can rely on the interpretation of a point as a zero of y* + h(z)y — f(x)
if we add the point associated to vp, which we denote from now on by oo like on
P

We have seen in the previous subsection that the maximal ideals of
F,z,y]/(v* + h(z)y — f(z)) have a basis consisting of two polynomials.
By the construction presented there, the first polynomial € F,[z]|, whereas the
second one is of the form y — 2(z), 2(z) € F,[z]|, since we reduce modulo a
polynomial of degree 2 in y. Now consider the ideal class group, i.e. the ideals
modulo the principal ideals. We can even show that in each class there exists a
unique representative D = (a(z),y—b(z)) such that a is monic of deg(a) < ¢ and
degb < dega. Since D is an ideal of F,[z,y]/(y* + h(z)y — f(z)) we additionally
have that a|(b? +bh — f). For short we denote this ideal by [a, b]. We refer to this
representation as Mumford representation. We now denote the ideals and ideal
classes by D due to the relation to the divisors. Computing in the ideal class
group consists thus in a composition of the ideals and a first reduction to a basis
of two polynomials. The output of this algorithm is said to be semireduced. Then
we need a second algorithm which is usually called reduction to find the unique
representative in the class referred to above. Such an ideal is called reduced. Due
to the work of Cantor [2] (for odd characteristic only) and Koblitz [21] there
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exists an efficient algorithm to do so which is similar to the computation in the
number field case. The algorithms are given in detail in several publications
including Cantor [2], Koblitz [21], Krieger [25], Menezes et.al. [35] and are
therefore stated here without further comments. The running time estimates
are 179> + O(g) operations in F, for a generic operation whereas doubling takes
16¢%+0(g) operations (see Stein [55]). Improvements are possible in special cases.

Algorithm 2.1 (Composition)
INPUT: D1 = [al,bl], D2 = [ag, bg],
C:y*+ hz)y = f(z).

QUTPUT: D = [a, b] semireduced with D = D1Ds.
1. compute di = ged(aq, a9) = erar + eaxas;

2. compute d = ged(dy, by + by + h) =;
= Cldl -+ Cg(bl + b2 + h),

3. let s1 = cie1, S9 = c1€9, 83 = Co;

d= 81071 + Sg09 + 83(b1 + b2 + h),

4. a= 2%
- - d2 )
b= s1a1ba+s2a2b1+s3(b1ba+f) mod a.

d

Algorithm 2.2 (Reduction)
INPUT: D = [a,b] semireduced.
OUTPUT: D' = [d’, V'] reduced with D = D'.

1. letd = M;
b= (—h —b) mod d';

2. ifdegad’ > g put a:=d',b:=1b goto step 1;

3. make a monic.

The inverse of a class in the representation is represented by [a, —h — b].
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2.3 Cardinality of Pic’(X/F )

Note that later on we consider the case where the class group and the ideal class
group are isomorphic, however the results presented here hold in general for the
Picard group Pic’(X). Unless stated otherwise the results hold for any nonsin-
gular complete curve X defined over F,.

For cryptographic purposes it is necessary to know more about the group struc-
ture of the chosen group. For example to avoid the Pohlig-Hellman attack one
has to guarantee that the class number contains a large prime factor. Let F, de-
note the algebraic closure of F, contained in F (X). Let Fy» denote the unique
subfield of F, of degree n. Extending the concept of extension of scalars to the
Picard group we put

N, = |Pic®(X/F )|

For the group order we have the following bound depending only on the finite
field and the genus of the curve.

Theorem 2.29 (Hasse-Weil)

(qn/Q . 1)2g < Nn < (qn/Q + 1)2g.
Thus N, ~ ¢™.
Denote by M, the number of points of Xg_that are defined over F,r or a subfield
F,:, s|r. There is a relationship between the N; and the numbers M, for 1 <r <
g. The power series Z(X/F,,t) = exp (Y .o, M,t"/n) is called the zeta-function

of X/F,. One can show that the zeta function is rational and can also be written

in the form Z(X/F,,t) = %, where L(t) is a polynomial € Z[t] of degree

2g. We are more interested in the related polynomial P(T) = T?L(1/T). In the
following theorem we list the most important properties of P.

Theorem 2.30 Let the factorization of P(T) over C be P(T) = [[22,(T — 7).
1. The roots of P satisfy |7;| = \/q.

2. They come in complex conjugate pairs such that there exists an ordering
with 744 = 7;, hence, T;147; = q.

3. P(T) is of the following form

T2 4 T2 '+, 72924+ + a,T9 + qag_ng’l +4¢7 T+ ¢°.

4. For any integer n we have

29
N,=]Ja-7.
i=1
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5. For any integer n we have
M, — (¢" + 1)| < g[2¢™?].

6. For any integer n we have
29
M, =q¢"+1 —ZTZ-”.
i=1

7. Put ag =1 then
ia; = (M; — (¢" +1))ao + (M1 — (¢ +1))ar + - -+ (My — (¢ + 1))ai
for1<i<g.

Thus from the first g numbers of points on the curve M; one can obtain the
whole polynomial P(T) and thus the class number. To illustrate this relation:
for a genus 2 curve we have to count the number of points defined over F, and
F, to obtain a; = My — ¢ —1 and as = (My — ¢* — 1+ a})/2.

Hence, if the curve is defined over a small field, then we can easily obtain the
polynomial P(T') and therefore the class number for any extension field. A curve
defined over a small finite field which is considered over a large extension field
is called a Koblitz curve. We have just seen one advantage of Koblitz curves -
P(T) can be determined easily. In the following section we explain the details
on the computation of P(7T) for Koblitz curves.

From 1. and 5. we can obtain bounds on the coefficients of P. For example
we have |ai| < ¢[2,/g], |a2] < (%)g. In more detail and in dependence on a;
Riick [45] shows for hyperelliptic curves of genus 2 that in the case of irreducible
P(T) we even have

2|la1]/q — 29 < as < a3 /4 + 2q, (2)

and a? — 4ay + 8¢ is not a square.
Furthermore the structure of P(T), i.e. 3. can be read off from 1. and 2.. 7.
follows by considering the derivative of In Z(X/F,,t) in the representation as

[ed] n L
exp (D> .~ Myt"/n) and as %.
Let P(T) =T +a, T ' + a7 2+ +a,T9+qag 1T+ -+ ¢y T+ ¢*
correspond to the curve X/F, and let Y/F, be a twist of X. One can show that
for Y the polynomial is of the form 7% — a; 7% 1 + aT%9 2 + — - - + —q,T9 +
qag TP+ — - — ¢ a T+ ¢f.

In cryptographic applications we usually work in a subgroup of PicO(XFqn) of
prime order. Since two curves having the same polynomial P(T) have the same
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class number over any extension of the ground field, we can classify the curves
using this polynomial. The classes will be called isogeny classes due to the
geometric concept of isogeny.

There are certain curves we want to avoid, since they are weak under a special
attack. For the elliptic curves one can use the Weil pairing to map the discrete
logarithm problem of the curve over Fy . to an equivalent one in F g, where k
is such that the I-th roots of unity are in F », where the prime [ is the order
of the group used in the cryptosystem. Thus k is the order of ¢" modulo [.
Menezes, Okamato, and Vanstone [32] showed that for certain elliptic curves k
is always < 6 independent of the degree of extension n. This attack is a special
case of the one by Frey and Riick [8] which works also for the Picard group
of hyperelliptic curves. Thus before accepting a hyperelliptic curve to use in
cryptography one should always check that k is large enough, i.e. > 2000/ log, ¢".

Usually £ depends on the extension field F,» we consider, however there are some
curves that are always weak under this attack. Galbraith [10] provides a list
showing how large k£ can get for so called supersingular curves depending on the
genus of the curve. Since the k is relatively small in any such case, supersingular
hyperelliptic curves should be avoided.

Note that this is an abuse of notation since it is the Jacobian variety of the curve
that is supersingular in this case. The Jacobian variety J is an abelian variety
that corresponds in a functorial way to the Picard group of the curve X such
that for any field F;» C F, the group of Fg«-rational points of the Jacobian
corresponds to the group Pic’(Xg , /F,) and such that for a given Fg-rational
point P, there exists a morphism X — J that sends P, to the identity element
of J. This morphism induces the map P + class of P — P, on the F,-rational
points of X. Since we do only use the concept of supersingularity to exclude some
curves we shall use the criterion to detect them (see Tate [59]) as a definition.

Definition 2.31 Suppose ¢ = p" and suppose J 1is the Jacobian variety of a
hyperelliptic curve of genus g over F,. Suppose

P(T) — T2 + a1T29*1 4+t ang 4+t qgflalT + qg
is the corresponding polynomial. Then J is supersingular if and only if, for all

1<1<g,
P2 g,

Note that we have to be aware of k for every curve, but usually £ can be large
depending on n whereas for supersingular curves it is always small.
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2.4 The Frobenius Endomorphism

Also in this subsection the results hold for arbitrary curves defined over the
finite field F,.

Definition 2.32 Let X/F, be a nonsingular complete curve. The homomor-
phism o* : Fy (X) = F (X),a — a? is a map of Fy-algebras which enduces an
endomorphism o : X — X called the Frobenius endomorphism.

8

The map o* can be extended to a map * : Fy(X) — F (X), Y7 aia; —
i aiaf, where a; € Fy, o € Fy(X) and a corresponding map & : Xy, = Xp,.
In the first subsection we used the Galois group of k/k to define the field of
definition of a point. For finite fields k¥ = F, this group is generated by the
Frobenius automorphism F of F, over F,, where F(a) = o? for o € F,. Fur-
thermore we have seen that the groups Gal(F,/F,) and Gal(F,(X)/F,(X)) are
isomorphic. Now consider the action of F' on the function field F : F,(X) —
F (X), Y0 aios — >0 ala;, where like above a; € Fy, ; € Fy(X). One can
show that for points P € X the action of this map and a(P) are equal. Thus,
let F,(X)/F,(z) be a finite extension, hence, F,(X) = F,(x,y)/(f), and let P
correspond to a maximal ideal of F,[x,y]/(f) given by (z —a,y —b). Then using
the second map we see that 6(P) corresponds to (z — a?,y — b?). This motivates
the following statement which could also have served as a definition of the field
of definition of a point.

Lemma 2.33 Let X/F, be a nonsingular complete curve. A point P € Xy, 18
defined over ¥y if and only if 5(P) = P.

In the case of hyperelliptic Koblitz curves C/F, we consider here, we identified
a point with oo or with a zero of the defining polynomial. If P # oo is defined
over F,r, then P = (a,b), a,b € Fy and 6(P) = (a?,07). For the point co we
have seen that it is defined over the ground field, hence 5(o0) = oo.

The Frobenius endomorphism extends to the group of divisors and hence also to
the Picard group Pic’ (Xg,/Fy).

Example 2.34 Consider the case of imaginary quadratic function fields. Then
we represent the divisor classes via the ideal classes. If D = (3._,a;x’,y —
S 90 biat) represents an ideal class, then we have that 5(D) = (3.0_,alz,y —

9—13q i

Let X/F, be a nonsingular complete curve of genus g. Denote by J[m] the
kernel of the multiplication by m map on Pic’(Xg, /F,). One can show that
the natural action of Gal(F,/F,) on Pic’(Xy, /F,) restricts to an action on J[m)],
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pm : Gal(F,/F,) — J[m]. If m is prime to p then J[m] is isomorphic to (Z/mZ)?
as Z/mZ-module. Furthermore one can show that the image of p,, lies in the
subgroup of endomorphisms of the (Z/mZ)-module J[m]. Hence the image of
a Galois automorphism corresponds to a matrix of GLyg(Z/mZ). We shall be
interested in the image of the Frobenius automorphism.

Let | be a prime. The Tate module T;(X/F,) of X/F, is defined as the pro-
jective limit of the projective system of multiplication by [-homomorphisms
{J[I™*1] — J[I™]}. Using the projective limit of the representations p;- leads
to a representation p; of Gal(F,/F,) in GL,(Z;), where Z; denotes the l-adic in-
tegers and s = 2g for [ # p.

Let now F € Gal(F,/F,) denote the Frobenius automorphism. Put

P(F,1)(T) := det(p,(F) — T).

Then this polynomial is the characteristic polynomial of p;(F') in GLyy(Z;). The
following theorem will be important for our applications.

Theorem 2.35 Let X/F, be a nonsingular complete curve of genus g > 1. Then
for all primes | # p the polynomial P(F,1)(T) is a polynomial with integer coef-
ficients. Moreover the coefficients are independent of the choice of . In fact this
polynomial is equal to the polynomial P(T), which is T*¥L(1/T), where L is the
numerator of the zeta-function Z(X/Fy,t).

We will make intensive use of the Frobenius endomorphism of the curve to speed
up the arithmetic in Pic’(X/F,) and use the fact, that for points the maps de-
fined above correspond such that we can use the characteristic polynomial of the
Frobenius automorphism of Gal(F,/F,) also as the characteristic polynomial of
the Frobenius endomorphism of X and of Pic’(X/F ), due to the representa-
tion of a divisor as a sum of points.

3 Computation of P(T)

From now on we only consider hyperelliptic Koblitz curves of genus g. In this
section we state some details for computing P(7') in the case of Koblitz curves.
Since the coefficients of P(T") do only depend on the number of points on the
curve over Fg,... Fg, where the curve is defined over F, and has genus g, we
first need a way to count the points.

As F, is of small cardinality since C is a Koblitz curve, this can be done by a
brute-force search using some short-cuts. Stein and Teske [57] investigated a way
to compute P(T) by determining M; only up to i = g — 1 respectively to g — 2
and computing N; (and also N, in the second case). Although the complexity of
their algorithm is better we do not get into its details since our fields and genera
are of such a small size that we can count at almost no effort even for F.
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Note that the following ideas can be found in Koblitz [21]. First, let ¢ be odd,
then C is given by C : y* = f(x). a € F, leads to a single point iff f(a) = 0,
hence, to P = (a,0). There are two points with first coordinate a iff f(a) is
a square in F . Using the quadratic character x of F, with the convention
x(0) = 0 we have

My=1+ Y (1+x(f(@)=¢+1+ > x(f(a)).

aEFqi aEFq

x(f(a)) can be computed by f(a)@~Y/2, Thus in the algorithm we simply
compute Y . . X(f(a)) and add ¢* + 1.

In case of ¢ = 27 the defining equation is C' : y? + h(zx)y = f(r) and
h(z) # 1 since otherwise the curve is supersingular (see Galbraith [10]). If
h(a) happens to be 0 then a gives rise to one special point. Otherwise we
make a transformation by dividing through h(a)? which leads to the equation
v2+v = (f(a)/h(a)?), v = y/h(a). This equation is satisfied for two distinct
values v iff Trp ,.x,(f(a)/ h(a)?) = 0. If we apply the trace map on both sides
then Tr(v? +v) = Tr(v?) + Tr(v) = 0 since we are working in characteristic 2 and
Tr(v?) = Tr(v). Thus to compute M; we do the following. For every a € F, we
first evaluate h(a) and increase M; by one if this is zero. Else we compute the
trace of f(a)/(h(a)?) and increase M; by two if this is zero. Finally we have to
add one for the single point at infinity.

To build a list of all nonisogenous classes of hyperelliptic curves we make a brute
force search though all possible curves i.e. all polynomials f (and A in char-
acteristic 2), first check for nonsingularity, and then compute the polynomial
P(T). Since two curves are isogenous iff they have the same polynomial P our
algorithm stores only one representative equation. If one chooses a curve — or
rather a suitable polynomial P — it might be advantageous for implementation
to search through all isogenous curves as the addition formulae depend on the
representation of the curve.

Consider the same curve as defined over F» and denote the corresponding poly-
nomial by P(T). Since due to [Pic’(C/F4)| = P(1) the class number is highly
composite unless the polynomial for the corresponding field extension is irre-
ducible we want to exclude the cases where P is reducible. On the other hand
we only compute the polynomial P of the ground field. And it would be rather
time-consuming to check all extension fields. However we can exclude some cases.
Due to formula 4. in Theorem 2.30 we have that if P is reducible then P for any
extension of the ground field is reducible, too. Hence, we only take into account
those curves with irreducible P. Some of the results are included in Section 5,
but most of the tabulars require to much space.
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4 Counting Points

In this section we deal with the problem of evaluating an expression of the form
[[;_;(1 — af) where the «; are the roots of a polynomial of degree r. This
problem was considered by Pierce [39] and Lehmer [27] for arbitrary polynomials.
They give explicit formulae to establish linear recurrence sequences to compute
this expression for polynomials of degree at most 5. However, we can make use
of the special structure of our polynomials and obtain recurrences of lower order
for any degree.

In the age of computer algebra systems the more direct approach would be to
factor the polynomial over the complex numbers with a suitable precision and
to compute the expression directly. To get the result one takes the nearest
integer or even better the nearest integer divisible by [[;_,(1 — ), i.e. by the
value of the polynomial at 1. However our approach has the advantage that it
is fast, uses exact integer arithmetic only, and that due to the recurrences one

saves even more computing the class numbers for various extensions subsequently.

Let
P(T)=T% +a,T% '+ -+ a,T9 +a, 1gT9 " + -+ a1¢° 'T + ¢

be the characteristic polynomial of the Frobenius endomorphism associated to
the hyperelliptic curve of genus g. In order to compute the order of Pic’(C/Fg)
we use Theorem 2.30

9 9

N, == - =[O +a) - 7+ 7).

i=1 i=1
For cryptographic purposes we are interested in groups which contain large
prime order subgroups. For ny|ny we immediately get by N, = [[2%,(1 — 77)
that N, is divisible by N,,,. Therefore we compute the number of divisor classes
only for n prime in order to achieve a big subgroup of prime order. The results
for various Koblitz curves can be found in the next section.

We know that the roots 7; of P occur in conjugate pairs and 7; - 7; = ¢. So by
grouping together these pairs we obtain g equations T2 — i, T + ¢ satisfied by the
Tiy i.e. T+ T = M-

As the following formulae get very complicated dealing with the coefficients of P
we now introduce the related polynomial

g
Q(T) = H(T ) =T+ b7 4+ b,
i=1
The coefficients Q(7') can be obtained recursively from the coeflicients of the
corresponding polynomial P (because the 7; are the roots of P, and thus
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the symmetric expressions in (7y + 71),..., (7, + 7,) depend only on those in
Ti,T1,. .., Tg, Tg, hence on the coefficients of P). This has the advantage that we
can carry out the computation of the b; using exact integer arithmetic. We first
make use of the b;, and then return to the computation of these coefficients.

To ease and speed up the computations we derive recursion formulae for the
expressions (77* + 7*) and state them in terms of the corresponding p;. In the
final step we expand the given product using ). Note, that we need not factor
neither P nor Q.

Suppose that we already got 7' + 7 = Ay, + piAoy +--- + ,ufflAg’n, where
A, € Z (for the 7; are algebraic integers and by 77" +7" = 77"+ (1;—7;)™ € Q(1;))-
We immediately get:

A = (o R+ A7) = i+ )
= ,U:i(Al,n + llj’iAQ,n —+ o+ ,U,i.]*lAg’n) — q(Al,nfl —+ ,UJiAQ,nfl + -4 N’gilAg,nfl)
= (qA1p 1 —byAgn) + pi(Arp + qAgp 1 — by 1Agy) + -+

+/,L:Z-]71(Ag_1,n + qu—2,n—1 - blAg,n)-

With the initial states A9 =2=17 + 7, Ajo=0for j#1and Ay; =1 (as
T+ 7 = wi), Aj1 = 0 for j # 2 we are lead to the following definitions of linear
recursions:

Al,n—|—1 = qu,n—l - bgAg,n
A2,n+1 - Al,n+ qAQ,nfl - b_qflAg,n

Ajin+1 = Aj_17n+ quan_l - bg_j+1Ag7n

Agin+1 = Ag_1=n+ quan_l - blAgan'

In the expansion of the product

g g

[T+ = +7) =TI+ ¢") = (Apn + piAop + - - + 1™ Ag )

=1 =1

the terms in the p; are symmetric polynomials in u;, and therefore they can be
expressed in terms of the elementary symmetric functions, hence in the coefficients
of Q.

For the implementation we explicitly computed these dependencies on the b; for
genera up to 4. For example in the case of genus two this formula is

[Pic’(C/Fgn)| = (14 ¢")° = (2A1 — b1As,) (1 + ¢") + AT, — b1 A1y Ano + b2 AS .
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Thus to build the tables of group orders given in the next section we run the
recurrence sequences from n = 0 to the maximal value of interest. This is almost
for free. We compute the class number only for the cases of n prime. The
evaluation of the expression in the b;’s is also fast and we gain from computing
the values for several extensions.

We now deal with the computation of Q).

Theorem 4.1 Let

P@) = [[@-=)

= TY4+a,T "+ + a7 +a, 1T + -+ a1¢°'T + ¢

and put ag = 1. Then the following statements hold for the coefficients of
QT) =L (T — i) =T+ 0TI + - + by, iy =75 + 75

k .
—2(k—1 :
Qop — (Z (g (Z ))q’bz(k_i)> )
=1
b g2k —i)—1)
boky1 = Qopy1 — (Z ( ; )qzb2(ki)+1> -

i=1

bag,

Proof. Choose the ordering of the roots 7; of P(T) as usual such that for
1 < i < g we have T; = 744;. The b; are the elementary symmetric functions in

. = (1) 5
the ;, thus b; = (~1) Zi1<___<ij Wiy« - i;- We have to consider two cases for

odd and even index:

g

bop = E Wiy Piy " * Pigy,
11 <t < <tk
g

= Z (Til + 77_1'1)(7-2'2 + 77_1'2) e (Tizk + ’fizk)'

11 <t2<--<lop

Expanding and rearranging this product leads to the sum of all products of 2k
different 7;’s with the property that no two conjugated 7;’s occur. Hence,

29

bok = § : Ti1 T " T+

J1<j2< - <Jak
no two conjugate
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Since the coefficients of P contain conjugate 7;’s, (a; = (—1)° Z§f<...<j¢ Ty Tj)

we have to subtract from ag, any cases of two or more conjugates. Then they are
expressed with respect to the by, with &' < k.

29 29
o = § : Ti1Tj2 " * " Thag, — E : E : TuTuTh " Tiog—a —
J1<j2<+<jag J1<<jak—2 g
no two conjugate [1,l1+g#j1,.--,Jok—2
29
— E E TWTh T T Tj1 " Thogg — ' — E TTh T Tl -
J1<-<dog—4 l1,l2<g I,k <g

no two conjugate l;,l;4+¢,#j1,.--Jok—4a

Once the j; < ... < jor_9; are fixed, there are (g_z(ik_i)) choices for the Iq,...,1;.
We have 7,7, -+ 7,7, = ¢ and 3% 7Ty _y = bag—z;. Thus
no two conjugate
—2k+4 g
b, = agk — (9 — 2k +2)gbay, 2 — (g 9 )C]252k4 — = <k> q¢"bo
k .
g—2k—1)\
= an— () ( (Z )>qzbz<k—z’>

i=1

The case of odd index is treated similarly. The difference lies in the fact that
there is an odd number of 7;’s to deal with. Since we consider pairs of conjugates
the number of elements to choose the respective [;’s from is decreased by 1.

g
b2k—|—1 = - E iy Mg« = gy o
11 <82 <---<lag41
g
= - E : (Ti1 + Til)(Tiz + Tiz) T (Ti2k+1 + Ti2k+1)
11 <@ < <fop41
29

= - E : Ti1 T2 """ Tiogta

J1<d2<<Jog+41
no two conjugate

29 29
= - E : TinTi2 " Tioggr T E : E : T ThTj " Tiggoy T
J1<j2<-<jok+1 J1<-<j2k—1 <9
no two conjugate I1,l14+97#j1,.-J2k—1
29 29
+ E E T X TR P R E E ThTh T, T Ti
J1<-<jop_3 l1,19<<g J1 l,enlg<g
no two conjugate l;,li+g7]1,--sJ2k—3 li)li+g#51

—2k+4-1 —1
= a2k+1—(g—2k+2—1)qb2k1—(g 5 >q2b2k3_"'_ (gk )qklh
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Table 1: Binary curves of genus 2

Equation of C' P(T)
v 4+y=a+2° T4+ 2T3 +2T% + 4T + 4
Vv+y=a>+23+1 T* — 2713 4+ 2T? — 4T + 4
V4+y=2>+23+x T+ 272 + 4
v +ry=2"+1 T+ T3 4+2T + 4
y2+xy=x5+:r2+1 T — T3 - 2T + 4
y r(@+z+l)y=a+2'+2 | T+ T?+ 4
+ (@ +r)y=2+2*+z T —T?+4
+ (@ +z+1)y=2°+2" T* + 273+ 3T% + 4T + 4
+ @ +z+)y=a"+a'+1 | T*—2T°+37% — 4T +4

k .
—2(k—1)—1\ ;
= Q41 — (E (g ( ; ) )qzb2(k—i)+1>.
i=1

5 Examples

This section provides several examples for the characteristic polynomials and
the class number for hyperelliptic curves of genus 2,3 and 4. The algorithms
described in the preceding sections have been implemented using the computer
algebra system Magma. For all the examples we present as “nice examples” we
checked that ¢"* # 1 mod | for k < 2020;’”, where [ is the large prime dividing

|Pic®(C/F ). Thus these curves are secure under the Frey-Riick attack.

The complete lists with all curves and all group orders for suitable extensions

have been made public. They can be obtained from
http://www.exp-math.uni-essen.de/ lange/KoblitzC.html.

Remark: When we speak of all isogeny classes we consider only those
hyperelliptic curves having at least one F -rational Weierstrass point.

5.1 Binary Koblitz Curves

Over Fy we can classify up to isogenies the nine classes of hyperelliptic curves of
genus 2 with irreducible P(T) given in Table 1.

The first five examples were given in Koblitz [21]. Besides the first three classes
these curves are non-supersingular. The fourth and fifth case were studied by
Giinter, Lange, and Stein in [17] where they also give tables stating the group
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Table 2: Curve with P(T) =T* +T? + 4:
n | |Pic®(C/Fan)|

61 | 5316911983139663492953680213645327006=

2-3-28549 - 1683601 - 18436485874741919325168049

67 | 21778071482940061661933311406888688670134=

2.3 -1200109695244769627 - 3024455676736879780907

71 | 5575186299632655785387655742010246170856454=

2-3-89603 - 205579223 - 50443633667649128915517181261

73 | 89202980794122492566135449435595199268083726=

2-3-1607 - 230389 - 40156005041388474897223374021340127

79 | 365375409332725729550920124174223720018505058214=

2.3 -47100403685197463 - 1292895533602240063852543777463

83 | 93536104789177786765035812824978038852703797931254=

2-3-167%-6143 - 410175709 - 20161744307 - 11003137296258831609409

89 | 383123885216472214589586756196910238039372229984597326=

2-3-49307 - 15590885966106020183 - 83063189494092733119300351841

97 | 25108406941546723055343157692645817997961288373601574818286=

2-3- 444649 - 1107004113769 - 8501613431704058621006174311112801040301

101 | 6427752177035961102167848369366568644401251546953123398915006=

2.3 -4243646561167484411070572401 - 252446101263265107819810889340101
103 | 102844034832575377634685573909818603313575101884725372017554054=
2-3-4709161 - 39418138729 - 92339645752877062571888142037449143716984561
107 | 26328072917139296674479506920917301414787852721508015252463986134=
2-3-6421 - 74994216391141 - 9112496619561893347803980601085579631534736049
109 | 421249166674228746791672110734682597034357074384641885294339640926=
2-3-34081415711260123261703 - 2060014027601229583321512687759335041888307
113 | 107839786668602559178668060348078516984115385385576512046713859188526=

orders. Remember that the class number is the same for any curve in an isogeny
class. Therefore we need to care only about the corresponding polynomial P (7).
In Tables 2, 3, 4, and 5 we state the class numbers in the remaining cases in the
range of cryptographic interest.

Note that T* — T? + 4 leads to very good groups for n = 67 and 79 and that the
magnitude of these groups is in the region of cryptographic interest. The same
holds for T* 4 273 + 3T? + 4T + 4 and n = 67 and for T* — 27° + 3T? — 4T + 4
and n = 89.

For binary curves of genus three the classes of nonisogenous curves with
irreducible P(T) given in Table 6 are to be considered.

2322721583 - 3824147 - 6778085329 - 2530945889145571847 - 3358695792503140247319023
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Table 3: Curve with P(T) =T* —T? + 4:
n | |Pic®(C/Fan)|

61 | 5316911983139663490276776268597429604=

22 .1831 - 34039 - 21327224596069892980071644089

67 | 21778071482940061661378638344377642396236=

2?2 . 5444517870735015415344659586094410599059

71 | 5575186299632655785380203394313934582133756=

22 - 26839 - 148249 - 350300929811452465486759451374849

73 | 89202980794122492566150296745591692779759604=

2?2 . 8761 - 442189471 - 5756483947455991782107502725371

79 | 365375409332725729550922292183917789809461213276=

2?2 . 91343852333181432387730573045979447452365303319

83 | 93536104789177786765035845762706187663255567569676=

22.14922571 - 19492219 - 31262449 - 2571528586879431396168827419

89 | 383123885216472214589586757378244353769997331107203764=

222671 - 53497189 - 670307974525390635096804382861885945480039

97 | 25108406941546723055343157693015513330857555182110701284884=

2?2 - 14551 - 431386278289236531086233896175787116535934904510183171

101 | 6427752177035961102167848369362732175776372403309219283496004=

22 - 59962489 - 1898267731 - 1204958581789 - 231501457725649 - 50609980118281999
103 | 102844034832575377634685573909850209809266881319472110901022076=

2?2 . 43261 - 420859 - 18751186669 - 579776615513755189 - 129896213174170756724641
107 | 26328072917139296674479506920917914744659694978766540374691502636=

2?2 - 973257085699 - 6762877276724446297957839955469677939505181064238041
109 | 421249166674228746791672110734680861516803688819751004740148179364=

22 . 247885621 - 598722031900039 - 709581833294910782648588418537541414098739
113 | 107839786668602559178668060348078528404981769994748067802115022805204=
22 - 299464210429 - 5149674762391 - 27151900595462829709 - 643863885540809557163851
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5 EXAMPLES

Table 4: Curve with P(T) = T* + 273 + 3T% + 4T + 4:

n | |Pic®(C/Fan)|
61 | 5316911977033364753140596481861826078=
2-7-8297 - 84913 - 539058824399606395941223457
67 | 21778071483463258786186409694173819439362=
2-7-1555576534533089913299029263869558531383
71 | 5575186299519090460509374439525583695134642=
2-7-569- 67217532937 - 10412056438741229571321406751
73 | 89202980794660877710779236197113745019927342=
2-7-5215121 - 38961862367 - 31357919011564553499404479
79 | 365375409332684354222911973151271502086185656786=
2.7-765353 - 340996161558956039354120603873 79745227383
83 | 93536104789160189806805423910911919572829943988546=
2-7-167%- 16305189977 - 23564064703 - 114833530663 - 5429670992567
89 | 383123885216459517032176679352494921969133201300475502=
2-77-27535906720484993 - 993829332695156643037204399999982801
97 | 25108406941546475519266315021658437571181521793461683089038=
2-7-14551-1233451320939473 - 99925485729323135043380964652866217079
101 | 6427752177035957907451442801389171479467324814535766520314942=
2-7-809-173481667802057497 - 3271364813643191699446032816977049688361
103 | 102844034832575476719110810648132974252699547665638242275462706=
2-7-1031-95791 - 222905317476413119 - 333693133335133257838716121713570521
107 | 26328072917139294546040852041778359184739018933207502722451192098=
2-7-522048144436627468578695929 - 3602304992325872016040102691473537183
109 | 421249166674228723916622526297781673826606073095629781898923047134=
2-77-23327 - 259285535870782740205972941431 - 4974779536224541687872518393713
113 | 107839786668602562144784569926136125127702549672855001914916536331214=

2-7-1583-476183 - 10218712550205474310417731984747447186313991554764219834409
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Table 5: Curve with P(T) =T* — 273 + 3T% — AT + 4:

n | |Pic®(C/Fan)|
61 | 5316911989245962242818683728633489154=
2 - 2432681 - 2620439 - 417032842527230298484303
67 | 21778071482416864537446635953410062641118=
21447182983 - 7524297804162635229606840931673
71 | 5575186299746221110262294379669429762239406=
2 - 569 - 86934124925851727 - 56354270899593227398081
73 | 89202980793584107421495344917337461052555634=
24397 - 9199 - 13288729471 - 1893198935882080472609113
79 | 365375409332767104878929811002998582341618884238=
2245582903177 - 385470718084279 - 1929833305427033271593
83 | 93536104789195383723266271508981636974607166019998=
2-1993 - 742036103 - 31624010819082508050012911382239813681
89 | 383123885216484912146996836504217327230624063025829938=
2-191561942608242456073498418252108663615312031512914969
97 | 25108406941546970591420000365856734391746032187874605051154=
2-8303783 - 10811233 - 4301079329 - 18213582137 - 33615921137 - 53103128412343
101 | 6427752177035964296884253937344652571417716786928117811276258=
2-607 - 39491718645242373390511 - 134070862451207479415245154349528577
103 | 102844034832575278550260337171619924730902372723788419368923438=
2-1115115916567 - 1194810566153 - 38594910823239289818210723140302070969
107 | 26328072917139298802918161800057517858600061794757601863017849022=
2-857-69337 - 167875511 - 49240121127292757087 - 26800120525355732899584237047
109 | 421249166674228769666721695171582786991896862126155481447535141442=
2-2617-5233 - 6529319 - 681135151789622559551 - 3458226390504253310223905604769
113 | 107839786668602556212551550770021002022143617259636900034540459252178=

2-457026017248411887857047 - 117979920834558666366991761541414920541129087
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Table 6: Binary curves of genus 3

Equation of C P(T)

V+rdy=z'+25+2°+2 TS +T°+4T +8
V+dy=a"+25+2 TS —T5 — 4T + 8
V+rdy=z'+25+2°+2 TS +T5 4+ 2T* +2T% + 4T? + 4T + 8
Vv+dy=a"+23+2 TS —T5 +2T* — 273 + 4T? — AT + 8
v+ (@ +2y=2"+2%+z T —T*+ 273 — 277 + 8

v+ @+ =2"+2t+x T6 —T* — 273 — 272 48

v+ @B+t tr)y=1"+2+10+x
v+ @+t +r)y=a"+15+2

T +T5 +T*+3T3+27T%+4T + 8
T6 —T5 4+ T*—373+927T% — 4T + 8

v +y=2a"+ 1"
v+y=a"+25+1

T6 +27° +2T* 4+ 273 + AT? + 8T + 8
T6 — 275 4+ 2T* — 273 + 472 — 8T + 8

v +y=a"+2°%+2*
v+y=a"+2°5+2°

T6 +2T* + 273 + 472 + 8
T6 +27% — 273 + 472 + 8

v +y=a"+2°+ 2"
y' +y=a’

T® +27° +8
T¢ — 273 + 8

4+ y=xa" +a°
y2+y::r7—|—a:5+1

TS +27° + 4T* + 673 +8T? +8T + 8
T6 — 275 +4T* — 673 +8T% — 8T + 8

v+ @B+ +)y=a"+2°

TS +27° +2T* 4+ T3 +4T? + 8T + 8

Y4+ @@+ +)y=a"+a+25+a2t +1 | 70— 275 +27* — T3 + 47?2 — 8T + 8

v+ @+ +)y=a"+2%+2° TC +2T* + T3 + 47?7+ 8

y-i—(:v +224+ 1)y =2a" TC + 274 — T3 +4T? +8
+@+22+)y=2"+1 T + T3 +8

y-i-(ac + 22+ 1)y=2a2"+ 2%+ 2* T6 —T3+38

v 2+ (2 +x+1)y=2"+2 TO +27° + 3T* + 6T + 612 + 8T + 8

Y4+ @@ +r+)y=a"+a%+25+2"+1 | T —27°+ 37" — 67° + 672 — 8T +38

According to the result of Galbraith [10] stated in Section 2 all these varieties

are non-supersingular.

For binary curves of genus four there are 79 classes of nonisogenous curves with
irreducible P(T') only 6 of which are supersingular.

For all these curves of genus 3 and 4 we computed the class number for suitable

extension fields.

This means for genus 3 all prime degrees of extension in the

range of 37 - 79 and for genus 4 in 29 — 67. Since the complete lists are to large
to be included here, we only list some nice examples. By P, we denote a prime

with k binary digits.

Curve with T® —T° — 4T + 8, i.e. g =3
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n = 37,
IPic’(C/F )| = 2596112782250361782170484757705812
= 22.649028195562590445542621189426453
= 2% Pig
n =47,
Pic®(C/Fy)| = 2787592652971032115720725740533510746226316
= 22.696898163242758028930181435133377686556579
= 2% Pig
Curve with T¢ +27T* — T3 +4T%? 4+ 8,i.e. g =3
n =47,
|PiCO(C/Fqn)‘ = 2787593652669850012488674859650329426543978
= 2-7-199113832333560715177762489975023530467427
= 2-7-P
Curve with T8 +T7 —T5 — 3T* — 2T3 + 8T + 16, i.e. g =4
n =47,
IPic®(C/F,.)| = 392319027687823966090793648631943976925199118618548227940
= 22.5-19615951384391198304539682431597198846259955930927411397
= 2°.5- Pigs

5.2 Curves over Fj

For larger fields the number of curves to consider increases considerably.
Therefore in this and the following subsections we only give some statistics on
how many curves were found and provide some examples of curves suitable for
cryptographic applications.

For genus 2 we found 22 nonisogenous classes of Koblitz curves with irreducible
polynomial P, none of which is supersingular. In the genus 3 case there exist 145
classes containing no supersingular ones and there are 1068 classes of ternary
curves of genus 4.

For all these curves we computed the class number in the range of cryptographic
interest. In detail: for genus 2 we computed the group order for prime degrees
of extension in 53 — 89, for genus 3 in 41 — 79 and for genus 4 in 31 — 67.

Some curves with almost prime |Pic’(C/F)l:
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Curve with T% — 273 + 2T% — 6T + 9, i.e. g =2

n = 959,

[Pic’(C/F )| = 199667811101604967778690445389889887784425007041531467156
= 22.49916952775401241944672611347472471946106251760382866789
= 2% Pigs

n = 61,

[Pic®(C/F )| = 16173092699229944614352376379779099336973126813590905333204
= 272.4043273174807486153588094094944774834243281703397726333301
= 2°- Py

n = 67,

[Pic”(C/F )]

8595044557171426883661551257387992338308447455624049410354582196
22 .2148761139292856720915387814346998084577111863906012352588645549
22 - Py

Curve with 7% + T3 + 572+ 3T+ 9, i.e. g =2

n = 53,

|PiC0 (C/Fm)| = 375710212613750065911595823481614395819784966143289
= 19-19774221716513161363768201235874441885251840323331
= 19- Pig3

n = 61,

|PiCO (C/Fp)| = 16173092699229882562486817678274704604693996874416224059211
= 19.851215405222625398025621983067089716036526151285064424169

19 - Pigg
n="1,
[Pic’(C/F )]

96392087339601733564494052917617861904281640159931972622598137325351
19 - 2968004596821143871815476469348308521277981061049051190663059859229
19 - Payo

Curve with 76 +T° + 5T* + 4T3 + 1572 + 9T + 27, i.e. ¢ = 3
n =59,

[Pic’(C/Fy)]
2821383260958017515748847417606632102819352907295219754610211050703061257893692760162
2-31-45506181628355121221755603509784388755150853343471286364680823398436471901511173551
231 Payy
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Table 7: Numbers of nonisogenous classes of curves over F, with irreducible P(T’)
genus | number of classes | number of supersingular
2 25 4
3 240 0

Curve with 7% + 277 + 276 + 275 + 8T* + 613 4 18T7% + 54T + 81, i.e. g =4
n = 31,

[Pic’(C/F,x)| = 145557822201415837969415424106602186437810288264500390373454
= 2-3-29-836539208054114011318479448888518312860978668186783 852721
= 2- 3 - 29 - P189
n = 61,
[Pic®(C/F )]

261568927457881775172526487607878904447598588664308319711209864388504499567973474092235288 «—
119903230812624287271271574

2 -3 - 29 - 150326969803380330558923268740160289912412981990981792937476933556611781360904295 <
4553076368505190981681748777421101

2-3-29- Py

5.3 Curves over Fy

Curves over F, allow to work in extensions of binary fields. This is advantageous
in hardware implementations. Compared to the F5, case there are more curves to
choose from. Although there is a small drawback since the number of precompu-
tations needed to obtain the speed-up considered in the next sections grows with
the field size. Furthermore one needs to be aware of Weil descent attacks since
now the field has composite degree of extension over Fy. The following numbers
of classes listed in Table 7 contain the classes of curves that are already obtained
for Fy, since every curve over F5 can be considered over Fy.

For these classes we computed the class number. For genus 2 we chose all prime
extensions in 29 — 59 and for genus 3 in 19 — 41. We did not carry out the
computation for genus 4 since then the degrees of extension get even smaller
— thus the computational advantages investigated in the following sections
decrease — whereas the number of defining polynomials for the curves grows
such that a brute force search trough all possible curves is rather time-consuming.

Some examples:
Curve with 7% — T3 — 4T + 16, i.e. g = 2
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n = 29,
IPic®(C/F )| = 83076749829698992058042621500367388

= 2%.3.6923062485808249413245218458363949
= 2°.3- Py

n =41,

|PiCO(C/Fqn)| = 23384026197316960486422682358066130544236740957388

= 22.3.1948668849776413373868556863172177545353061746449
2% 3 Pig
Curve with 7% + 27° + 7T? + 8T + 16, i.e. g = 2
n =959,
PIC(C/Fye)

= 110427941548649020343281285131795129969498221066698138419282824292856654
= 2-17-3247880633783794715978861327405739116749947678432298188802436008613431

= 2. ]_7 : P230
Curve with 76 — T° 4 5T* — 973 4 2072? — 16T + 64, i.e. g =3
n =19,
IPic®(C/F,»)| = 20769148196260031952815209804964032
= 2%.324517940566562999262737653202563
= 2° Py
n =23
IPic®(C/F )| = 348449083479439714971877756379159944059328
= 29.5444516929366245546435589943424374125927
= 2°. Py

5.4 Curves over F;

As the field size grows the degree of the extension needed to obtain a class number
of order ~ 2'%% decreases. Thus these fields allow us to work with smaller exten-
sion. Furthermore we obtain a larger variety of curves to choose from. But, as
was said in the preceding section the number of precomputations — thus storage
— grows also. Therefore the choice of a curve over Fj5 is only reasonable if these
storage requirements are fulfilled. Furthermore the Theorem of Hasse-Weil 2.29
provides a lower bound on class number in the ground field, thus on the unused
factor of the group size for the extension. This factor grows with g and gq.
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Over F5 there are 54 classes curves of genus 2 with irreducible polynomial P,
none of which is supersingular. For genus 3 we even have 916 classes.

We have complete lists of the class numbers for all these classes in the relevant
cases. For genus 2 we considered extensions of degree 29 — 43 and for genus 3
in 19 —29. Like in the case of F; we did not carry out the computation for genus 4.

Some nice examples:
Curve with 7% — 4T3 + 1272 — 20T + 25, i.e. g =2

n = 29,
[Pic’(C/F )| = 34694469522393632077212991999281685458254
= 2.7-2478176394456688005515213714234406104161
2 * 7 ' P130

Curve with 7% — 372 + 1172 — 15T + 25, i.e. g =2

n = 31,

[Pic’(C/F )| = 21684043450334881590050481456320990124273379
= 19-1141265444754467452107920076648473164435441
= 19- Py

n = 37,

Pic’(C/F )| = 5293955920340537004159560753167334605889814040117519
= 19-278629258965291421271555829114070242415253370532501
= 19- Pig;

Curve with T¢ 4 57° + 217T* + 5173 + 10572 + 1257 + 125, i.e. ¢ =3

n =19,

[Pic’(C/Fp)| = 6938889266073094641872874355228772937541
= 433 -16025148420492135431577077032860907477
- 433 . P123

Curve with 7% — 27° 4 3T* — 872 + 15T?% — 50T + 125, i.e. ¢ =3

n = 23,

[Pic’(C/Fp)| = 1694065906185866506125847996570349388706047353412
= 22.3.7-20167451264117458406260095197266064151262468493

22.3.7- P53
n = 29,
Pic®(C/F )| = 6462348536008289894896808635027304395262834292145210636182324

= 922.3.7-76932720666765355891628674226515528515033741573157269478361
22.3.7- Pgs
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6 Standard ways of computing m-folds

We describe the standard algorithms to compute m times a group element D.
The usual approach is the binary double-and-add method. It uses the binary
expansion of the integer m. First we present the algorithm and then we provide
some bounds on the density of these expansions. This method will serve as a
base to compare our new results with. Thus by a speed-up by a factor of 7 we
mean that the new algorithm is 7 times faster then the binary double-and-add
method.

The algorithm is best described using an example: Instead of computing 11D by
11D=D+---+ D we use 11 = 23 + 2! 4 20 to obtain it by
—_—

11 times
11D =2(2(2D)+ D)+ D,

thus requiring 2 generic additions and 3 doublings instead of 9 additions and one
doubling.
This can be formalized in the following way:

Algorithm 6.1
INPUT: D, m =3 o b2'.
QUTPUT: H = mD.

1. Initialize H :== D;
2. Fori=1-21t00 do

(a) H :=2H;
(b) if (bi=1) H:=H+ D;

3. output(H ).

To estimate the complexity of this algorithm we need bounds on the length and
density of the binary expansion of m. If the expansion of m has length [ the
algorithm needs [ doublings. [ — 1 is the largest power of 2 occurring in the
expansion of m, thus [ = |log,(m)| + 1. For every coefficient 1 occurring in the
binary expansion of m an addition occurs. The probability of a nonzero coefficient
is 1/2 as there are two possible coefficients. Since the complexity of an addition
is approximately equal to that of a doubling we get an asymptotic complexity of

~ (1 + ) logy(m).
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The groups we consider are finite. Thus it is useless to take m larger then the
group order. We therefore have m < |Pic’(C/Fg)| ~ ¢" by the Hasse-Weil
Bound 2.29. Thus to compute a multiple of a divisor class we need on average

3
~ggn log,(q)

group operations.

7 Representing Integers to the Base of 7

In this section we provide the basic tools for an efficient method of computing
m-folds of divisor classes. Like in the double-and-add method we first expand
the integer m to a given basis using a fixed set of coefficients. We also use the
fact, that the negative of a divisor class can be computed with almost no effort
(see Section 2).

The most important ingredient used in this chapter is the Frobenius endomor-

phism o of the curve. As we stated in Section 2 we have that if a divisor class

D is represented via a reduced ideal ( j:o azty — fool bixi), then o(D) is

represented by (ijo alzl,y — 297 blz?). Furthermore this ideal is reduced as
well. Thus provided that F g is represented with respect to a normal basis, (D)
is computed by at most 2g cyclic shiftings of the coefficients the costs of which
can be neglected. Thus this endomorphism can be used efficiently — if we know
how to use it in the arithmetic. We return to the choice of the ground field Fy»
in Section 15. Here we assume that the ¢-th power is easy to compute.

We have seen that the polynomial P introduced via the zeta-function of C' is the
characteristic polynomial of the Frobenius endomorphism of Pic’(C/F,). We
now investigate how to use it. Remember that by the results of Section 3 for
Koblitz curves we easily get P(T).

Consider the hyperelliptic curve C' with characteristic polynomial of the Frobenius
endomorphism o

P(T)=T* +a, T + -+ a7+ ag_1qgT9 " + -+ a1¢? ' T + ¢°.
Since P(0) = 0 we have for all divisor classes of Pic’(C/F,)

¢’D = —0*(D)— a0 (D)~ —a,0'(D) — -+ —aiq° 'o(D)
—o(---0(o(0(D) + a1 D) + agD) + - - - + a1¢? ' D).
This gives a first example where an m-fold is represented via a linear combination

of 09(D). The computation of a reduced representative of o(D) takes only cyclic
shiftings the costs of which are negligible, provided that the coefficients of the
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polynomials representing D are given with respect to a normal basis. (Even if
they are not, this expansion leads to a speed-up since computing the respective
powers of the coefficients is relatively fast compared to the operations with the
divisor classes.)

Now we make use of this not only for multiples of ¢7 but also for arbitrary integers.
Furthermore we provide a set of coefficients R such that for every integer m we
can express mD as a sum of the above kind using only these coeflicients.

Example 7.1 Let the hyperelliptic curve of genus 2 be given by the polynomial
2+ (2?+ )y = 2° +2* +x. The characteristic polynomial of the Frobenius endo-
morphism is P(T) = T* —T?+4. Using the set R = {0, +1,+2, 4+3, +5, +6, +7}
one obtains the following expansion

23D = 7D — 70*(D) — o®(D).

Let 7 be a complex root of P(T). Since both 7 and ¢ are roots of P, representing
mD as a linear combination of the o%(D) becomes equivalent to expanding m to
the base of 7. The elements of Z[7] are of the form ¢ = ¢y + 17+ -+ -+ c9g— 172971
with ¢; € Z.

To get an expansion of an integer m as m = Zé;(l) u; 7 using the restricted set of
coefficients u; € R we first need a criterion for an element to be divisible by 7.

Lemma 7.2 c=co+ 17 + -+ + ¢99-1729 1 is divisible by 7 if and only if ¢%|co.

Proof. Let ¢%|cy < 3é € Z such that ¢ = ¢9% + 17 + -+ + g9 17797!

Se=(—19 -t — it — - — @t ) T+ ey T
Sce=7(c1 —a1¢7 'G) + -+ (cg — aglo)TI 4+ -+ (cogm1 — a16) T2 — G )
< Tle. O

Therefore the minimal set of coefficients R consists of a complete set of represen-
tatives of Z/¢Z. Since taking the negative of a divisor class is essentially for free
(to —D corresponds [a, h — b)) we will use R = {0, £1, 42, ..., £[£2]} if just a
representation is needed. Note that we would not need to include —¢9/2 in the
case of even characteristic. But since we get it for free we will make use of it.
Furthermore in the remainder of the text we shall impose conditions to achieve
a sparse representation and therefore we will use different choices of the set of
coefficients R depending on the structure of P(T).

Now we state the algorithm for expanding an element of Z[7] to the base of
7. Note that at the moment we would only need to represent integers, but in
the further sections we will reduce the length of the representation. Thereby we
stumble over this more general problem.

Algorithm 7.1
INPUT: ¢ =cop+ 17 + -+ 172971, P(T), the set R.

OUTPUT :ug, ..., u_1 with c = Zé;(l) wiT, u; € R.
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1. Puti:=0;

2. While for any 0 < j <2g —1 there exists an c¢; # 0 do
if ¢%|co choose u; := 0
else choose u; € R with ¢%|co — u;;
/¥in even characteristic choose u; = ¢y if |co| = ¢9/2/*
d:= (co— u;)/q%
for0<j<g—1do
¢j 1= Cj1 — aj41¢Y 7 TNd;
for0<j3<g—2do
Cotj *= Cgtjr1 = Qgj1d;
Cog—1 ‘= _d;
1:=1+1;

3. output (ug,--.,Ui_1).

The choice of u € R might also depend on further conditions to obtain a sparse
representation of m.

8 On the Finiteness of the Representation

We now consider the finiteness of the 7-adic representations and establish
the dependence of the length on an expression involving m in case of a finite
representation. We show that for any curve the expansions are either finite or pe-
riodic and provide a means to find out what happens for a given individual curve.

To investigate the finiteness we now consider a 2¢g dimensional lattice associated
to the elements of Z[7].
Consider the set of elements

29—1 2g—1
A= {(chTf’“"chng> |Cj € Z}

These elements form a lattice in CY, since the sum of any two and integer multiples
of the vectors are in A. Since the polynomial P is irreducible the lattice has full
dimension 2g. We now investigate the norm' of vectors in this lattice, where the
norm is given by the usual Euclidean norm of C9

N:(xl,...,xg)r—)\/\x1|2+---+|mg\2,

!There are two notions of length — the length of the T-adic expansion and the norm of the
vector, which is often referred to as (Euclidean-)length in the literature. We hope not to confuse
the reader and use norm in the second case.
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where | . | is the complex absolute value. We can also consider this lattice as a
2¢g dimensional lattice over R by the usual representation of C as R2.

By abuse of notation we write N (¢) for ¢ = ¢g+c17+- - -+02g_17'2g’1 and speak of
the norm of c since these vectors are parameterized by the integers co, . .., cag—1.
Thus then N (c) reads

291 2

-
E:Cﬂz‘

Jj=0

g

N(e) =4[

i=1

Now we study the behaviour of the norm of the remainders during the expan-
sion of ¢. Showing that the norm decreases down to a certain limit will be the
important step to get the following

Theorem 8.1 Let C be a hyperelliptic curve of genus g and let T be a root of the
characteristic polynomial of the Frobenius endomorphism. Then the expansion of
C=cCo+ 1T+ + o171 € Z[7] to the base of T with coefficients in R is
either finite or gets periodic.

Proof. We first show that for elements of bounded norm the expansion cannot
lead to a remainder with larger norm than that bound. Showing that the
expansion of any element leads to a remainder of norm bounded by that constant
concludes the proof.

Let N(c) < g \/%971 (respectively < g\q/?i for even characteristic). Then
using the Triangle inequality on ¢ = v+ ¢ —u =: v+ d7, u € R we get
N(dT) < N(e) + N(u) < N(c) +/9(¢? — 1)/2 (respectively N(c) + 1/9¢°/2)
and NV (7c') = \/gN (¢'). Now direct calculation shows that A'(c) is bounded by
the same constant.

Since we consider a lattice the number of elements with bounded norm is finite.
Thus the expansion of these elements of bounded norm either ends after hitting
at most one time all these elements or runs into a cycle since the choice of the u
— and therefore the next remainder ¢’ — is unique for given c¢. Hence, for these
elements the expansion is either periodic or finite.

The following two lemmata show that expanding an element ¢ to the base of 7
leads to a remainder ¢ with N'(¢/) < Y2 -2 (or < ¥ L+ iy even characteristic)

2 g1 2 Va1
WL\/%N(”L) + 1 steps concluding the proof. .

after at most 2log,
Later we shall state an algorithm to find these elements of small norm and show

how to recognize periods and how to deal with them. Hence the problem is
solved in practice.

Lemma 8.2 Let g be odd. For every m € Z[r] we have an unique expansion

k-1
m = E u T+ m'TF
i=0
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where u; € {0,£1,+2,.. -aiqggl}’

' \/g q°
N(m)<7\/§_1,

and

2(vg — YN (m)
VI

Proof. Put my := m. The expansion of m to the base of 7 leads to

k < [2log, ]+ 1.

my = TT + Uy = m27'2 + U T + U
j—1
_ i J
= Ui T+ myTY,
i=0

where by Lemma 7.2 the u; € {0, £1,+2,..., i%} are uniquely determined.
The Triangle inequality for N leads to /gN(m;) < N(mj_1) + N(u;—1) <
N(mj_1) +/g%". Hence,

N (mo) + a(e® — 1)/2 315 ¢’
¢
N(mo) @ qg -1
e 2 Ji—1

N (m;)

<

If we choose j > 2log, WL\ZM, then Nq(j%") < 2(\/?_1) and the claim follows.
O

For even characteristic we proceed similarly.

Lemma 8.3 Let q be even. For every m € Z[r] we have an erpansion
k-1
m = Zuﬂ'“ +m'rk,
i=0

where u; € {0,+1,+2,..., :I:%},

N(m') < 79\(1/24;11,
and
k < [2log, Wi DN(m)} +1.
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Proof. Put mg := m. The expansion of m to the base of 7 leads to

myg = MTT + Uy = mQT2 + U T + U
j-1
_ i J
= E Ui T+ myT,
i=0

where the u; € {0,+1,42, ..., j:%} are given like in Algorithm 7.1.
The Triangle inequality for N leads to \/gN(m;) < N(mj_1) + N(uj—1) <
N(mj_1) + /g% Hence,

J—1 if2
N(m]) S N(mo) + \/gqg/2 Zz:O q
q]/2
N (mo) n VI_o¢
g7 2 -1

If we choose j > 2log, L\}g\/(m(’) then A;(]%O) < 2(\/\£1) and the claim follows.
O

<

We now investigate the norm N in more detail. Thus we state it explicitly in
the coefficients of the polynomial P(T") and express it in terms of the coefficients
Co, - --,C2g-1- This can be done using the symmetric functions in the 7; and with
the help of the formulae derived in Section 4. Since A is the Euclidean norm its
square leads to a positive definite quadratic form.

Before we do so let us see how the proof works for elliptic curves.

Example 8.4 For curves of genus 1, i.e. elliptic curves, the finiteness was
proved by Miller [36] for even characteristic and using the same idea by
Smart [51] for odd characteristic. For g = 1 the norm simply reads N (c)? =
2 —aycoer + qc2. The lattice defined above coincides then with the lattice spanned
by 1 and 7. We present here the case of odd characteristic only. Hence the set
of coefficients is R = {0,+1,...,4+(q — 1)/2}. After showing that the square of
the norm decreases down to (\/q + 2)2/4 giving a special case of Lemma 8.2 they
rearrange

N(e)? = ¢ —aicoer +qc

aici\2 1
= (- ") +7Ma—a)d

2 2
a1C a

by completing the square. Since the curve is assumed to be non-supersingular,
la1| < 2,/q — 1, hence 4q — a? > 3 and they get

2
o < YIE

V3
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and 2
q q
leg| < ——=—.
V3
Hence in any case |c1| < (¢ — 1)/2, thus ¢ is in the set of remainders. But the
best we can get for |co| is |co| < (¢ —1)/2+q. Assuming co > (¢ —1)/2 (the case
of co < —(q —1)/2 can be treated similarly) one can further expand to get

co+oT = (co — q) + (01 - al)T — 72

Then ¢y — aq| < % +2/q < 5t +q. If again ¢, — a1 > (¢ — 1)/2 (again the
other case follows the same lines) then

co+ar = (co—g)+(a—a)T—7" = (co—q) + (c1 —a1 = )T+ (—ar = 1)7° = 7°.

Considering each occurrence of | —ay — 1| > (¢ — 1)/2 one finds that one needs
to add the coefficients +(q + 1)/2 in case of the pairs (q,a1) equal to (5,£4) and
(7,£5).

Before we proceed we show what N (c)? looks like after expanding the product
for the cases of small genus.

Example 8.5 For g = 2 we have for ¢ = ¢y + c17 + 7% + c37°

N(C)2 = 203 — a16pC1 + (a% — 2ay)cocy — (a‘;’ — 3(a1a2 — a1q))cocs
+ 2gct — aiqeicy + (a2 — 2a5)qeics
+ 2¢°¢; — mq’eacy
+ 2¢%c.

For g = 3 we have for ¢ = ¢y + c17 + o2 + 373 + 47 + ¢57°

N(e)? = 3¢ —aicoer + (a] — 2az)cocy — (af — 3(aras — a3))eocs

+(a411 - 4(&%@2 —ajas + GQC]) + 2&3)0064

5 3 2 2
—(a7 — 5(ajas — ajaz — a1a5 + a1a2q + aza3 — a19))coCs

+ 3gc2 — aiqcica + (0 — 2a9)qeics — (ab — 3(aras — as3))geics
+(af — 4(a2as — aras + asq) + 2a3)qcics
+ 3¢%c3 — a1g’cacs + (a2 — 2a3)q%cocy — (a2 — 3(aray — a3))qPcacs
+ 3¢%c — a1¢’cses + (a2 — 2a)q cscs
+ 3q4ci — a1¢*cacs
+ 3¢°c.
In general N (c)? is a quadratic form in the 2g variables ¢y, ..., ¢z, 1. The coeffi-

cient of ¢ is g¢* and of ¢;cj,1 < j is ¢'(¢"+1—M,), where v = j—i and M, is the
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number of points on the curve over F . like in Section 2. Due to its origin in the
interpretation as Euclidean norm in a lattice, N2 is a positive definite quadratic
form.

Finke and Pohst [7] provide the following algorithm for finding all vectors in a
lattice in R® of bounded norm, respectively for finding all arrays (zg,...,Zs_1)
for which the value of the corresponding quadratic form with s variables is less
than a constant. Let the quadratic form be given by Zf;io i TiTj, Gij = Qjj,
and put K the bound on the norm.

Algorithm 8.1 (Finke, Pohst)
INPUT: quadratic form, bound K.
OUTPUT: all arrays (xg,...,Ts 1) leading to values less than K.

1. /* Set up*/
for0<i1<j<s—1do
Qij ‘= Q455
2. for0<i<s—2do
fori+1<j<s—14do
9j5i = 4ij;
%’12%;
fori+1<k<s—1do
fork<k<s—1do

Akl ‘= Gkl — Qkiqil;
3. puti:=s—1,T;,:=K; U; :=0;

4. /*start of iteration™/
put 7 := (Ti/qi)'?; UB; := | Z = Uy|; wi = [-Z = Uil = 1;

b. put x; = x; + 1;
if x; < UB; goto step 7;
else goto step 6;

6. put 1:=1+1,

7. if i =0 goto step 8;
elsei:=1—1;
-1
Ui =35 Zis1 G55
T; := Ti1 — g1+ (Tigr + Uin)?;
goto step 4;

8. /*solution found*/
if x = (0,...,0) terminate;
else output +(xq,...,T5 1);
goto step 5.
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They also proved the following upper bound on the number of elements of norm
bounded by K:

@u@ﬂy+n<HKé;j_1>

Thus for our constant K we have at most O ((ﬁ%)(‘lg_l)/ 2) vectors of small

norm. This bounds the length of the expansion in the non-periodic case.We used
the algorithm to find the elements of small norm for individual curves. For each
of them we computed the expansion. These experiments show that for each such
element ¢ = ¢y + -+ -+ 2417297 of small norm we have ¢; € Rfor 1 < g <2g—1
and |cy| < ¢9, and if ¢y € R the other coefficients are fairly small. If no periods
occur then every such element has an expansion of length at most 2¢g 4 1, thus
either all ¢; € R or the next remainder in the expansion has all coefficients in
this set.

Therefore if P(T') is such that we do not have periods the length of the expansion

of m is bounded by [2log, 7

Now we try to get estimates supporting the experimental results on |¢;|. However
we do not succeed in a proof since the expressions get too involved and the known
bounds on the coefficients of P(T) are too weak. But we provide a detailed
example for the genus two case.

The proof would proceed as follows: Like in the algorithm we first compute the
coefficients b;; satisfying

2g—1 2g—1 2
N(C)2 = Z b“ (CZ‘ + Z b@'Cj)
=0

j=i+l

for the quadratic form N (c)?. Then starting from the index 2g — 1 we obtain an
upper bound on the coefficient ¢y, ; and as well on the other ¢;’s depending on
the value chosen for the preceding ¢;’s, ¢ < 7 <2g — 1.

For a fixed positive definite quadratic form of arbitrary degree this is the idea
behind the above algorithm given in Finke and Pohst [7]. Thus for each individual
curve this can be carried out efficiently. But using the variables a1,..., a4 the
expressions get rather involved.

In the following long example we restrict ourselves to curves of genus 2.

Example 8.6 In the genus 2 case we have

1 12 —a} + 3a,09 — 3 2
NZ(C) = 2(00—1@1014-&1 4 a202+ a1+ 0111012 a1q03>

N —a% + 16q . —a‘i’ + 2a1a0 + 4a1qc oc‘lL — 3a%a2 — a%q + 8asq
8 ! a? — 16¢ 2 a2 — 16

2
Cg)
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+

alq — 6a2ayq + 4a3q® + 8a3q — 32¢° ot —a} +5/2a1a9 + g, 2
a? — 16¢ 2 a?—2ay —4q  °

+a‘11q2 — 1/4a2a32q — 5a2asq? + Ta2q® + adq + 2a2¢? — 4asq® — 8¢* 2
.

a? — 2ay — 4q
Thus for this usual ordering bsz reads:

by = qa‘fq — 1/4a3a3 — 5atasq + Taiq® + a3 + 2a3q — 4asq® — 8¢°

a? — 2ay — 4q

Va1 Va1
even characteristic), that all b; > 0, and that the other expressions are squares

V2 ¢ 1 ; V24l 1
we get the bound |c3| < %5 N ey (respectively < 5 \/6—1\/@)'
Choosing an appropriate ordering we obtain individual bounds on the |c;|. Note
that these cannot occur simultaneously. The highest coefficients read in these

cases.

2 2
Since we have that N*(c) < 2 ( ¢ ) (respectively < 2 ("2—“) in the case of

for cy:
qa‘fq — 1/4a2a3 — 5a2asq + 7a2q* + a3 + 2a3q — 4axq® — 8¢°
aj — 3alay + 3a2q — 2axq — 4¢? ’
for cq:
atq — 1/4a%a3 — 5a2ayq + Ta2q® + a3 + 2a3q — 4azq® — 8¢3
aj — 3a%ay + 3a2q — 2a,q — 442 ’
and for cy:

atq — 1/4a%a3 — 5alayq + Ta2q® + a3 + 2a3q — 4azq® — 8¢3
¢*(a? — 2a; — 4q) .

Note that the numerators in all 4 cases are equal and that looking only at the
orders the power of q increases with growing index.
In the genus 2 case we have the bounds from Rick (2) |ai| < 2(2,/q] and
2la1|\/q — 2q < az < a?/4+ 2q. Thus we see that the denominators are negative
in both cases and we have that the integer —a? + 2ay; + 4q € (0,8q) and the
integer —at + 3ajas — 3a3q + 2a2q + 4¢> € (0, 5¢%).
Substituting ay = b1\/q and az = byq, thus |bi] < 4 and by —2 < by < b2 /4 +2
provides that the coefficient for ¢ is of order O(q¢%). Thus asymptotically we
have |c;| < kq7"? for some constant k. This corresponds to our experiments
providing ¢; € R for i > 1 but we shall try to get some knowledge about the
constants implied.
Now we deal with the numerator B = —atq + 1/4a2a3 + batayq — Talq® — a3 —
2a2q + 4a2q* + 8¢*. Inserting the bounds for as leads to B = 0, but since we have
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strict inequalities they are not attained. (The bounds would lead to reducible
polynomials P, what we excluded.) Thus we have B > 0 what we knew in
advance since N is positive definite.

The following picture illustrates the correspondence of bss on ay and as for the
case of ¢ = 5. The vertical azxis gives the value of bss(ay, as).

200 ///T III["‘
2
Bz
_82 ééﬁﬁﬂ,ﬁ%?%%é@"
) ' 4

ay occurs only with even erponents in B. It grows towards the interior of the
segment and is mazimal for a; = 0 and ay = 2/3q. For this pair — which can
occur only for characteristic 3 — the value of the respective bsz is 16/9q" for all

four cases. Hence, then we have |c;| < 38@‘12\/;_/;.

In the following we assume a; > 0 and provide the largest and the smallest value
assumed, hence for a; = 0 and the mazimal value of a;.

Near the upper bound of as we make the following observation:

Inserting ay = (a2 — 1)/4 + 2q in bz yields for the coefficient of 3 (the same
holds for ¢y if we divide by ¢3):

1 —2a? — 32q + 256¢° — 32a%q + af

~1/32¢
a?+1—16¢q

For a; = 0 we get 1/32(—1 + 16q)q, thus the coefficient is approzimately 1/2¢>

and for ay = 4,/q — 2 we get 3/32q% thus only the estimate 3/8¢%/2.

Maisner and Nart [30] investigate in more detail which pairs a1, as satisfying the
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conditions of Theorem 2.30 and leading to an wrreducible polynomial P belong
to a hyperelliptic curve. For example they conjecture that the choice of as =
2q + (a? — 1)/4 does not belong to a hyperelliptic curve. If this holds the upper
bound decreases to ay < a?/4 — 1+ 2q and the constants are improved to 2¢*> and
5/3¢%? respectively.

The lower bound on ay is much more subtle to handle unless q is a square. In that
case one easily gets 2q*> — 1/2q for a; = 0 and 5/4q% forar =4,/q-1
by choosing az = a1,/q — 2q + 1.

In the case q¢ a non-square for a; = 0 we have ay > 1 — 2q, thus the bound
1/2(4¢*> — 441)q. Now to consider the mazimal value for ai put a1 = 2(2,/q — 6),
where § € (0,1). Hence, ¢ is such that |2,/q] = 2,/q — 6. Then ay > 6q — 4,/q6
but from the upper bound we have as well ay < 6q —4,/q6 + 82. Therefore putting
ay = 6q —4,/q0 + €, € € (0,0°) leads to

166%q — 16qe — 8,/q0° + 8,/gde + 0%c — €
€ .

12 4,/q0 — 207 + ¢

Note that it is very likely that there does not exist any integer in this interval for
a, we just consider the worst case. If such an integer does not exist this means
that a; < 2(2,/q — 6) — 1 and the bounds for ay are changed adequately.

Putting € = 1/256? provides

32¢ — 16,/g6 + &*
8./ — 30

Thus essentially we have at least bss > kqg/? for large ay and bss > kK'¢® for

1/8¢6* ~ 1/26%¢%2.

. . 5/4 .
a; = 0, where k and k' are constants. This provides |c3| < i\;aq respectively
les| < 2%'# for odd characteristic and similar results for even characteristic.

The coefficients of ¢; and cy can be investigated in the same way leading to
stmilar bounds.

Thus assuming the condition cg3 € R to hold from the bound on bsz — this is less
then the above computations provide, it just uses bsg > 2/(\/q — 1)* — we obtain
that |co| < ¢**rmax, where ryay is the mazimal coefficient of R, hence (¢ — 1)/2
for odd and q?/2 for even q. In the same manner we get |c1| < qrmaxand |co| <
ql/ 2rmax. Sure these mazimal bounds cannot be attained simultaneously since
the coefficients b;; for (i,7) # (3,3) lead to further restrictions and furthermore
the maximal choices for for example cy probably cannot be extended to a vector
with integer entries. This is the reason why we used the first ordering for the
implementation — to avoid too many aborted vectors, thus to reduce the running
time. But using these weak estimates provides a worst case bound on the size of
these coefficients.
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Furthermore in the experiments we even had c¢; € R for 1 > 1, thus a proof of this
would lead to |co| < ¢Y?rmax.

Note that these observations generalize to arbitrary genus. But there the bounds
on the a;’s are less optimized. If the bound on b(y_1)(24—1) leads to leog—1] < K
then an appropriate ordering of N?(c) provides

lei| < kig\?9 1072,

with moderately adjusted constants k; and all this is in the worst case which
probably cannot happen.

One argument that can be used in the proof of the finiteness in the elliptic curve
case is that periods of length larger than one (except for a change of sign) cannot
occur since otherwise the coefficients ¢y and ¢; would be larger than allowed.
Now we investigate in which situations periods can occur at all. For the elliptic
curve case the expansion can become cyclic only if |a;] —1 > (¢ — 1)/2 thus
for ¢ < 14. In fact only for the following cases such curves do exist: Smart [51]
states that for odd characteristic we have periods if =5 and a; =+4dorq=7
and a; = £5 respectively, i.e. in the cases of Example 8.4 where we included a
further coefficient. For even characteristic it was shown in [36] by Miiller that
we always obtain a finite expansion if we use the set R as given above.

For curves of larger genus the situation is a bit different. First of all — although
obvious from the experiments and motivated by the previous example in the
genus 2 case — we have no proof how large the coefficients of ¢ with A(c)?
bounded as above can get but we can obtain some information as well, which
makes it easy to check for periods for an individual curve.

Assume that for
P(T) = T%9 + T2 1+ ...+ agT9 + -+ alqgflT +¢°
we have that

c = ctoT+ ey 79!
= wt7(co+e7+---+ 029_17'29_1)
with ug € R and where N (c)? is bounded by the constant from Lemma 8.2 or

Lemma 8.3 respectively. (Otherwise we know that the norm decreases.) Without
loss of generality we assume that ¢y > 0 and therefore ¢y > [(¢9 — 1)/2]. Put

d= (CO—Uo)/qg > 0. (3)
The rules for expanding an element lead to a system of equations
*¢; = g1 —daj¢o 7 0<i<g-—1

+¢; Ciy1 — dagg 1 g<1<29—-2,
:i:ng_l = —d
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where the signs are assumed simultaneously. If this system can be fulfilled for
a curve with the positive sign for (cg, ci,. .., cog—1) then the equations hold for
the quadratic twist of the curve with the opposite sign and the above coefficient
vector with alternating signs. Thus we restrict ourselves to the case of positive
sign. Inserting all equations in the one for ¢y yields

co=—d—day —--—da, —da; 1qg— -+ — da;g?" ",
thus ¢y = dg? — d|Pic’(C/F,)|. Using (3) we obtain
uy = —d|Pic®(C/F,)|.

Since both d and |Pic’(C/F,)| are non-negative and uy € R the crucial part to
be fulfilled for either the curve or its twist is [(¢? —1)/2] > d|Pic®(C/F,)|. Since
a lower bound on the class number is given by the Theorem of Hasse-Weil 2.29,
q and d have to be such that [(¢? —1)/2] > d(,/g—1)*. Thus we only have this
problem if ¢ is small enough.

We just have shown

Theorem 8.7 Let C be a hyperelliptic curve of genus g with characteristic poéy—
nomial of the Frobenius endomorphism and let ¢ be of norm less than /99

2(va-1)
(respectively ‘2/?\(/(1;:1)) ) and put d = |(co + Umax)/q%|, where Uumay is the mazimal

coefficient contained in R. Then the expansion of ¢ can become cyclic only if

[(¢* —1)/2] > d|Pic’(C/F),

where C is either the curve or its quadratic twist.

In the following example we assume that R consists of a complete set of remain-
ders modulo ¢9.

Example 8.8 In the genus 2 case for odd characteristic we have the following
tabular. In the experiments only d =1 occurred.

d g<
1 37
2 11
3 7
4 17
11 3
15 no such q

If we assume that at least that cs € R holds then by co < ¢*/*rmax we have that d
s additionally bounded from above by d < q3/2/2. For example this leads to d < 2
forq =3 and to d <5 for ¢ =5, thus cutting the lower part of the tabular. If we
even had ¢; € R, i > 1 and |¢o| < kA/qrmax for a constant k then d is additionally
bounded from above by d < kq'/?/2.
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For a given curve it is fairly easy to check whether the expansion can run into a
cycle at all. Using the algorithm of Finke and Pohst we can compute all elements
of such a small norm and expand all these elements to the base of 7. However,
not all the curves for which the inequality of the theorem holds lead to cyclic
expansions. In case this happens, we just need to include +d(¢? — |Pic’(C/F,)|)
in our set of coefficients and use it instead of the whole period that would
follow to obtain a finite expansion as wanted. Thus if we choose such a curve
for implementation we need to precompute and store one more element. Since
d and ¢ are bounded by relatively small constants the time for this further
precomputation can be neglected.

Example 8.9 Put g = 2,9 = 3. Among all the isogeny classes of curves with
irreducible P(T) only P(T) = T*+2T3+2T?+6T +9, P(T) =T*+ T3 - 2T? +
3T 49, and T* +3T2% +5T? + 9T + 9 lead to periods. The coefficients to include
are 5 in the first two cases and +6 in the last one.

Example 8.10 In the case of even characteristic the situation is even a bit more
relazed. If we choose coefficients from {0,+1,...,4+¢%/2 — 1,¢9/2} unless ¢y =
—q9/2 (cf. Algorithm 7.1) then for all classes of curves of genus two over Fyq
(see Tabular 1) the expansions are finite. For Fy we run into a cycle only for
P(T) =T*4+ 4T3+ 9T* £ 16T + 16. To deal with this we include +10 in the set
of coefficients.

Now we look for longer periods. Without loss of generality let ¢o > 0. Put
co — ug = dq? and ¢; — a1¢? " 'd — u; = eq?. Then from the equation
C = Cot T+ oy 3T P ey 9T 2+ gy 17!
= up+7(uy £ 7(co+ 1T 4+ gy 179Y)),

the rules for expansion lead to the following system (again we allow a change of
sign):

+c; = Cipz —dai12¢? 7 —eaig? 0<i<g—2

*c; = Ciyo — dagg_o_; — €agg_1_; g—1<1<29-3
:I:ng_g = —d-— [e5]

:I:ng,1 = —€.

Inserting all this (for positive sign) in the equations for ¢y and ¢; we get

co = —d—eay —dag—--+-—dg? %ay —eq? ta; = dg? + ug
et = —e—da—eay—---—eq? lay = d¢¥ lay + eq? + u,

where the last part comes from the definition of d respectively e. A necessary
condition is that

—(d+¢e)[Pic®’(C/F,)| = uo + uy
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can be fulfilled for ug, u; € R.

For d = —e we get uy = —uq, i.e. the case of period length one with a change of
sign. And from the equations above we have the same restriction on the size of
d as before.

In the other cases we see as well, that e and d are of the same order and that both
and ¢ have to be reasonably small. On the other hand except for d = —e =1
this did not occur in the experiments and the same holds for periods of higher
order.

Again this can be explained by the bounds on the coefficients. If we have
lco| < ky/qTmax and |c;| € R, @ > 1, then d < k,/q/2 and e < 1 + kg in the worst
case.

A different way to proof the finiteness of such expansions can be extended from
Lesage [28]. He investigates expansions to the base a, where « is a root of a
quadratic polynomial over Z and the set of remainders is of cardinality |a|?, sym-
metric to 0. He uses difference equations to prove the finiteness and succeeds
in general for the case of complex roots (except special cases where one obtains
periods). For a special polynomial he computes the expected length of the ex-
pansion as well. The approach generalizes to the kind of polynomials considered
here due to the symmetry of P(T) but again the expressions for the general case
involving the a; cannot be handled. Like before it is possible to get bounds for
an individual curve with explicit coefficients.

9 Reducing the length of the representation

Now that we know the dependence between the length of the expansion of m and
the value of A/(m) we can try to shorten the representation. We have not made
use of the fact that we are working in a fixed extension field of degree n, yet.
We now consider the action of the Frobenius endomorphism on the restricted
group of Pic’(C/F,»). For these divisor classes D we have that o"(D) = D.
Thus two sums Zilz_ol c;¢* and Z?:—Ol d;¢"' represent the same endomorphism on
Pic’(C/F ) if the corresponding sums in Z[7] are congruent modulo 7" — 1, i.e.
if

I1—1 lo—1

ch’i - Zdﬂ'i € (" —-1)Z[r].
i=0 i=0

Remark: Since we consider only irreducible polynomials P and since the
constant term of P is ¢9 # +1 the polynomials P(7T) and 7" — 1 are co-prime.
Thus their ged over Q[T] is one. But we are working in Z[T]. The ideal
generated by these polynomials is a principal ideal generated by an integer (since
the ged over Q[T is 1).
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Claim: In fact this number is equal to the cardinality of the Picard group over
|

Note that this leads to a further way to compute the class number for a field
extension using integer arithmetic only. The approach described in Section 4
has the advantage that it provides a fast means to compute the group order for
various extensions.

Proof of claim. Write P(T) = [[:%,(T — 7;). Then in the ideal we have 7" = 1.

i=1
Transforming T — T™ we have to evaluate
2g 29

[T =)y = [ =) = [PI(C/F )],

i=1 =1

which is indeed the class number. O

To rephrase this, in F,;[T’] these polynomials have a common factor 7' — s of degree
1, where [ is a prime factor of |Pic’(C/F)|. Hence if we consider only the cyclic
group of order [ the operation of the Frobenius endomorphism on a divisor class
corresponds to the multiplication of the divisor class by an integer s modulo /.
For cryptographic purposes we work in the subgroup of prime order. From now
on let [ be the large prime factor of |Pic’(C/F)|.

If we restrict to the subgroup of order /| we can even reduce modulo % =
"L 472 4 ...+ 741 since the operation of the Frobenius cannot correspond
to 1 modulo .

Therefore we shall search for elements M € Z[7] that satisfy for a given m € Z
the equation m = M mod (7" — 1)/(7 — 1) and the 7-adic expansion of M is as
short as possible. Hence, the value of N'(M) is as small as possible.

We state the following

Theorem 9.1 Let 7 be a root of the characteristic polynomial P(T) of the Frobe-
nius endomorphism of the hyperelliptic curve C of genus g defined over F,. Con-
sider the curve over Fyn and let m € Z. There is an element M € Z[r| such
that

1. m= M mod (7" —1)/(1 — 1), and

2.

23— DN(M)
VI

The proof is constructive, thus it provides a way to compute such an element
M. Let us fix some notation which shall be useful for the proof and to state the

2log, <n-+2g.
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algorithms. For an element r € Q let z =nearest(r) be the nearest integer to r,
if ambiguity arises it is defined to be the integer with the least absolute value.
This can be realized computationally by choosing z = [r — 0.5] if r > 0 and
r=|r+0.5] else.

Proof of the theorem. Taking the field Q[T] one can invert elements. Thus, put

ri=m(r—1)/(r"=1) € Q[r], sor = 32 " r;7* where r; € Q. For 0 < i < 2g—1
put z; =round(r;) and put

z = Z zrt and M :=m—z(r" - 1)/(t - 1).
Thus it is easy to see that m = M mod (7" — 1)/(7 — 1). To compute the value

N(M)z/\/'(m—%> ﬂv((%_Z) Trn—_ll)

we need an estimate on N(% —2z)=N(r —=2).

9 291 2\
N(r—2z) = Z Z(n 2)T;
j=111=0
1
291 2\ 2
EERED
1=0

IA

IA
N N (\ PR
M- T

Il
S
DO

Therefore we have

vy = (=D ) 7o)y < m( )
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It follows that

2(vg - DN (M)

V9

"1
2log, <2log,(¢* — 1) +2log, (L) <n+2g.

Vi—1

Remark: This might not be the best choice, nevertheless it provides an efficient
way to compute a length-reduced representation which works for every genus g,
ground field F,, and degree of extension n. For the two binary elliptic curves
Solinas investigates in more detail an optimal way of reduction. Considering the
lattice spanned by {1, 7} he shows that for each element of Q[7] there is a unique
lattice point within distance less than 4/7. For larger genus the computation of
the nearest point is computationally hard to realize and we do not loose much
choosing the "rounded” elements the way presented here.

Thus from the discussion of Section 8 we have the following result.

Theorem 9.2 (Main result on the Length)
Let C' be a hyperelliptic curve of genus g and with characteristic polynomial of
the Frobenius endomorphism P(T). Let P be such that the T-adic expansion is

2
not periodic and that for an element c of Z[t] of norm < § (\/,2971> (respectively

2
<4 (\‘%ﬂ) for even characteristic) the T-adic expansion is no longer than 2g+1.
Then we have:

For every element m € Z we can compute a T-adic expansion of length k using

coefficients in the set R only, where

k<n+4g+2.

From the algorithmic point of view there are two problems left to consider:
e How to represent (7" —1)/(7 — 1) in Z[7]?
e How to invert elements of Z[7]?

These question are investigated in the following subsections.

9.1 Representing (7" —1)/(r — 1) in Z[7]

Let P(T) =T + ayT* '+ -+ a,T9 + ag1gT9 ' + - + a1¢9 'T + ¢ be
the characteristic polynomial of the Frobenius endomorphism associated to the
hyperelliptic curve C' of genus g. Suppose that

k—1 29-1
T =dop—1+dip1T+ -+ dog1 5177
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for integers dO,k—la dl,k—la ey d2g—1,k—1a then

k 2 2
T = dO,k—lT + dl,k—lT + e+ dgg_l,k_l’r g

= —¢%dog_1p-1+ (doj—1 — qug_1d2g—1,k—1)7' + (di k-1 — a2qg_2d29—1,k—1)7—2 +

291
o (dog—ap—1 — @rdog_1—1)T .

This leads to an algorithm to compute the coefficients of 7% iteratively starting
with 7° = 1. Since (7" —1)/(r = 1) =7""'+ 72+ ...+ 7+ 1 we sum up the
intermediate results after each exponentiation.

Algorithm 9.1
INPUT: n € N, P(T).
QUTPUT: ey, .. .,e24-1 € Z such that (1" —1)/(T—1) = eg+e1T+- -+ e99_1729 1.

1. Initialize: dg =1 and d; =0 for 1 <i<2g—1;
eo=1ande; =0 for1 <i1<2g—1;

2. for1<k<n-—1do

(a) doig == d2g71;

(b) for2g—1>1i>g do
d; == d;i—1 — agg—idod;
€; ‘= ¢€; =+ di;

(c) forg—1>1i>1 do
di = d;1 — a;¢% " dog;

€; ‘= ¢€; =+ di;
(d) do := —qdoa;
€y ‘= € =+ d(),'

3. output (eq, €1, ..., €29-1)-

9.2 Inversion of Elements ey + e;7 + - - + €9, 177! in Q7]

Let eg + e;7 + « -+ + €9y 17°97" € Z[7] where 7 is a root of P(T). As we only
consider curves with irreducible P(T') and as the degree of S(T') := eg+e1T+- - -+
e2g-1T%9 1 is less than deg P(T) the polynomials P(T) and S(T) are relatively
prime, hence ged(S(T), P(T)) € Q. Since Q[T] is an Euclidean domain with
respect to the degree map, there exist polynomials V(7'),U(T) € Q[T] such that

ged(S(T), P(T)) = U(T)S(T) + V(T)P(T)



9.3 Computing T-adic Expansions of Reduced Length 61

and degU < deg P. They can be computed using the extended Euclidean algo-
rithm.
By inserting 7 for T we get

(eo+e17 + -+ ey 179 ) = U(1)/ ged(S(T), P(T)).

9.3 Computing T-adic Expansions of Reduced Length

Combining our results of the previous sections we are now in a position to state
an algorithm for computing m-folds of divisor classes using 7-adic expansions of
reduced length.

Let C be a hyperelliptic curve of genus g defined over F, and P(T") the corre-
sponding characteristic polynomial of the Frobenius endomorphism. Consider
the curve over the extension field F,». Take the unique reduced ideal D = [a, b]
in the ideal class corresponding to the divisor class as a representative. Assume
that the coefficients of the polynomials are represented with respect to a normal
basis.

Algorithm 9.2 (Computation of m-folds using 7-adic expansions)
INPUT: m € Z,D =[a,b], a,b € Fpn[z], P(T), R the set of coefficients.
QUTPUT:mD represented by the reduced ideal H = [s,t], s,t € Fyn|z].

1. Precomputation: for i1 € R,1 > 0 compute
D(i) :=iD;
D(—1) := —D(i); /* for free/*

2. /*compute a length reduced M € Z[r] withm = M mod (1" —=1)/(7 —1);*/

(a) Initialize: dg =1 and d; =0 for 1 <i<2g—1;
eo=1ande; =0 for1 <i<29g—1;
(b) for1<k<n-—1do
b dog = dog_1;
1. for2g—12>1> g do
di == d;—1 — agg—idog;
e = e; +d;;
1. forg—1>1>1 do
di = di_1 — a;q? " doig;
e = e +d;;
w. do := —qdgg;
€y = €9 + do,’
(c) let e:= > eT;
(d) compute € := e * mod P using extended GCD;
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(e) compute M' :=round(m - €');
(f) let M = 32" M;T? := m — e - M' mod P;

3. /*compute the T-adic representation of M;*/

(a) Put i := 0;

(b) While for any 0 < j < 2g — 1 there exists an M; # 0 do

if ¢°| My choose u; := 0;
else choose u; € R with ¢9| My — u;;

/¥in even characteristic choose u; = My if |My| = q%/2/*
d:= (MO - ui)/qg;

for0<j<g—1do

M; := Mj 1 — aj1¢? 77 1d;

for0<j<g—2do

Mgyj = Mgyji1 — ag—j-1d;
Mggfl = d,
1:=1+1;

4. /* compute m-fold of D;*/

(a) initialize H :=[1,0];

(b) forl—1<0 do
H:=o0(H); /* this means cyclic shifting /*
if u; # 0 then
H:= H+ D(u);

5. output(H ).

Remarks:

1. If the algorithm is carried out several times with the same divisor class D

(like in the first step of the Diffie-Hellman key exchange) then we need to
do the precomputations of Step 1 and the determination of €' (i.e. most of
Step 2) only once and for all at the set-up of the system.

. To obtain a sparse representation as described in the next section one

changes Step 3 appropriately. If the curve is such that the expansion
becomes cyclic after the coefficient 7, then include D(y) := D in the
precomputations and choose 7 as coefficient whenever M, = ~.

. Note that when we restrict ourselves to the fixed extension F,» we can

obtain a finite representation with restricted coefficients in any case since
we can use 7" — 1 for computing the expansion as well. However these
expansions would be much longer. Furthermore we took this approach
(first considering the finiteness and dependence of the length on N) to give
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a motivation for the chosen strategy of reducing the length and to save the
relation (7™ — 1) /(7 — 1) for the reduction.

10 Density of the Expansion

Besides the length the second important quantity to consider is the density
of the representation. By density we mean the number of nonzero coefficients
occurring in the representation divided by the length of the representation.
Naturally the density will depend heavily on the choice of the set R and therefore
on the number of precomputations. As stated before the minimal set R simply
to make possible the expansion is {0, £1,+2,...,+ [%1 }. Using this set, we get
a zero coefficient only at random, hence with a probability of 1/¢9. (Remember
Tleo + -+ 4 cog—17297! & ¢co.) Therefore the asymptotic density in that case
is (¢ —1)/¢*

We can also double the number of remainders R’ = {0, +1,...,4+¢% — 1} and use
the fact that we can choose from two elements. This was used in [17] to obtain
an asymptotic density of g% for a genus two curve over Fy and can be carried
over to the general case as long as p fa;. It leads to expansions satisfying that
among any 2¢g coefficients there is at least one of value 0. Anyhow for larger
genus and field size the interdependencies to be aware of while choosing the next
coefficient become rather involved.

But by using other choices of R we can try to obtain more zero coefficients on the
cost of more precomputations. This might be preferable if storage is no problem
and the computations are to be carried out very often with the same divisor like
in the first step of the Diffie-Hellman key exchange. Consider for example the
curves with characteristic polynomial of the following form:

P(T) =T +a,T? + ¢°.

Let ¢ = p". If pl97/?1 does not divide a, then this curve is non supersingular
and might be seen as the next best thing with respect to a sparse representation.
(If also a, were = 0 mod pl97/2] then the 7-adic expansion would become rather
simple, but these curves are not suitable for cryptology.) Consider the division
step in the expansion of ¢y + 17 + - -+ + 94172 and choose u € R to ensure
¢%|co — u. Then we get:

Cot+aT+ -+ eyt =

=u+7(cr+ T+ (e = BFtag)TIT 4 - g 772 — ATLT27L)),

The next g — 1 coefficients of the representation are not influenced by u at all.
Thus we obtain g non interacting strands. Taking R to be a complete set of
representatives modulo ¢%9 we can force ¢, — ©<*a, to be divisible by ¢¢ provided

qg
that ¢ and a, are relatively prime. An example is given in the next section.

Now we observe that for g even R = {0, +1,+2, ..., :I:% —131\{¢% 2¢%, ..., (¢ —
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1)¢9} and for ¢ odd R = {0,+1,+2,.. .,i‘fz;l}\{qg,qu, (g9 — 2)¢9} are
minimal choices with |R| = (¢ — 1)¢Y to ensure that we obtain at least one
zero coefficient for every nonzero one. The proportion of nonzero coefficients visa
zeros is 1 : 1 + qig + q%g + - -+ (the first one from the construction, the others by
2q:y,11- |

The same strategy and set R work if for 1 < i < g we have ¢9]a;q9", because
then the remainder of the former ¢, — Coq;“ag modulo ¢? does not change during
the next g — 2 steps of expansion. Hence, we can obtain a representation of

asymptotic density ;’:g 711 using this strategy whenever

probability). Thus we get an asymptotic density of

P(T)=T% +a,T? + ¢ mod ¢*, a, # 0.

In the next section we provide some examples to explain and give evidence that
the theoretical results hold even for the range of n considered here.

Remarks

1. Although we described this technique for the above sparse kind of P it
is more likely to be used for the more general case since the sparse case
corresponds to elliptic curves over F via Weil descent.

2. This might be regarded as an intelligent kind of windowing. Naturally
the standard windowing methods carry through to 7-adic windowing, i.e.
to considering ug + w7 + ---up_17° ! as one coefficient, too. One is
naturally lead to considering sliding windows allowing a string of zeros
between any nonzero coefficients. Let the length of the window be k

like above. Then the density is k(qiﬁ computed from the proportion

Li(k—1)+ & + &5+ - = Eleol

Note that the windowing method can be applied for any P(T).

In [17] we considered coefficients of the form @ + br and showed how to
slightly reduce the number of precomputations in the case of even character-
istic. Instead of the obvious ¢?9/2 precomputations we achieve (¢¢ —1)q?/2

like above.

3. The bounds on the length hold here as well, but we need to be aware of
new periods occurring.

11 Experimental results
This section provides several experimental results about the length and density

of the 7-adic expansions for hyperelliptic binary curves of genus 2,3, and 4.
We achieved similar results for odd characteristics as well. Furthermore we only
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Table 8: Average Length and Density,Curve with 7% — T2 + 4

average | average average | average
n

n length | density length | density
61 [ 62.35 [ 0.4393 [ 97 | 98.35 | 0.4352
67 | 68.36 | 0.4383 || 101 | 102.36 | 0.4351
71| 72.34 | 0.4377 | 103 | 104.37 | 0.4347
73 | 74.33 | 0.4375 | 107 | 108.37 | 0.4349
79 | 80.32 | 0.4368 || 109 | 110.35 | 0.4345
83 | 84.35 | 0.4363 || 113 | 114.37 | 0.4345
89 | 90.36 | 0.4361

mention results obtained for the reduced density. Using the minimal set of co-
efficients the experiments confirm the theoretical (and asymptotical) results, as
well.

11.1 Curves of genus 2 over F,

Besides the supersingular curves and the two curves considered by Giinter, Lange,
and Stein [17] there are 4 classes of curves left to investigate. All of them allow
to reduce the density by the strategy explained in Section 10.

To compute a 7-adic representation we use the following algorithms to reali-
ze the strategy that for each nonzero coefficient we obtain at least one zero
coefficient as stated in Section 10. Let M = ¢y + ¢i7 + co7? + c373. Take R =
{0,+1,£2,...,+7}\{£4}. As in all four cases the coefficient of T is divisible by
4 we observe that there are two non interacting strands as c; is not influenced
by the choice of u . Thus a nonzero coefficient is not necessarily succeeded by a
zero coefficient. But we obtain for each nonzero coefficient

14+1/4+1/16+--- = 4/3

zero coefficients (the first one from the construction, the others by probability),
hence resulting in a ratio of 1 : 4/3 thus in an expected density of 3/7.

Experimental results with all four kinds of curves show that the density decreases
for growing n and that a density of less than 0.434 thus slightly worse than
3/7 = 0.42857 is achieved for extensions of degree at least n > 71.

In detail these results are given in Tables 8 till 11.

11.2 Curves of genus 3 over F,

Also for the genus 3 case we made use of the strategy, that we get at least one zero
coefficient for each nonzero one. The results are stated in the following Tables 12
and 13.
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Table 9: Average Length and Density,Curve with T% + T2 + 4

average | average average | average
n

n length | density length | density
61 ] 62.36 | 0.4393 || 97 | 98.33 | 0.4351
67 | 68.34 | 0.4382 | 101 | 102.35 | 0.4349
71| 72.37 | 0.4380 || 103 | 104.31 | 0.4348
73 | 74.34 | 0.4369 | 107 | 108.34 | 0.4343
79 | 80.34 | 0.4368 || 109 | 110.35 | 0.4345
83 | 84.37 | 0.4365 || 113 | 114.32 | 0.4344
89 | 90.36 | 0.4362

Table 10: Average Length and Density,Curve with T + 273 + 3T? + 4T + 4

average | average average | average
n

n length | density length | density
61 [ 65.18 [ 0.4348 [ 97 | 101.13 | 0.4326
67 | 71.15 | 0.4343 || 101 | 105.13 | 0.4324
71| 75.17 | 0.4339 || 103 | 107.19 | 0.4321
73| 77.09 | 0.4338 || 107 | 111.15 | 0.4322
79 | 83.16 | 0.4333 || 109 | 113.13 | 0.4321
83 | 87.14 | 0.4331 || 113 | 117.18 | 0.4323
89 | 93.18 | 0.4327

Table 11: Average Length and Density,Curve with 7% — 273 + 3T? — 4T + 4

average | average average | average
n

n length density length | density
61 | 65.18 | 0.4346 97 1 101.19 | 0.4326
67 | 71.20 | 0.4342 || 101 | 105.15 | 0.4326
71| 75.17 | 0.4340 | 103 | 107.18 | 0.4324
73| 77.16 | 0.4339 || 107 | 111.21 | 0.4320
79 | 83.19 | 0.43344 || 109 | 113.18 | 0.4318
83 | 87.17 | 0.4331 | 113 | 117.13 | 0.4320
89 | 93.17 | 0.4328

Table 12: Average Length and Density,Curve with 7% — T* + 8

average | average average | average
n

n length | density length | density
371 40.21 1 0.4874 ]| 61 | 64.20 | 0.4793
41 | 44.30 | 0.4848 || 67 | 70.23 | 0.4783
43 | 46.23 | 0.4848 || 71 | 74.23 | 04777
47 | 50.30 | 0.4828 || 73 | 76.24 | 0.477
53 | 56.29 | 0.4810 || 79 | 82.24 | 0.4764
59 | 62.27 | 0.4795
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Table 13: Average Length and Density,Curve with 7% + 7% + 8

average | average average | average
n

n length | density length | density

371 40.21 [ 0.4876 || 61 | 64.24 | 0.4792
41 | 44.30 | 0.4844 || 67 | 70.24 | 0.4781
43 | 46.21 | 0.4848 || 71 | 74.23 | 0.4776
47 | 50.23 | 0.4825 || 73 | 76.22 | 0.4772
53 | 56.27 | 0.4812 | 79 | 82.22 | 0.4764
59 | 62.25 | 0.4793

Table 14: Average Length and Density,Curve with T7® + T + 16

average | average average | average
n

n length | density length | density
291 34.02 10.5042 || 47 | 51.86 | 0.5046
31| 35.87 | 0.5154 || 53 | 57.90 | 0.4977
37 | 41.95 | 0.5018 || 59 | 63.69 | 0.4984
41 | 45.63 | 0.5101 || 61 | 65.94 | 0.4962
43 | 47.66 | 0.5034 || 67 | 71.72 | 0.4969

11.3 Curves of genus 4 over F,

Finally we considered genus 4 curves. Here we used two different strategies to
compare the effects. First we reduced the density by the strategy of Section 10.
These results are stated in Tables 14 and 15. In the second case we had to add a
further coefficient since the expansion allowed a period of length 1. To compare
we made use of a combination of the windowing technique with 7-adic expan-
sions, allowing the coefficients to be of the form a + b7 with |al, || < ¢9/2. The
corresponding facts can be found in Tables 16 and 17.

The results motivate that it might be preferable to use the usual windowing
method. But in this implementation the number of precomputations was not
optimized, thus there are more precomputations to store to achieve these results.
Like in [17] one can also set up the system such that the number of precompu-
tations for the windowing method is equal to that for the enlarged set presented
in Section 10. This will probably lead to results similar to our new strategy, i.e.
slightly increase the length.

12 Comparison

12.1 Complexity compared to binary double-and-add

In this section we compare the methods for computing m-folds of divisors. First
taking the naive double-and-add method as basis to compare, we compute the
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Table 15: Average Length and Density,Curve with 7% — T* + 16,

additional coefficient

n

average
length

average
density

average
length

average
density

29
31
37
41
43

40.22
41.90
48.23
51.96
54.29

0.4781
0.4802
0.4794
0.4801
0.4793

a7
93
99
61
67

97.90
64.17
70.24
72.20
78.22

0.4816
0.4810
0.4806
0.4810
0.4813

Table 16: Average Length and Density,Curve with 7% + 7% + 16

n

average
length

average
density

n

average
length

average
density

29
31
37
41
43

31.10
33.11
39.03
43.03
45.09

0.4859
0.4859
0.4861
0.4857
0.4853

a7
93
29
61
67

49.076
95.02
61.08
63.07
69.07

0.4850
0.4850
0.4849
0.4849
0.4848

Table 17: Average Length and Density,Curve with 7% — T* + 16

n

average
length

average
density

n

average
length

average
density

29
31
37
41
43

32.72
34.75
40.71
44.68
46.72

0.4906
0.4897
0.4889
0.4887
0.4884

47
93
39
61
67

50.71
56.72
62.71
64.69
70.72

0.4878
0.4876
0.4872
0.4872
0.4867
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Table 18: ¢ =2
g | binary | 7-adic | speed-up factor
2| 3n 3/mn 7
3| 9/2n | 7/15n 9
4 6n 15/31n 12

speed-up obtained using the Frobenius endomorphism.
By Section 6 we know that for the standard method we have

~Y

~g-n-logyq

N

group operations if the binary representation is used. If we can make use of the
enlarged set of coefficients to achieve a sparse representation we have costs of

approximately

q? —1 <1
n<-=n
2q9 — 1 2

for the T-adic expansion. The relation leading to the speed-up is given by

~J

binary

>3-¢9g-1 .
T-adic 910829

If we can only use the minimal set the density is (¢ — 1)/¢? resulting in

¢’ —1
qg

~J

n<n
operations in the ideal class group and
3
speed-up > 29 log, q.

To fill these numbers with life the following Tables 18 and 19 provide some exam-
ples of the speed-up obtained using the larger set of coefficients. Note that the
results for the larger set also hold if one makes use of the windowing technique
with coefficients a + b7 since this leads to the same density.

12.2 Complexities taking into account the storage

If one also wants to take into consideration the storage, one can as well compare
the results of the 7-adic expansions with binary windowing techniques. Using
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Table 19: ¢ =5
g | binary T-adic speed-up factor
2 6n 24/49n 12
3| 9n 124/249n 18
4 12 624/1249n 24

Table 20: ¢ = 2, comparison with windowing

g | window | 7-adic (small) | speed-up factor | window | 7-adic (large) | speed-up factor
2| 11/4n 3/4n 11/3 31/12n 3/Tn 217/36 ~ 6

3| 31/8n 7/8n 31/7 573/160n 7/15n 1719/224 ~ 7.6
41 79/16n | 15/16n 79/15 1023/224n | 15/31n | 10571/1120 ~ 9.4

the standard windowing method one simply computes the expansion to the base
of 2%, thus needing 2¥ — 2 precomputations. Even more advanced one can again
allow the coefficients to be in the above set but use a sliding window of width
k, thus trying to achieve strings of zeros between the entries. A survey on these
methods can be found in Gordon’s paper [16] and in the Handbook of applied
cryptography [33].

The usual windowing method leads to an expansion for m of length A ~
(logy m)/k. Thus we need ~ Mk doublings. The asymptotic density is (2¥ —1)/2F.
Therefore the complexity is of order

e+ A(2F —1)/2% ~ Tlogm(1 + (28 — 1)/(k2%)) < (k +1)/klogm,

where log, m ~ gnlog, q.

For ¢ = 2 we have in the T-adic method 29-! — 1 precomputations in the minimal
set and 22971 — 2971 — 1 precomputations for the larger one. Thus choosing k = g
in the first and £ = 2¢g — 1 in the second case is more than fair. Then we have for
the first case that the number of operations is of order gn(1+ (29 —1))/(¢29) and
for the second case of order gn(1 + (227! —1))/(¢2?9~'). Thus asymptotically
the Frobenius method is faster by a factor of g respectively 2¢g. Explicit numbers
can be found in Table 20.
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Table 21: ¢ = 5, comparison with windowing for small set
g | k| window T-adic speed-up factor

24| 47/8n | 24/25n 1175/192 ~ 6

3| 7| 511/64n | 124/125n | 63875/7936 ~ 8

419 | 2559/256n | 624/625n | 533125/53248 ~ 10

Table 22: ¢ = 5, comparison with windowing for large set

g| k window T-adic speed-up factor
219 1535/256n 24/49n 75215/6144 ~ 12
3113 32767/4096n 124/249n 263193/16384 ~ 16
4|18 | 1310719/131072n | 624/1249n | 1637088031/81788928 ~ 20

For larger ¢ it gets harder to find the right choice of k£ to compare. We investigate
g = 5 as an example. In Tables 21 and 22 we choose k such that 2% —2 is greater or
equal than the number of precomputations for the 7-adic method. In the speed-up
factor we used 2 instead of log, 5, again in favor of the windowing method.
Concluding one can state that the speed-up over the windowing method is also
remarkable.

12.3 Timings

For timings we used the binary curve C : y? + (2? + z + 1)y = 2° + 2* + 1 with
characteristic polynomial P(T) = T* — 273 + 3T% — 4T + 4 over Fyso. Its class
number is 2-191561942608242456073498418252108663615312031512914969, thus
this curve is appropriate for applications. For the computations we used Magma.
Unfortunately Magma does not provide a representation of the finite fields using
a normal basis. Thus instead of using the cyclic shifting as proposed we raise
each coefficient to the g-th power. Thus we cannot get the whole speed-up.

We carried out 1000 random scalar multiplications using the 7-adic method in
Magma. For the 7-adic method we needed only one precomputation for 2D, thus
the time and space needed for this is negligible. To compare we also used the
built-in routine for computing m-folds in Magma.

The average length of the 7-adic expansion is 90.18 and the average time to com-
pute the expansion is 0.005318. The complete multiplication takes 0.070261 on
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average. The corresponding time with the usual function is 0.146036 on average.
Hence, we obtained a speed-up by a factor of 2.

The program used for this comparison FrobExample and a program to play
around with a user-defined curve FrobSelf can be obtained from
http://www.exp-math.uni-essen.de/ lange/KoblitzC.html.

13 Alternatives

In Section 10 we considered different strategies to obtain sparse representations
at the cost of more precomputations. But what happens if absolutely no pre-
computations are allowed, hence, not even for the minimal set R. That means
that instead of retrieving ¢D,7 € R by table-look-up we need to compute with
probability q2;3 an i-fold of D where the binary length of ¢ is approximately
glog, g — 1. Using the binary double-and-add method this takes %(g log, g — 1)
operations each time. Thus instead of %gn log, ¢ operations using the standard
method throughout we arrive at ng;?’n%(g log, ¢ — 1), which is still better since
we consider small g and ¢q. Not to waste space on saving the 7-adic expansion we

perform the addition after each step.

Algorithm 13.1 (7-adic, without precomputations)
INPUT: M € Z[r] with M = m mod (" —1)/(7 — 1), D = [a, b]
QUTPUT: H :=mD

1. Initialize H := [1,0]

2. While for any 0 < j < 2g — 1 there exists an M; # 0 do

if ¢9| My choose u := 0
else choose u € R with 9| My — u;

/¥in even characteristic choose u = My if |My| = ¢9/2/*
d:= (Mo — us)/q¢%;

for0<j<g—1do

Mj = Mj1 — aj11q° 7 1d;

for0<j<g—2do

Myyj := Mgyji1 — ag-j1d;
M29_1 = —d,'
compute H := H 4+ uD via binary double-and-add;
D :=o(D);

3. output(H);

If enough storage is available to save the T-adic representation but not the pre-
computed values for u;D,u; € R then the following algorithm is much faster
reducing the amount of doublings needed. Let the expansion of m be of length
[ and put 7 := |log,(maxy,ecg |u;)] + 1, hence for the minimal set R we have
r ~ glog, q. Let the binary expansion of u; be u; = Z;;é v
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Algorithm 13.2 (7-adic, precomputed expansion)
INPUT: D = [a,b], m = Y\t u;T, u; € R.

OUTPUT: H = mD
1. Initialize H :=[1,0];
2. Forj=r—11to1 do

(a) Fori=1—1to0 do
H:=H+uijD;

(b) H:=2H;

S Fori=1—11to0 do
HI:H+’U,Z'0D,'

4. output(H ).

For this algorithm we need r doublings and asymptotically %rl additions. Thus
the complexity is approximately %ng log, g for large n and [ ~ n. We can do even
better if we use a binary non adjacent form (NAF) — signed binary representation
with no two consecutive non-zeros — of the u; which has an asymptotic density of
1/3 resulting in a complexity of %ng log, g. Note that the space requirement to
compute and store the NAFs of the u; is not much larger than storing the binary
representation of the u;’s. Unfortunately this way we cannot get rid of the factor
g in the complexity.

14 Koblitz curve cryptosystems revisited

To use a cryptosystem or protocol based on Koblitz curves it is not necessary
to start with a secret integer m, compute its 7-adic expansion and use this
to compute a secret multiple of a group element. One can as well start with
an expansion of fixed length (padding with leading zeros if necessary) and
use it as the hidden number — not caring to which integer it corresponds if
at all. If we restrict ourselves to the cyclic subgroup of order [ as usual, then
we know by Section 9 that for the action of the Frobenius endomorphism we
have o(D) = sD, where s is an integer modulo /. Hence, any sum corre-
sponds to an integer modulo /. Thus instead of computing a random number
smaller than the group order we choose at random k elements from the set of
coefficients R. This idea was pointed out to me by Schroeppel. In [22] Koblitz in-
vestigates a similar set-up for elliptic curves, where he credits the idea to Lenstra.

To apply this idea, we need to ensure that the corresponding multipliers
occurring are equally distributed. Respectively we need to be aware of collisions.
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Using the method described so far in a group of order [ the probability of collision
is 1/1. This is the probability that two persons choose the same key if the key
is chosen at random. As before we restrict ourselves to the points of order [ of
Pic’(C/F ), where we consider the large prime [ dividing |Pic’(C/F»)|. Hence,
the there exists an integer s modulo [ such that oD = sD for all divisor classes
D of order [. Since we know that s™ = 1 mod [, because s corresponds to the
Frobenius endomorphism on this restricted group, and s £ 1 mod [ the highest
exponent of 7 in the expansion should be less or equal to n — 2, to avoid multiple
occurrences of a number. There can be other combinations of powers of s with
bounded coefficients depending on the chosen curve, but here we try to exclude
those polynomials that occur in any case.

Note that the two known equivalences 1 + s + -+-- + s ! = Omod ! and
s + a1+ oo+ ags? 4+ -+ a1 s + ¢ = 0mod ! do not lead to
such a representation, since in the first one the highest power is n — 1
and all powers s'mod[,0 < 7 < n — 2 are different (n is prime), the
second one contains the coefficient ¢ ¢ R, and any combination of both
still has the maximal power of n — 1 or too large coefficients unless
s"(sMpaysP 4 dagst o targ?d ts+gf—1+s+- 45" 1) =0 mod L.

Using (ug,...,u, 2) as a key we can obtain at most |R[*' = ¢ Y or | —
whichever smaller — different numbers ug+ - - -+ u,,_25" "2 mod [. This time we do
not include —¢?/2 in R for even characteristic to avoid ambiguity. If [ < ¢9™~1)
then we know that collisions do occur. We should exclude this case — or choose
a shorter key-length if [ is that small. Since the experiments showed that in fact
there are elements with expansions longer than n — 1 not all [ multipliers can
occur.

Now assume that for a given curve considered over Fy. all m mod [ have an
expansion of length at most n + 4g + 2 and that the large prime divisor [ is of
size ~ ¢™9. Thus taking only those elements of length < n — 1 we loose at most
@9 t49+2) _ g9(n=1) multipliers. But since we started with [ different numbers
the left-over ~ ¢ — (¢9("+49+2) _ 49(n=1)) is negative, thus this bad case cannot
happen. Furthermore we know from the experiments that there are expansions
of length < n — 1.

Now let N be the number of different elements < [ representable by n — 1
digits. If two expansions represent the same number this means that they differ
by a multiple of [ if the root 7 is identified with the integer s. Hence there
exists a representation of 0 mod [ given by sy + $18 + -+ + $,_28" 2, where
s; € {0,£1,...,+¢9—1}. The worst thing that could happen is that one element
occurs all the possible ¢?»~) — N times. We now motivate that this case is
impossible to happen.

If there are several ways of representing the same multiplier this means that
there exists a representation sg + 515 + - - - + 8,_25" 2 = 0 mod | with very small
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coefficients. Thus one can also add and subtract multiples of this representation
to many other expansion. Take one expansion (ug,...,u,_2) which satisfies
u; + ks; € R for 0 < i < n— 2 for K integers k, then this multiplier occurs at
least K times. If the length of the nontrivial representation of 0 mod [ is shorter
then we also have to take into account shifted combinations.

Therefore there are several integers mod [ that are represented by different
expansions. Thus the amount of ¢? ) — N multiple occurrences spreads over
several elements.

Hence, one can say that the representable integers modulo [ represented by the
vectors (ug, ..., U, o) are almost equally distributed. Furthermore before choos-
ing a curve one should run some experiments to know whether representations of
0 mod [ of small length and with small coefficients exist, since this would imply
that many elements occur very often in the expansions of length < n —1, thus N
would be comparably small. Hence, one should at least exclude representations
of 0 involving only the digits 0, £1 (and +2 for ¢ > 2). Equivalently one can
use the method of 7-adic expansion described in the preceding sections to get
statistical data on how many of the elements allow a short representation, thus
an approximation of V.

Example 14.1 Consider the binary curve of genus 2 given by
C:y+ (@ +rx+1)y=2"+2"+1

with characteristic polynomial of the Frobenius endomorphism P(T) = T*—2T3+
3T? — AT + 4. For the extension of degree 89 the class number is almost prime

Pic? (C/Fys0)| = 2-191561942608242456073498418252108663615312031512914969.

Let | be this large prime number. The operation of the Frobenius endomorphism
on the cyclic group of this prime order corresponds to the multiplication by s =
—109094763598619410884498554207763796660522627676801041 mod I.  Choos-
ing a sequence of 88 elements u; from R := {—1,0, 1,2} at random and computing
ZZO u;s' mod | we get the multiplier corresponding to the key (ug,. .., usy). If
two sums represent the same integer modulo | then their difference has coefficients
in 0,+1,+2,4£3. To get the correct probabilities of occurrence we used the follow-
ing mulitset U := {-3,-2,-2,-1,—-1,-1,0,0,0,0,1,1,1,2,2,3} and computed
10,000,000 such sums modulo l. The zero sum never occurred.

Hence, there are no obvious weaknesses and this curve is probably suitable for
using this modified set-up.

Note that the security of the modified system is unchanged since only a brute-
force search throughout the keyspace can make use of the reduced amount of
possible keys. The standard algorithms for computing the discrete logarithms
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cannot make use of the fact that the last digits of the base 7 expansion of the
exponent are zero.

To conclude one can say that using this modified system saves the time needed
to compute the expansion without weakening the system.

Furthermore one can restrict the key size even more by choosing a smaller set of
digits for the 7-adic expansion. This reduces the storage requirements and the
possibility of collisions but for extreme choices — like R’ = {0, +1}, thus without
precomputations — one has to be aware of brute force attacks. If one tries to
get around these by using longer keys of length n + &k collisions get more likely
since one has to deal with 1 + s+ --- 4+ s ! = 0 mod [, thus for example the
zero element occurs at least 2(k+:f“a"_1) + 1 times, where 7|, is the maximal
coefficient of R'. o

Another idea is to consider only sparse representations to reduce the complexity.
But this reduces the size of the key-space, such that collisions get more likely.

15 Outlook

In this section we investigate to what extend these results can be generalized.
Furthermore we consider some prerequisites the field has to satisfy.

Throughout the whole discussion we only made use of the characteristic
polynomial of the Frobenius endomorphism and its structure. Thus all the
bounds on the length and density hold as soon as we consider an expansion
to the base of a root of a polynomial of this shape. Hence, as soon as we can
make use of the Frobenius efficiently — as for superelliptic or more general for
Cap curves where the elements of Pic’(X/Fy) are represented by polynomials
— all results carry through. This is also true for the recurrence sequences to
compute the class number given P for the ground field. In this paper we restrict
to hyperelliptic curves to shorten the explanations. The reader interested in
the arithmetic of C, curves may consult Gurel [18] and Harasawa and Susuki [19].

When choosing a curve for “real-life” application one should not only look for
the right order and the other security issues pointed out here but also make
sure that the finite field is such that the arithmetic can be performed efficiently.
Thus the choice of curves — or more correctly field extensions — is reduced.
First of all we need to ensure that we are working in a field for which a normal
basis exists such that the arithmetic of the field is not significantly slower than
for a polynomial basis with a sparse polynomial. Using Gauss periods and —
if necessary — working with a polynomial basis of a small extension field one
obtains a field arithmetic much faster than using a matrix based multiplication.
Furthermore it is also possible to use the Frobenius automorphism of the finite
field for the arithmetic in the ground field. This is extremely interesting if one
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works in characteristic 2 since then squarings in the usual square and multiply
method are for free. A generalization to composite Gauss periods was recently
investigated by Nocker [38]. It is a topic of current research to find optimal
choices for a pair curve and finite field. For hardware implementations it is also
useful to work over fields of characteristic 2.

A different approach was used by Lee [26]. He considers optimal extension fields.
In these fields one uses a polynomial basis but the defining polynomial of the
extension is a binomial, thus the multiplication of two field elements is as fast
as possible. The action of the Frobenius endomorphism is made efficient by
precomputations and table look-ups — thus it is slower than for the normal basis
representation. Therefore he stores o’D for all powers needed. On the other
hand he avoids to store the multiples of D with the elements of R since in his
case the size of R is large and n is comparably small. Using this approach he is
not able to exploit the full power of using the Frobenius endomorphism on the
curve, for example he lets the Frobenius operate only on D. His algorithm is
similar to that in Section 13 but after computing the 7-adic representation like
in Section 9 he reduces the length to n using 7 — 1, allowing larger coefficients.
Since for an average element the expansion is of length slightly larger than n he
almost always obtains coefficients of double size. Therefore he needs twice as
many doublings and approximately the same number of additions compared to
our algorithm.

The provided example does not seem to be optimal since the degree of extension
used is only 13, thus fairly small (and he proposes even smaller extensions) and
one has to be aware of Weil descent attacks which might work for these degrees
as well.

In this article we did not deal with the standard arithmetic in the ideal class
group except for stating Cantor’s algorithm. For hyperelliptic curves of genus
two and over fields of odd characteristic there exists a different approach similar
to the elliptic curve case. Spallek [54] developed in her thesis explicit formulae
for addition and doubling that have also been used and modified by Krieger [25].
These formulae can only be used for ideal classes, where the first polynomial of
the reduced ideal is of the maximal degree g, thus for those not corresponding
to divisor classes in the thetadivisor. Optimized formulae have been obtained
by Harley [14, 20] and can be downloaded from the second reference. We can
also combine the use of the Frobenius endomorphism with these algorithms.
For genus two these formulae seem to be faster than the standard algorithm
but for larger genus the number of different cases to consider increases and the
dependencies get too involved. But for an implementation on a small device it
might be useful to take these equations and also generalize them to characteristic
two.
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To set up a system one needs a divisor class of full order. Let [Pic’(C/F )| = kl.
Choosing a point P = (a,b) € C/F; at random as described in Koblitz [21],
interpreting C' — oo as a representative of a divisor class, i.e. taking the reduced
ideal D = [z — a, b] and computing kD either leads to an ideal class of order [ or
to the neutral element. In the second case one has to try again with a different
choice of the point. If one uses the explicit formulae one has to work with reduced
ideals with first polynomial of degree g. Then choosing points at random until
one obtains a reduced divisor of full degree, computing the corresponding reduced
ideal and then computing the k-fold can be used.

Like in the elliptic curve case one need not store both components of the divisor
class — the first “coordinate” and appropriately chosen bits to remember the signs
suffice.

16 Acknowledgments

This work is part of my Ph.D. thesis. Special thanks go to my supervisor Professor
Gerhard Frey for good advice and encouragement.

I would also like to thank the people from the IEM in Essen and the members of
the graduate school on “Mathematische und ingenieurwissenschaftliche Methoden
fiir sichere Dateniibertragung und Informationsvermittlung” for discussions and
interest. I am deeply thankful to Andreas Stein for leading my attention to this
interesting topic and for friendly support. I would also like to thank the people
from the CACR in Waterloo for helpful discussions. Parts of the work were done
during a research visit at the CACR. Furthermore I want to express my gratitude
to Guillaume Hanrot, Hendrik W. Lenstra, Michael Pohst, and René Schoof for
useful hints. Finally I would like to thank Caroline Ullrich for her patient listening
and useful discussions and Claus Diem for proof reading.

References

[1] L. Adleman, J. DeMarrais, M.-D. Huang, A Subexponential Algorithm for
Discrete Logarithms over the Rational Subgroup of the Jacobians of Large
Genus Hyperelliptic Curves over Finite Fields, in: Algorithmic Num-
ber Theory Seminar ANTS-I, Lecture Notes in Computer Science 877,
(Springer 1994), 28-40.

[2] D. Cantor, Computing in the Jacobian of a Hyperelliptic Curve, Mathe-
matics of Computation 48 (1987), 95-101.

(3] W. Diffie, M. E. Hellman, New Directions in Cryptography, Mathematics
of Computation 48 (1976), 95-101.



REFERENCES 79

[4]

(6]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

I. Duursma, P. Gaudry, F. Morain, Speeding up the discrete log compu-
tation on curves with automorphisms, in: Advances in Cryptology, Asi-
acrypt’99, Lecture Notes in Computer Science 1716, (Springer 1999), 103-
121.

T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE Transactions on Information Theory IT-31
(1985), 469-472.

A. Enge, Computing discrete logarithms in high-genus hyperelliptic Jaco-
bians in provably subexponential time, University of Waterloo Technical
Report CORR 99-04 (2000), to appear in Mathematics of Computation.

U. Finke, M. Pohst, Methods for Calculating Vectors of Short Length in
a Lattice, Mathematics of Computation 44 (1985), 463-482.

G. Frey, H.-G. Riick, A Remark concerning m-Divisibility and the Discrete
Logarithm Problem in the Divisor Class Group of Curves, Mathematics
of Computation 62 (1994), 865-874.

W. Fulton, Algebraic curves: An Introduction to Algebraic Geometry,
(Benjamin 1969).

S. Galbraith, Supersingular Curves in Cryptography, to appear.

R. Gallant, R. Lambert, S. Vanstone, Improving the Parallelized Pollard
Lambda Search on Anomalous Binary Curves, Mathematics of Computa-
tion 69 (2000), 1699-1705.

P. Gaudry, Algorithmique des courbes hyperelliptiques et applications a
la cryptologie, thése de doctorat de I’Ecole polytechnique, (2000).

P. Gaudry, An algorithm for solving the discrete log problem on hyperel-
liptic curves, in: Advances in Cryptology, Eurocrypt’2000, Lecture Notes
in Computer Science 1807, (Springer 2000), 19-34.

P. Gaudry, R. Harley, Counting points on hyperelliptic curves over finite
fields, in: Algorithmic Number Theory Seminar ANTS-1V, Lecture Notes
in Computer Science 1838, (Springer 2000), 313-332.

P. Gaudry, F. Hess, N.P. Smart, Constructive and destructive facets of
Weil descent on elliptic curves, Preprint (2000).

D. Gordon, A Survey of fast Exponentiation Methods, Journal of Algo-
rithms 27 (1998), 129-146.



80 REFERENCES

[17] C. Giinter, T. Lange, A. Stein, Speeding up the Arithmetic on Koblitz
Curves of Genus Two, in: Selected Areas in Cryptography SAC 2001,
Lecture Notes in Computer Science 2012, (Springer 2001), 106-117; see
also University of Waterloo Technical Report CORR 00-04 (2000).

[18] N. Gurel, Arithmétique des courbes C,;, DEA Algorithmique, Rapport de
stage (2000).

[19] R. Harasawa and J. Suzuki, Fast Jacobian Group Arithmetic on C,
Curves, in: Algorithmic Number Theory Seminar ANTS-IV, Lecture
Notes in Computer Science 1838, (Springer 2000), 359-376.

[20] R. Harley, Fast arithmetic on genus 2 curves, availiable at
http://cristal.inria.fr/ harley/hyper (2000).

[21] N. Koblitz, Hyperelliptic Cryptosystems, Journal of Cryptology 1 (1989),
139 - 150.

[22] N. Koblitz, CM-curves with good cryptographic properties, in: Advances
in Cryptology - Crypto ’91, Lecture Notes in Computer Science 576,
(Springer 1992), 279-287.

[23] N. Koblitz, An Elliptic Curve Implementation of the Finite Field Digital
Signature Algorithm, in: Advances in Cryptology - Crypto ’98, Lecture
Notes in Computer Science 1462, (Springer 1998), 327-337.

[24] N. Koblitz, Algebraic Aspects of Cryptography, (Springer 1998).

[25] U. Krieger, Anwendung hyperelliptischer Kurven in der Kryptographie,
Diploma Thesis, Universitdt Gesamthochschule Essen (1997).

[26] J. W. Lee, Speeding Up the Arithmetic on the Jacobians of Hyperelliptic
Curves, Preprint.

[27] D.H. Lehmer, Factorisation of Certain Cyclotomic Functions, Annals of
Mathematics 34(1933), 461-479.

[28] J.-L. Lesage, Equations Diophantiennes et corps quadratiques, Ph.D. The-
sis, Université de Caen (1998).

[29] D. Lorenzini, An Invitation to Arithmetic Geometry, (AMS Graduate
studies in mathematics 9 1996).

[30] D. Maisner, E. Nart, Abelian surfaces over finite fields as jacobians, Uni-
versitat Autonoma de Barcelona, Prepublications 14/2000 (2000)



REFERENCES 81

[31] W. Meier, O. Staffelbach, Efficient Multiplication on Certain Nonsuper-
singular Elliptic Curves, in: Advances in Cryptology - Crypto ’92, Lecture
Notes in Computer Science 740, (Springer 1993), 333-344.

[32] A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve discrete
logarithms to a finite field, IEEE Transactions on Information Theory 39
(1993), 1639-1646.

[33] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryp-
tography, (CRC Press 1996).

[34] A. Menezes, M. Qu, Analysis of the Weil Descent Attack of Gaudry, Hess
and Smart, to appear in: Proceedings of RSA (2001).

[35] A. Menezes, Y.-H. Wu, R. Zuccherato, An Elementary Introduction to
Hyperelliptic Curves, in: N. Koblitz, Algebraic Aspects of Cryptography,
(Springer 1998), 155-178.

[36] V. Miiller, Fast Multiplication on Elliptic Curves over Small Fields of
Characteristic Two, Journal of Cryptology 11 (1998), 219-234.

[37] V. Miiller, A. Stein, C. Thiel, Computing Discrete Logarithms in Real
Quadratic Congruence Function Fields of Large Genus, Mathematics of
Computation 68 (1999), 807-822.

[38] M. Nécker, Data structures for parallel exponentiation, Ph.D. Thesis, Uni-
versitdt Paderborn (2001).

[39] T.A. Pierce, The Numerical Factors of the Arithmetic Forms []_,(1 £
ol"), Annals of Mathematics 18 (1916), 53-64.

[40] P. van Oorschot, M.J. Wiener, Parallel Collision Search with Cryptana-
lytic Applications, Journal of Cryptology 12 (1999), 1-28.

[41] S. Pohlig, M. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on In-
formation Theory IT-24 (1978), 106-110.

[42] S. Paulus, H.-G. Riick, Real and imaginary quadratic representations
of hyperelliptic function fields, Mathematics of Computation 68 (1999),
1233-1241.

[43] J. M. Pollard, Monte Carlo methods for index computation (mod p), Math-
ematics of Computation 32 (1978), 918-924.

[44] J. M. Pollard, Kangaroos, Monopoly and Discrete Logarithms, Journal of
Cryptology, Online publication: 10 August 2000.



82 REFERENCES

[45] H.-G. Riick, Abelian surfaces and Jacobian varieties over finite fields, Com-
positio Math. 76 (1990), 351-366.

[46] H.-G. Riick, On the discrete logarithm in the divisor class group of curves,
Mathematics of Computation 68 (1999), 805-806.

[47] T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete
log algorithm for anomalous elliptic curves, Commentari Math. Univ. St.
Pauli 47 (1998), 81-92.

[48] 1. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p, Mathematics of Computation
67 (1998), 353-356.

[49] J.H. Silverman, The Arithmetic of Elliptic Curves, (Springer 1986).

[50] N.P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace
One, Journal of Cryptology 12 (1999), 193-196.

[61] N.P. Smart, Elliptic Curve Cryptosystems over Small Fields of Odd Char-
acteristic, Journal of Cryptology 12 (1999), 141-151.

[52] J. Solinas, An Improved Algorithm for Arithmetic on a Family of Ellip-
tic Curves, in: Advances in Cryptology - Crypto 97, Lecture Notes in
Computer Science 1294, (Springer 1997), 375-371.

[63] J. Solinas, Efficient arithmetic on Koblitz curves, Journal of Designs,
Codes and Cryptography 19 (2000), 195-249.

[54] A.M. Spallek, Kurven vom Geschlecht 2 und ihre Anwendung in Public-
Key-Kryptosystemen, Ph.D. Thesis, Universitat Gesamthochschule Essen
(1994).

[65] A. Stein, Sharp Upper Bounds for Arithmetic in Hyperelliptic Function
Fields, University of Waterloo Technical Report CORR 99-23 (1999).

[56] A. Stein, Introduction to the Arithmetic in Real Quadratic Function
Fields, availiable at
http://www.math.uiuc.edu/ andreas/articles/introcfe.ps.gz

(1999).

[67] A. Stein, E. Teske, Explicit bounds and heuristics on class numbers in hy-
perelliptic function fields, University of Waterloo Technical Report CORR
99-26 (1999).

[58] H. Stichtenoth, Algebraic Function Fields and Codes, (Springer 1993).



REFERENCES 83

[59] J. Tate, Endomorphisms of Abelian Varieties over Finite Fields, Inven-
tiones mathematicae 2 (1966), 134-144.

[60] E. Teske, Speeding up Pollard’s rho method for computing discrete loga-
rithms, in: Algorithmic Number Theory Seminar ANTS-III, Lecture Notes
in Computer Science 1423, (Springer 1998), 541-554.

[61] A. Weng, Constructing hyperelliptic curves of genus 2 suitable for cryp-
tography, Preprint, Universitit Gesamthochschule Essen (2000).



