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Abstract

The ideal class group of hyperelliptic curves can be used in cryptosystems based on the
discrete logarithm problem. In this article we present explicit formulae to perform the group
operations for genus 2 curves. The formulae are completely general but to achieve the lowest
number of operations we treat odd and even characteristic separately. We present 3 different
coordinate systems which are suitable for different environments, e. g. on a smart card we should
avoid inversions while in software a limited number is acceptable. The presented formulae render
genus two hyperelliptic curves very useful in practice.

The first system are affine coordinates where each group operation needs one inversion. Then
we consider projective coordinates avoiding inversions on the cost of more multiplications and
a further coordinate. Finally, we introduce a new system of coordinates and state algorithms
showing that doublings are comparably cheap and no inversions are needed. A comparison
between the systems concludes the paper.

Keywords: Public key cryptography, discrete logarithm, hyperelliptic curves, fast arithmetic,
explicit formulae

1 Introduction

In the past years cryptosystems based on elliptic curves have received a lot of attention and
nowadays they are ready for use in every day’s applications and can be found on smart cards and
cellular phones. Hyperelliptic curves are a generalization of elliptic curves and can likewise be used.
Hyperelliptic curve cryptography is just beginning to receive more attention for use in practice
to provide an alternative to the more established elliptic curve cryptography. The advantages
of elliptic curve cryptography carry through. In this paper we deal with efficient arithmetic to
achieve similar or even higher speed compared to elliptic curves. The presumably hard problem is
the discrete logarithm (DL) problem which we state for arbitrary additively written groups: given
a group element D and an element F of the cyclic group generated by D find the integer k such
that F = kD. For curves of genus ≤ 3 no subexponential algorithms for solving the DL problem
are known.

So far, the arithmetic for hyperelliptic curves was usually performed using Cantor’s algorithm (see
Cantor [6] and Koblitz [14] for a generalization to even characteristic). However, for fixed genus, one

1



Tanja Lange, Formulae for Arithmetic on Genus 2 Hyperelliptic Curves 2

can make the steps of the algorithm explicit and a more clever ordering results in faster formulae
for addition and doubling of classes.
Here, we concentrate on genus 2 curves and provide explicit formulae for performing the arithmetic
to close the performance gap between elliptic and hyperelliptic curves. This paper combines the
contents of [19, 20, 21] by the same author. For several special cases we refer to the respective
preprints. We give the algorithms and a theoretical comparison while two upcoming papers [1, 24]
deal with implementation comparisons. First implementation results can be found in [19]. Formulae
for genus 3 can be found in [12, 17, 32].
From a practical point of view it is worth studying larger genus curves as they can lead to faster
computations of scalar multiples. Due to the smaller field sizes they might be better suited for
some applications. It is interesting to notice that the explicit formulae offer a possibility to avoid
simple side-channel attacks. In affine coordinates an addition needs 22 multiplications, 3 squarings
and one inversion whereas a doubling needs two more squarings and the sequence of operations
is very similar. Hence, the operations differ but it is not too hard to get equal characteristics by
inserting some dummy field operations. This is far less than what is required for a complete group
operation. Hence, it is easy to have countermeasures against simple power or timing analysis even
in affine coordinates as observed in [23].

1.1 Situation for Elliptic Curves

For elliptic curves one can choose from several systems of coordinates (see Cohen, Miyaji, and
Ono [7]) such that depending on the requirements of the computing environment one can use the
optimal system for the respective purpose. Let IFq denote the finite field of q = pr, p prime,
elements. Put ĪFq the algebraic closure of IFq. Affine points are tuples (x, y) ∈ ĪF2

q , satisfying
y2 + (a1x + a3)y = x3 + a2x

2 + a4x + a6, ai ∈ IFq. The homogenized equations lead to projective
points (X,Y, Z) with the correspondence x = X/Z, y = Y/Z. The addition formulae for points
in projective coordinates avoid inversions. The idea to achieve formulae faster than the projective
and still without using inversions is to allow weighted projective coordinates. In the elliptic setting
(X,Y, Z) corresponds to (x, y) = (X/Z2, Y/Z3). These coordinates are called Jacobian coordinates;
in this system, additions are slightly more expensive while doublings get considerably cheaper than
in projective coordinates. Some computations done in the process of adding or doubling can provide
useful in the following operation. Thus, if the space is not too restricted, one can include them
in the set of coordinates. The coordinates (X,Y, Z, Z2, Z3) are called Chudnovsky Jacobian; they
are faster than projective coordinates with respect to both operations and allow faster additions
and slower doublings compared to ordinary Jacobian coordinates. To obtain faster doublings it is
useful to work with Cohen’s modified Jacobian coordinates (X,Y, Z, aZ4), where the elliptic curve
is given by y2 = x3 + ax+ b. This is very useful if one can store several precomputations and then
use a binary (signed) window method to compute the scalar multiple as then there are much more
doublings than additions. Furthermore, Cohen, Miyaji, and Ono investigate mixed coordinates,
i. e. depending on the costs of inversions relative to multiplications they propose different sets of
coordinates for the precomputations, the additions and the general doublings.

1.2 Situation for Genus 2 Curves

In this paper we try to mimic the approach to elliptic curves to generalize it to hyperelliptic curves.
For genus 2 curves explicit formulae were first considered by Spallek [35] and by Krieger [16]. The
first practical formulae were obtained by Harley [13], which were generalized to even characteristic
by Lange [18]; an improvement of the former paper can be found in Matsuo, Chao, and Tsujii
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[27]. A significant improvement was obtained independently by Takahashi [38] and Miyamoto, Doi,
Matsuo, Chao, and Tsujii [30]; this was generalized to even characteristic in [37] and independently
in [19]. The second reference allows more general curves and manages to trade more multiplications
for squarings which is desirable for characteristic two implementations. All these formulae involve
(at least) 1 inversion per addition or doubling respectively. In some environments inversions are
extremely time or space critical. An example are smart cards, as usually multiplications are opti-
mized there, whereas divisions are very slow – even with coprocessors .
So far there is only one article on other than affine coordinate systems for genus two curves by
Miyamoto, Doi, Matsuo, Chao, and Tsujii [30]. In [20] we take a similar approach obtaining better
running times and also allowing even characteristic for the finite field. To have a short term we
call the usual representation ’affine’ and the new one ’projective’ due to the resemblance with the
elliptic case. A milestone on the road towards hyperelliptic curve cryptography in real life is Kim
Nguyen’s implementation on a FameXE of Lange’s projective formulae reported at ECC 2002 -
Workshop on elliptic curve cryptography, Essen. This is the first implementation for an embedded
system using inversion-free coordinates which shows hyperelliptic curves to be competitive with
elliptic curves.
We introduce a further set of coordinates, which we call new coordinates. Like the projective
coordinates they allow to avoid inversions in the group operations but the doublings are faster.
For both these sets we only treat the main cases as the other generalize easily. Because they are
needed with very low probability they could even be skipped for an actual implementation. This
is possible as no division by zero can occur and a simple check at the end of the computation is
enough to guarantee the correctness of the result.
For the new coordinates we need to treat odd and even characteristic separately as they need
different ways of optimization. The consideration of even characteristic is done in the Appendix.
We conclude each study by a comparison of the arithmetic in the different systems and also treat
mixed coordinates, i.e. allow different sets of coordinates for the precomputations, main doublings
and additions to achieve the lowest complexity. Certainly the actual choice for an implementation
heavily depends on the cost of inversions relative to multiplications and on the number of (online)
precomputations one is willing to store.

Since the submission of this paper some new results were obtained which we state here. For curves
over prime fields Avanzi [1] did a complete comparison of the speed of scalar multiplication. He
considers curves of genus one, two and three and compares the different coordinate systems available
using different windowing methods. In [29] Mishra and Sakar obtained a parallel version of the
arithmetic, Avanzi, Lange and Mishra [2, 23] consider resistance against side channel attacks and
Duquesne and Lange [8, 22] generalized Montgomery arithmetic to genus two curves over fields of
odd characteristic. The explicit formulae have now also been implemented on FPGAs [9, 3, 40, 39].
In even characteristic the doubling algorithm was improved for curves of special type, i. e. curves
having at some coefficients equal to zero, in [5, 33, 25].

The remainder of this paper is organized as follows: We first give a short introduction to the math-
ematical background of hyperelliptic curves and present the standard algorithms to do arithmetic
in the ideal class group. This is the group used in the computations to have an efficient way of
computing and storing the elements. It is isomorphic to the Jacobian of the curve. To make the
steps explicit we need not consider all different inputs. For the usual set of coordinates we present
the explicit formulae which are faster than the usual algorithms, along with the analysis of the
number of operations and a proof for their correctness. Then we present the respective algorithms
for projective and new coordinates.
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2 Mathematical Background on Elliptic and Hyperelliptic Curves

In this section we briefly sketch what is needed in the remainder of this paper. The interested reader
is referred to Menezes, Wu, and Zuccherato [28], Koblitz [15], Lorenzini [26], Stichtenoth [36], and
Frey and Lange [10] for more details and proofs.

Let IFq be a finite field of characteristic p, q = pν , and let ĪFq denote the algebraic closure of IFq.

Definition 2.1 Let IFq(C)/IFq be a quadratic function field defined via an equation

C : y2 + h(x)y = f(x), (1)

where f(x) ∈ IFq[x] is a monic polynomial of degree 2g + 1, h(x) ∈ IFq[x] is a polynomial of degree
at most g, and there are no solutions (a, b) ∈ ĪFq × ĪFq which simultaneously satisfy the equation
b2 + h(a)b = f(a) and the partial derivative equations 2b + h(a) = 0 and h′(a)b − f ′(a) = 0. The
curve C/IFq associated to this function field is called a hyperelliptic curve of genus g defined over
IFq.

For our purposes it is enough to consider a point as an ordered pair (a, b) ∈ ĪF2
q which satisfies

b2 +h(a)b = f(a). Besides these tuples there is one point∞ at infinity. The hyperelliptic involution
ι maps (a, b) to (a,−b− h(a)) and leaves ∞ fixed.
A divisor D of C(ĪFq) is an element of the free abelian group over the points of C(ĪFq), e. g.
D =

∑
P∈C(ĪFq) nPP with nP ∈ ZZ and nP = 0 for almost all points P . The degree of D is defined

as deg(D) =
∑
P∈C(ĪFq) nP . A divisor D is defined over IFq if σ(D) = D for all σ ∈ Gal(ĪFq/IFq).

To every element F of the function field we can associate a divisor via the valuations at all
points of the curve div(F ) =

∑
P∈C(ĪFq) vP (F )P . These so called principal divisors are of degree

zero and form a subgroup of the group of degree zero divisors. The quotient group is called the
divisor class group. The function Fa = (x − a) leads to a divisor div(Fa) = Pa + ιPa − 2∞,
where Pa = (a, b) ∈ C(ĪFq). Hence, we can achieve that we represent a divisor class by a divisor
D =

∑r
i=1 Pi − r∞, where Pi 6=∞ and Pi 6= ιPj for i 6= j. Furthermore, one finds a representative

with r ≤ g for each class. Note that D defined over IFq does not imply that each Pi is defined over
this field. If Pi has IFql as minimal field of definition then all l conjugates of Pi must also occur in
D. Therefore l is bounded by g.

The maximal ideals of IFq[x, y]/(y2 + h(x)y − f(x)) have a basis consisting of two polynomials
and one can achieve that the first polynomial is in IFq[x], whereas the second one is of the form
y − v(x), v(x) ∈ IFq[x], since we reduce modulo a polynomial of degree 2 in y. Now we consider
the ideal class group, i.e. the ideals modulo the principal ideals. As the curve has only a single
point at infinity the ideal class group and the divisor class group are isomorphic. Furthermore,
they are isomorphic to the IFq-rational points of the Jacobian of the curve, a g-dimensional abelian
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variety. In Mumford [31][page 3.17] the following representation is introduced which makes explicit
the isomorphism between the ideal class group and divisor class group:

Theorem 2.2 (Mumford Representation)
Let the function field be given via the absolutely irreducible polynomial y2 + h(x)y − f(x), where
h, f ∈ IFq[x], deg f = 2g+ 1, deg h ≤ g. Each nontrivial ideal class over IFq can be represented via
a unique ideal generated by u(x) and y − v(x), u, v ∈ IFq[x] , where

1. u is monic,

2. deg v < deg u ≤ g,

3. u|v2 + vh− f .

Let D =
∑r
i=1 Pi − r∞, where Pi 6= ∞, Pi 6= ιPj for i 6= j and r ≤ g. Put Pi = (ai, bi). Then

the corresponding ideal class is represented by u =
∏r
i=1(x − ai) and if Pi occurs ni times then(

d
dx

)j [
v(x)2 + v(x)h(x)− f(x)

]
|x=ai

= 0, 0 ≤ j ≤ ni − 1.

The second part of the theorem means that for all points Pi = (ai, bi) occurring in the support of D
we have u(ai) = 0 and the third condition guarantees that v(ai) = bi with appropriate multiplicity.

For short we denote this ideal by [u, v]. The inverse of a class is represented by [u,−h−v], where the
second polynomial is understood modulo u if necessary. The ideal class group over IFq is denoted
by Cl(C/IFq). The zero element of of Cl(C/IFq) is represented by [1, 0].

3 Arithmetic using Cantor’s Algorithm

In this section we consider the group operation. Here we still deal with general hyperelliptic curves,
i. e. curves of arbitrary genus. Addition of divisor classes means multiplication of ideal classes,
which consists in a composition of the ideals and a first reduction to a basis of two polynomials.
The output of this algorithm is said to be semi-reduced. Then we need a second algorithm, which
is usually called reduction, to find the unique representative in the class referred to above. Such an
ideal is called reduced. Due to the work of Cantor [6] (for odd characteristic only) and Koblitz [14]
one has an efficient algorithm to perform these operations, which uses only polynomial arithmetic
over the finite field in which the ideal classes are defined. Even though the composition in the ideal
class group is multiplication, we write the group additively, as it has become common to speak
about addition and doubling (as opposed to multiplication and squaring) of classes like for points
on elliptic curves.

Algorithm 3.1 (Composition)
INPUT: D1 = [u1, v1], D2 = [u2, v2], C : y2 + h(x)y = f(x).
OUTPUT:D = [u, v] semi-reduced with D ≡ D1 +D2.

1. compute d1 = gcd(u1, u2) = e1u1 + e2u2;

2. compute d = gcd(d1, v1 + v2 + h) = c1d1 + c2(v1 + v2 + h);

3. let s1 = c1e1, s2 = c1e2, s3 = c2;
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4. u = u1u2
d2 ;

v = s1u1v2+s2u2v1+s3(v1v2+f)
d mod u.

Algorithm 3.2 (Reduction)
INPUT: D = [u, v] semi-reduced.
OUTPUT:D′ = [u′, v′] reduced with D ≡ D′.

1. let u′ = f−vh−v2

u , v′ = (−h− v) mod u′;

2. if deg u′ > g put u = u′, v = v′;
goto step 1;

3. make u′ monic.

This algorithm provides a universal way of doing arithmetic in Cl(C/IFq) which applies to any genus
and characteristic. However, in a straightforward implementation several unneeded coefficients are
computed. Therefore, a careful study making the steps explicit is necessary. We deal with this in
the following section.

4 Explicit formulae

From now on we restrict our attention to curves of genus two. To derive explicit formulae, we first
give the case study of [18] investigating what can be the input of the composition algorithm and
proceed in considering these different cases. We determine the exact number of operations needed
to perform addition and doubling in the most frequent cases.
Unless stated otherwise the formulae hold independently of the characteristic, therefore we take
care of the signs; in characteristic two, 2y is understood as zero.
We fix the notation to refer to the coefficient of xi in a polynomial l(x) as li.

4.1 Different Cases

Consider the composition step of Cantors Algorithm 3.1. The input are two classes represented by
two polynomials [ui, vi] each. As we consider curves of genus two the following holds by Theorem 2.2:

1. ui is monic,

2. deg vi < deg ui ≤ 2,

3. ui|v2
i + vih− f .

Without loss of generality let deg u1 ≤ deg u2.

1. u1 is of degree zero, this is only possible in the case [u1, v1] = [1, 0], i. e. for the zero element.
The result of the combination and reduction is the second class [u2, v2].

2. If u1 is of degree one, then either u2 is of degree one as well or it has full degree.

(a) Assume deg u2 = 1, i. e. ui = x+ui0 and the vi are constant. Then if u1 = u2 we obtain
for v1 = −v2 − h(−u10) the zero element [1, 0] and for v1 = v2 we double the divisor to
obtain

u = u2
1, (2)

v = ((f ′(−u10)− v1h
′(−u10))x+ (f ′(−u10)− v1h

′(−u10))u10)/(2v1 + h(−u10)) + v1.
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Otherwise the composition leads to u = u1u2 and
v = ((v2 − v1)x+ v2u10 − v1u20)/(u10 − u20).
In all cases the results are already reduced.

(b) Now let the second polynomial be of degree two, u2 = x2 + u21x + u20. Then the
corresponding divisors are given by D1 = P1 −∞ and D2 = P2 + P3 − 2∞, Pi 6=∞.

i. If u2(−u10) 6= 0 then P1 and −P1 do not occur in D2. This case will be dealt with
below in Subsection 4.3.2.

ii. Otherwise if v2(−u10) = v1 +h(−u10) then −P1 occurs in D2 and the resulting class
is given by u = x+ u21− u10 and v = v2(−u21 + u10) as −u21 equals the sum of the
x-coordinates of the points.
Otherwise one first doubles [u1, v1] by (2) and then adds [x+u21−u10, v2(−u21+u10)],
hence, reduces the problem to the case 2(b)i, unless D2 = 2P1− 2∞ where one first
doubles D2 as in 3(a)ii and then subtracts D1 using 2(b)i.

3. Let deg u1 = deg u2 = 2.

(a) Let first u1 = u2. This means that for an appropriate ordering D1 = P1 +P2−2∞, D2 =
P3 + P4 − 2∞ the x-coordinates of Pi and Pi+2 are equal.

i. If v1 ≡ −v2 − h mod u1 then the result is [1, 0].
ii. If v1 = v2 then we are in the case in which we double a class of order different

from two and with first polynomial of full degree. Again we need to consider two
sub-cases:
If D1 = P1 +P2−2∞ where P1 is equal to its opposite, then the result is 2P2 and can
be computed like above. P1 = (xP1 , yP1) is equal to its opposite, iff h(xP1) = −2yP1 .
To check for this case we compute the resultant of h+ 2v1 and u1.
A. If res(h + 2v1, u1) 6= 0 then we are in the usual case where both points are not

equal to their opposite. This will be considered in Subsection 4.3.3.
B. Otherwise we compute the gcd(h+ 2v1, u1) = (x− xP1) to get the coordinate of

P1 and double [x+ u11 + xP1 , v1(−u11 − xP1)].
iii. Now we know that without loss of generality P1 = P3 and P2 6= P4 is the opposite

of P4. Let vi = vi1x+ vi0, then the result 2P1 is obtained by doubling
[x− (v10 − v20)/(v21 − v11), v1((v10 − v20)/(v21 − v11))] using (2).

(b) For the remaining case u1 6= u2, we need to consider the following possibilities.
i. If res(u1, u2) 6= 0 then no point of D1 is equal to a point or its opposite in D2. This

is the most frequent case. We deal with it in Subsection 4.3.1.
ii. If the above resultant is zero then gcd(u1, u2) = x − xP1 and we know that either

D1 = P1 +P2− 2∞, D2 = P1 +P3− 2∞ or D2 contains the opposite of P1 instead.
This can be checked by inserting xP1 in both v1 and v2.
A. If the results are equal then we are in the first case and proceed by computing

D′ = 2(P1 − ∞), then D′′ = D′ + P2 − ∞ and finally D = D′′ + P3 − ∞ by
the formulae in 2. We extract the coordinates of P2 and P3 by P2 = (−u11 +
xP1 , v1(−u11 + xP1)), P3 = (−u21 + xP1 , v2(−u21 + xP1)).

B. In case v1(xP1) 6= v2(xP1) the result is P2 + P3 − 2∞.

If one uses the resultant as recommended in 3(a)ii and 3(b)i then one needs to compute a greatest
common divisor as well, to extract the coordinates of P1 when needed. However, most frequently
we are in the case of nonzero resultant and thus we save on average.
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4.2 Isomorphic Transformations

From the case study it is already obvious that the formulae depend on the equation of the curve.
To ease the exposition we now introduce some transformations leading to isomorphic curves which
might have an easier equation.
In odd characteristic upon application of the transformation y → y − h/2 one can always assume
h(x) = 0 . To satisfy the last condition of the definition it then suffices to have f squarefree.
For p 6= 5 the substitution x→ x− f4/5 provides that the coefficient of x4 in f can be taken equal
to zero.
In even characteristic h must be non-zero. For genus two we even have to guarantee that h is
non-constant as otherwise the resulting curve is supersingular (see Galbraith [11]) and thus the DL
problem is weaker than on an arbitrary curve. However, we note that recently supersingular curves
found applications in identity based cryptosystems (see e. g. [4, 11, 34]). As the following formulae
will depend heavily on the non-zero coefficients of the curve we consider transformations: Let first
deg h = 2. Then replacing

y → h5
2y + f3h2x+

f3(f3 + h1h2 + f4h
2
2) + f2h

2
2

h3
2

, x→ h2
2x+ f4

and dividing the equation by h10
2 leads to h2 = 1, and f4 = f3 = f2 = 0.

If deg h = 1 we obtain f3 = 0 via y → y + f3/h1x
2. If additionally there exists a b such that

f3h0 + b2h1 + bh2
1 = f2h1 has a solution one can even achieve f2 = 0 by y → y + f3/h1x

2 + bx.
Finally one has to ensure f4 = 0 by x→ x+ f4 with the new f4, which does not touch f3 and f2 as
p = 2. Furthermore, with high probability one can achieve that h1 is small by the transformation
x→ a2x, y → a5y, where a ∈ IFq is chosen such that h1/a

3 is small.

Remark 4.1 After the submission of this paper some more research revealed that for deg h = 1
other changes of the curve equation lead to faster formulae, see [25].

4.3 Addition and Doubling

We now present in detail the algorithms for the cases left out above. These are the most common
cases. For the complexity estimates we always assume h2 ∈ {0, 1} and f4 = 0. If the curve is not
brought to this form some computations should be performed differently (e. g. s0(s0 +h2) instead of
s2

0+s0h2). We would like to stress that the formulae remain correct for other values of h2 and f4, only
the operation count changes. Depending on the equation of the curve and the characteristic some
further transformations can save operations. Note, however, that these improvements are rather
immediate and therefore we do not list them separately. Finally, we mention that we only count
multiplications, squarings, and inversions as additions and subtractions are comparably cheap.

4.3.1 Addition in Most Common Case

In this case the two divisor classes to be combined consist of four points different from each other
and from each other’s negative. The results of the composition Algorithm 3.1 are u = u1u2 and
a polynomial v of degree ≤ 3 satisfying u|v2 + vh − f (see Theorem 2.2). As we started with
ui|v2

i + vih− f we can obtain v using the Chinese Remainder Theorem:

v ≡ v1 mod u1, (3)
v ≡ v2 mod u2.
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Then we compute the resulting first polynomial u′ by making (f−vh−v2)/(u1u2) monic and taking
v′ = (−h− v mod u′).
To optimize the computations we do not follow this literally. We now list the needed subexpressions
and then show that in fact we obtain the desired result.

k = (f − v2h− v2
2)/u2

s ≡ (v1 − v2)/u2 mod u1

l = su2

u = (k − s(l + h+ 2v2))/u1

u′ = u made monic
v′ ≡ −h− (l + v2) mod u′

The divisions made to get k and u are exact divisions due to the definition of the polynomials. Let
us first verify that v = l + v2 = s · u2 + v2 satisfies the system of equations (3). This is obvious for
the second equation. For the first one we consider v ≡ su2 +v2 ≡ ((v1−v2)/u2)u2 +v2 ≡ v1 mod u1.
Now we check that u = (f − vh− v2)/(u1u2) by expanding out

u1u2u = u2(k − s(l + h+ 2v2)) = f − v2h− v2
2 − l(l + h)− 2lv2 = f − vh− v2.

In the course of computing we do not need all coefficients of the polynomials defined above. As
f = x5 +

∑4
i=0 fix

i is monic and of degree 5, u2 is monic of degree 2, deg h ≤ 2, and deg v2 = 1
we have that k = x3 + (f4 − u21)x2 + cx+ c′, where c, c′ are some constants. In the computation
of u we divide an expression involving k by a polynomial of degree 2, thus we only need the above
known part of k. In the computation of a product of polynomials we use the following Karatsuba
style formula to save one multiplication:

(ax+ b)(cx+ d) = acx2 + ((a+ b)(c+ d)− ac− bd)x+ bd.

To reduce a polynomial of degree 3 modulo a monic one of degree 2 we use

ax3 + bx2 + cx+ d ≡ (c− (i+ j)(a+ (b− ia)) + ia+ j(b− ia))x+ d− j(b− ia) mod x2 + ix+ j

using only 3 multiplications instead of four. Furthermore, we use an almost inverse in the computa-
tion of s and compute rs instead, where r is the resultant of u1 and u2, postponing and combining
the inversion of r with that of s. This leads us to consider a further subcase, namely deg s = 1.
In the following table we list the intermediate steps together with the number of multiplications
(M), squarings (S) and inversions (I) needed. The names of the intermediate variables refer to the
above computations. A dash ′ indicates changes relative to there. For an actual implementation
less variables are needed, however, we favored readability by humans in this exposition.

In the case study we have already computed the resultant of u1 and u2 when we arrive at this
algorithm. Hence, we can assume that ũ2 = u2 mod u1 and res(ũ2, u1) are known. However, we
include the costs in the table, as we use these expressions to compute 1/ũ2 mod u1.

The following table presents the complete addition formula. We apply the trick introduced by
Takahashi [38] to use a monic s′′. Note that our algorithm needs the same number of operations
(assuming M=S) as his but manages to trade one more multiplication for a squaring which might
be advantageous for implementations.



Tanja Lange, Formulae for Arithmetic on Genus 2 Hyperelliptic Curves 10

For even characteristic the independent work [37] needs the same number of operations but con-
siders only the case of deg h = 2. Furthermore, in even characteristic squarings are much cheaper
than multiplications and therefore our algorithm is faster. If h1 = 1 our algorithm saves one
multiplication in Step 6.

Addition, deg u1 = deg u2 = 2
Input [u1, v1], [u2, v2], ui = x2 + ui1x+ ui0, vi = vi1x+ vi0

Output [u′, v′] = [u1, v1] + [u2, v2]
Step Expression Operations

1 compute resultant r of u1, u2: 1S, 3M
z1 = u11 − u21, z2 = u20 − u10, z3 = u11z1 + z2;
r = z2z3 + z2

1u10;
2 compute almost inverse of u2 modulo u1 (inv = r/u2 mod u1):

inv1 = z1, inv0 = z3;
3 compute s′ = rs ≡ (v1 − v2)inv mod u1: 5M

w0 = v10 − v20, w1 = v11 − v21, w2 = inv0w0, w3 = inv1w1;
s′1 = (inv0 + inv1)(w0 + w1)− w2 − w3(1 + u11), s′0 = w2 − u10w3;
if s′1 = 0 see below

4 compute s′′ = x+ s0/s1 = x+ s′0/s
′
1 and s1: I, 2S, 5M

w1 = (rs′1)−1(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);
w4 = rw2(= 1/s1), w5 = w2

4, s′′0 = s′0w2;
5 compute l′ = s′′u2 = x3 + l′2x

2 + l′1x+ l′0: 2M
l′2 = u21 + s′′0, l′1 = u21s

′′
0 + u20, l′0 = u20s

′′
0

6 compute u′ = (s(l + h+ 2v2)− k)/u1 = x2 + u′1x+ u′0: 3M
u′0 = (s′′0 − u11)(s′′0 − z1 + h2w4)− u10 + l′1 + (h1 + 2v21)w4 + (2u21 + z1 − f4)w5;
u′1 = 2s′′0 − z1 + h2w4 − w5;

7 compute v′ ≡ −h− (l + v2) mod u′ = v′1x+ v′0: 4M
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1, v′1 = w2w3 − v21 − h1 + h2u

′
1;

w2 = u′0w1 − l′0, v′0 = w2w3 − v20 − h0 + h2u
′
0;

total I, 3S, 22M
Special case s = s0

4′ compute s: I, M
inv = 1/r, s0 = s′0inv;

5′ compute u′ = (k − s(l + h+ 2v2))/u1 = x+ u′0: S
u′0 = f4 − u21 − u11 − s2

0 − s0h2;
6′ compute v′ ≡ −h− (l + v2) mod u′ = v′0: 2M

w1 = s0(u21 + u′0) + h1 + v21 + h2u
′
0, w2 = s0 + v20 + h0;

v′0 = u′0w1 − w2;
total I, 2S, 11M

4.3.2 Addition in Case deg u1 = 1, deg u2 = 2

We now treat the case of Section 4.1 in which for u1 = x+ u10 we have that u2(−u10) 6= 0.
In principle we follow the same algorithm as stated in the previous subsection. But to obtain u we
divide by a polynomial of degree one, therefore we need an additional coefficient of k and save a
lot in the other operations. The next table shows that this case is much cheaper than the general
one, however it is not too likely to happen like all special cases.
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Addition, deg u1 = 1, deg u2 = 2
Input [u1, v1], [u2, v2], u1 = x+ u10, u2 = x2 + u21x+ u20, v1 = v10, v2 = v21x+ v20

Output [u′, v′] = [u1, v1] + [u2, v2]
Step Expression Operations

1 compute r ≡ u2 mod u1: M
r = u20 − (u21 − u10)u10;

2 compute inverse of u2 modulo u1: I
inv = 1/r

3 compute s = (v1 − v2)inv mod u1: 2M
s0 = inv(v10 − v20 − v21u10);

4 compute l = su2 = s0x
2 + l1x+ l0: 2M

l1 = s0u21, l0 = s0u20;
5 compute k = (f − v2h− v2

2)/u2 = x3 + k2x
2 + k1x+ k0: M

k2 = f4 − u21, k1 = f3 − (f4 − u21)u21 − v21h2 − u20;
6 compute u′ = (k − s(l + h+ 2v2))/u1 = x2 + u′1x+ u′0: S, 2M

u′1 = k2 − s2
0 − s0h2 − u10;

u′0 = k1 − s0(l1 + h1 + 2v21)− u10u
′
1;

7 compute v′ ≡ −h− (l + v2) mod u′ = v′1x+ v′0: 2M
v′1 = (h2 + s0)u′1 − (h1 + l1 + v21);
v′0 = (h2 + s0)u′0 − (h0 + l0 + v20);

total I, S, 10 M

4.3.3 Doubling

The above case study left open how one computes the double of a class where the first polynomial
has degree two and both points of the representing divisor are not equal to their opposites. Put
u = x2 + u1x+ u0, v = v1x+ v0. Composing [u, v] with itself should result in a class [unew, vnew],
where

unew = u2,

vnew ≡ v mod u, (4)
unew | v2

new + vnewh− f. (5)

Then this class is reduced to obtain [u′, v′]. We use the following subexpressions:

k = (f − hv − v2)/u
s ≡ k/(h+ 2v) mod u
l = su

ũ = s2 − ((h+ 2v)s− k)/u
u′ = ũ made monic
v′ ≡ −h− (l + v) mod u′

Note that like above we do not compute the semi-reduced divisor explicitely, here
vnew = l + v = su + v. Hence, we see that (4) holds. To prove (5) we consider

v2
new + vnewh− f = l2 + 2lv + v2 + hl + hv − f = s2u2 + u(s(h+ 2v)− k)

and
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(h+ 2v)s− k ≡ (h+ 2v)k/(h+ 2v)− k ≡ 0 mod u.
Finally, one finds by

(v2
new + vnewh− f)/unew = (s2u2 + (h+ 2v)su− ku)/u2

that u1 is in fact obtained as described in the reduction algorithm.
Unlike in the addition case we now need the exact polynomial k to compute D. For the doublings
it is necessary to separately count the operations for odd and even characteristic. The formulae on
the left are most general but for an actual implementation they should be modified according to
the remarks below. For odd characteristic we assume h = 0.

Doubling, deg u = 2
Input [u, v], u = x2 + u1x+ u0, v = v1x+ v0

Output [u′, v′] = 2[u, v]
Step Expression odd even

1 compute ṽ ≡ (h+ 2v) mod u = ṽ1x+ ṽ0:
ṽ1 = h1 + 2v1 − h2u1, ṽ0 = h0 + 2v0 − h2u0;

2 compute resultant r =res(ṽ, u): 2S, 3M 2S, 3M
w0 = v2

1, w1 = u2
1, w2 = ṽ2

1, w3 = u1ṽ1, r = u0w2 + ṽ0(ṽ0 − w3); (w2 = 4w0) (see below)
3 compute almost inverse inv′ = invr:

inv′1 = −ṽ1, inv′0 = ṽ0 − w3;
4 compute k′ = (f − hv − v2)/u mod u = k′1x+ k′0: 1M 2M

w3 = f3 + w1, w4 = 2u0, k′1 = 2(w1 − f4u1) + w3 − w4 − h2v1; (see below)
k′0 = u1(2w4 − w3 + f4u1 + h2v1) + f2 − w0 − 2f4u0 − h1v1 − h2v0;

5 compute s′ = k′inv′ mod u: 5M 5M
w0 = k′0inv

′
0, w1 = k′1inv

′
1;

s′1 = (inv′0 + inv′1)(k′0 + k′1)− w0 − w1(1 + u1), s′0 = w0 − u0w1;
If s1 = 0 see below

6 compute s′′ = x+ s0/s1 and s1: I, 2S, 5M I, 2S, 5M
w1 = 1/(rs′1)(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);
w4 = rw2(= 1/s1), w5 = w2

4, s′′0 = s′0w2;
7 compute l′ = s′′u = x3 + l′2x

2 + l′1x+ l′0: 2M 2M
l′2 = u1 + s′′0, l′1 = u1s

′′
0 + u0, l′0 = u0s

′′
0;

8 compute u′ = s2 + (h+ 2v)s/u+ (v2 + hv − f)/u2: S, 2M S, M
u′0 = s′′0

2 + w4(h2(s′′0 − u1) + 2v1 + h1) + w5(2u1 − f4);
u′1 = 2s′′0 + h2w4 − w5;

9 compute v′ ≡ −h− (l + v) mod u′ = v′1x+ v′0: 4M 4M
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1, v′1 = w2w3 − v1 − h1 + h2u

′
1;

w2 = u′0w1 − l′0, v′0 = w2w3 − v0 − h0 + h2u
′
0;

total I, 5S, 22 M I, 5S, 22 M
Special case s = s0

6′ compute s and precomputations: I,2M I,2M
w1 = 1/r, s0 = s′0w1, w2 = u0s0 + v0 + h0;

7′ compute u′ = (f − hv − v2)/u2 − (h+ 2v)s/u− s2: S S
u′0 = f4 − s2

0 − s0h2 − 2u1;
8′ compute v′ ≡ −h− (su+ v) mod u′: 2M 2M

w1 = s0(u1 − u′0)− h2
2u
′
0 + v1 + h1, v′0 = u′0w1 − w2;

total I, 3S, 13M I, 3S, 14M
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Remarks:

1. Compared to [38, 37] we have the same number of operations (assuming M=S) but our
formulae trade 4 more multiplications for squarings which is a significant speed-up in even
characteristic. Furthermore, we consider a more general defining equation.

2. In even characteristic we can skip the computation of w0 in Step 2 and then compute k′0 =
u1(w3 + f4u1 + h2v1) + f2 + v1(v1 + h1) + h2v0. In u′0 we get f4w5 for free.

3. If h2 = 0 then w2 = h2
1. This squaring can be precomputed as it is fixed for the curve.

4. If one is willing to fix the curve and allow some special choices it is possible to reduce the
number of operations significantly [25]. For binary Koblitz curves see also [24].

5 Projective Coordinates

So far, in the process of computation one inversion is required for each addition or doubling. Now,
instead of following this line, we introduce a further coordinate called Z like for elliptic curves and
let the quintuple [U1, U0, V1, V0, Z] stand for [x2 +U1/Z x+U0/Z, V1/Z x+ V0/Z]. If the output of
a scalar multiplication should be in the usual affine representation we need one inversion and four
multiplications at the end of the computations. We now proceed in investigating the arithmetic in
the main cases.
This idea was first proposed for genus two curves in [30] and then largely improved and generalized
by the author in [20].

5.1 Addition

Here we consider the case that we add two classes both in projective representation. This is needed
if the whole system avoids inversion and classes are transmitted using the quintuple representation,
or if during the verification of a signature intermediate results should be added, or when using
precomputations given in projective representation. Obviously this algorithm also works for affine
inputs if one writes [u1, v1] as [u11, u10, v11, v10, 1]. The number of operations in the following table
refers to odd characteristic or to hi ∈ {0, 1} respectively. For even characteristic see the remark
below. Numbers in brackets refer to the case, that the first input is affine, i. e. has Z1 = 1. A more
careful implementation of this case allows to save some further multiplications (see [20]), namely
then one additions needs 3S, 40M in odd characteristic.
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Addition
Input [U11, U10, V11, V10, Z1], [U21, U20, V21, V20, Z2]

Output [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′] = [U11, U10, V11, V10, Z1] + [U21, U20, V21, V20, Z2]
Step Expression Operations

1 precomputation: 5M
Z = Z1Z2, Ũ21 = Z1U21, Ũ20 = Z1U20, Ṽ21 = Z1V21, Ṽ20 = Z1V20; (–)

2 compute resultant r of U1, U2: 1S, 6M
z1 = U11Z2 − Ũ21, z2 = Ũ20 − U10Z2, z3 = U11z1 + z2Z1; (1S, 5M)
r = z2z3 + z2

1U10;
3 compute almost inverse of u2 modulo u1 :

inv1 = z1, inv0 = z3;
4 compute s: 8M

w0 = V10Z2 − Ṽ20, w1 = V11Z2 − Ṽ21, w2 = inv0w0, w3 = inv1w1; (7M)
s1 = (inv0 + Z1inv1)(w0 + w1)− w2 − w3(Z1 + U11);
s0 = w2 − U10w3;
If s1 = 0 different case

5 precomputations: 1S, 9M
R = Zr, s0 = s0Z, s3 = s1Z, R̃ = Rs3, t = s1(z1 + Ũ21);

S3 = s2
3, S = s0s1, S̃ = s3s1, ˜̃S = s0s3, ˜̃R = R̃S̃, h̃1 = h1Z;

6 compute l: 3M
l2 = S̃Ũ21, l0 = SŨ20, l1 = (S̃ + S)(Ũ21 + Ũ20)− l2 − l0;

l2 = l2 + ˜̃S;
7 compute U ′: 2S, 7M

U ′0 = s2
0 + s1z1(t− 2s0) + z2S̃+ (see below)

R(h2(s0 − t) + s1(h̃1 + 2Ṽ21) + r(z1 + 2Ũ21 − f4Z));

U ′1 = 2˜̃S − S̃z1 + h2R̃−R2;
8 precomputations: 4M

l2 = l2 − U ′1, w0 = U ′0l2 − S3l0, w1 = U ′1l2 + S3(U ′0 − l1);
9 adjust: 3M

Z ′ = R̃S3, U ′1 = R̃U ′1, U ′0 = R̃U ′0;
10 compute V ′: 2M

V ′0 = w0 + h2U
′
0 −

˜̃RṼ20 − h0Z
′;

V ′1 = w1 + h2U
′
1 −

˜̃R(Ṽ21 + h̃1);
total 4S, 47M (4S, 40M)

Remark: In characteristic 2 we need 2 more multiplications leading to 4S, 49M (4S, 39M). Note,
that we present only the most general formulae – consideration of the special choices will improve
the efficiency.

5.2 Doubling

For the doubling algorithm the input is almost always in projective representation. Like before we
list the number of operations for odd and even characteristic separately. In the odd case h = 0
otherwise h2 ∈ {0, 1}, f3 = 0. Multiplications by f4 are not counted in any case. The formulae
might be performed differently for even characteristic (see remarks below).
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Doubling
Input [U1, U0, V1, V0, Z]

Output [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′] = 2[U1, U0, V1, V0, Z]
Step Expression odd even

1 compute resultant and precomputations: 3S, 4M 4S, 6M
h̃1 = h1Z, h̃0 = h0Z, Z2 = Z2, Ṽ1 = h̃1 + 2V1 − h2U1; (w2 = 4w0)
Ṽ0 = h̃0 + 2V0 − h2U0, w0 = V 2

1 , w1 = U2
1 , w2 = Ṽ 2

1 ;
w3 = Ṽ0Z − U1Ṽ1, r = Ṽ0w3 + w2U0;

2 compute almost inverse:
inv1 = −Ṽ1, inv0 = w3;

3 compute k: 5M 5M
w3 = f3Z2 + w1, w4 = 2U0; (see below) (see below)
k1 = 2w1 + w3 − Z(w4 + 2f4U1 + h2V1);
k0 = U1(Z(2w4 + f4U1 + h2V1)− w3)
+Z(Z(f2Z − V1h1 − V0h2 − 2f4U0)− w0)

4 compute s = kinv mod u: 7M 7M
w0 = k0inv0, w1 = k1inv1;
s3 = (inv0 + inv1)(k0 + k1)− w0 − (1 + U1)w1

s1 = s3Z, s0 = w0 − ZU0w1;
If s1 = 0 different case

5 precomputations: 2S, 6M 2S, 6M
R = Z2r, R̃ = Rs1, S1 = s2

1, S0 = s2
0, t = h2s0;

s1 = s1s3, s0 = s0s3, S = s0Z, ˜̃R = R̃s1;
6 compute l: 3M 3M

l2 = U1s1, l0 = U0s0, l1 = (s1 + s0)(U1 + U0)− l2 − l0;
7 compute U ′: 1S, 4M 1S, 2M

U ′0 = S0 +R(s3(2V1 − h2U1 + h̃1) + t+ Zr(2U1 − f4Z));
U ′1 = 2S + h2R̃−R2;

8 precomputations: 4M 4M
l2 = l2 + S − U ′1, w0 = U ′0l2 − S1l0, w1 = U ′1l2 + S1(U ′0 − l1);

9 adjust: 3M 3M
Z ′ = S1R̃, U ′1 = R̃U ′1, U ′0 = R̃U ′0;

10 compute V ′: 2M 2M

V ′0 = w0 + h2U
′
0 −

˜̃R(V0 − h̃0);

V ′1 = w1 + h2U
′
1 −

˜̃R(V1 − h̃1);
total 6S, 38M 7S, ≤38M

Remarks:

1. First of all one notices that doublings are much faster than general additions; this is espe-
cially interesting as doubling occur much more frequently than additions in any algorithm to
compute scalar multiples, most striking in windowing methods.

2. In odd characteristic and for f4 = 0, Step 3 is computed as k0 = U1(2Zw4−w3)+Z(f2Z2−w0)
as Zw4 is already obtained during the computation of k1.

3. For p = 2 the following alternatives allow to obtain the stated complexity (we mention those
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which are not completely obvious) leading to ≤ 38M.

(a) In Step 3 as f3 = 0 one needs not compute Z2f3. We get k1 = w3 + h2ZV1. If
deg h = 2 we have f2 = 0 and get k0 = U1k1 + Z2(h2V0 + h1V1) + Zw0, otherwise
k0 = U1k1 + Z(f2Z2 + V1h̃1 + w0).

(b) Furthermore, U ′0 can be computed with only two multiplications as U ′0 = S0 +
R(s3(h2U1 + h̃1) + t).

(c) If h2 = 0 and the number of multiplications can even be reduced to 36M: In Step 3, the
multiplication to obtain k1 vanishes and U ′0 = S0 +h1R̃ and U ′1 = R2 using only 1S, 1M.

4. Using binary Koblitz curves one has h, f ∈ IF2[x], thus multiplications by the coefficients need
not be counted at all.
Combining with what was said above, the number of operations for a doubling in this case is
6S, 34M for h2 = 1 and with h2 = 0 even 6S, 31M.

It is interesting to note that the value of the additional coordinate Z ′ was not kept minimal. One
could have avoided (at least) a factor of Z2

1Z2 of the denominator in the addition and of Z in the
doubling. However, as we tried to minimize the number of operations, we allowed the larger value
of Z4rs3

1 in both cases as this proved to be more efficient. Besides one sees that U ′1 and U ′0 have to
be adjusted to have the same (larger) denominator Z ′ as V ′1 , V

′
0 .

6 New Coordinates

As we just noticed the denominator of the Vi’s differs from that of the Ui’s. This leads us to
consider a further set of coordinates. Here, we suggest to let [U1, U0, V1, V0, Z1, Z2] correspond to
the affine point [x2 + U1/Z

2
1 x + U0/Z

2
1 , V1/(Z3

1Z2)x + V0/(Z3
1Z2)]. This means that now a point

corresponds to a sextuple, thus one needs one more entry than for projective coordinates. Such
coordinate systems are called weighted coordinates. This is the first proposal of such a system for
hyperelliptic curves. For elliptic curves this corresponds to Jacobian coordinates. Compared to the
case of elliptic curves, for equal security the entries for g = 2 are of only half the size, thus the
space requirements are similar.
Here, we treat only the case of odd characteristic. The considerations for p = 2 can be found
in the appendix. As usual we assume h(x) ≡ 0 and f4 = 0; this time we do not include these
coefficients in the formulae. To increase the performance we enlarge the set of coordinates to
[U1, U0, V1, V0, Z1, Z2, z1, z2], where z1 = Z2

1 , z2 = Z2
2 . These additional entries are computed any-

way during each addition or doubling and keeping them saves in the following operation. Both
addition and doubling profit from z1 whereas z2 is only used for the doublings. As additions occur
asymptotically at most half as often as doublings we do not include Z1Z2 which would be useful
for additions, because it is not useful in doublings and is not automatically computed.
If space is more restricted such that we can only use the sextuple of coordinates, we need
two extra squarings in the first step of the doubling or addition. We first list the algorithm
to add two points in these coordinates and then consider doubling. Finally, we put together
these algorithms to compute scalar multiples, also paying attention to other systems of coordinates.

These new coordinates were first proposed by the author; they generalize the concepts of Jacobian,
Chudnovsky Jacobian and modified Jacobian coordinates from elliptic to hyperelliptic curves. The
respective counterparts can be seen if one varies the additional coordinates – the original Jacobian
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coordinates correspond to allowing only Z1, Z2. In the following we state the most efficient algo-
rithms, the additional coordinates become more and more useful with the increase of the window
size in scalar multiplications and hence they form the counterpart to modified Jacobian coordinates.
The topic of which coordinates to choose in which system is treated further in Section 7.

6.1 Addition

If one computes a scalar multiple of a point given in affine coordinates and has the intermediate
results not-normalized, then in the addition the intermediate result enters in the new weighted
coordinates whereas the other class enters always as [U11, U10, V11, V10, 1, 1, 1, 1]. The number in
brackets refer to this (cheaper) case. For an algorithm devoted to this case see [21]. It needs only
5S and 36M. To save space we skip the comments and do not list the in- and output. They are
equal to those in the previous tables.

Addition, odd characteristic
Step Expression Operations

1 z13 = Z11Z12, z23 = Z21Z22, z12 = z11z13, z22 = z21z23; 8M (2M)
Ũ21 = U21z11, Ũ20 = U20z11, Ṽ21 = V21z12, Ṽ20 = V20z12;

2 y1 = U11z21 − Ũ21, y2 = Ũ20 − U10z21, y3 = U11y1 + y2z11; 4S, 11M
r = y2y3 + y2

1U10; (3S, 8M)
Z ′2 = Z11Z21, Z̃2 = Z12Z22, Z1 = Z ′22 , Z̃2 = Z̃2Z1, Z̃2 = Z̃2r;
Z ′2 = Z ′2Z̃2, Z̃2 = Z̃2

2 , z′2 = Z ′22 ;
3 inv1 = y1, inv0 = y3;
4 w0 = V10z22 − Ṽ20, w1 = V11z22 − Ṽ21, w2 = inv0w0, w3 = inv1w1; 8M (7M)

s1 = (inv0 + z11inv1)(w0 + w1)− w2 − w3(z11 + U11);
s0 = w2 − U10w3;

5 S1 = s2
1, S0 = s0Z1, Z ′1 = s1Z1, S = Z ′1S0, S0 = S2

0 ; 3S, 6M
R = rZ ′1, s0 = s0Z

′
1, s1 = s1Z

′
1, z′1 = Z ′21 ;

6 l2 = s1Ũ21, l0 = s0Ũ20, l1 = (s0 + s1)(Ũ20 + Ũ21)− l0 − l2; 3M
l2 = l2 + S;

7 V ′1 = RṼ21; 6M
U ′0 = S0 + y1(S1(y1 + Ũ21)− 2s0) + y2s1 + 2V ′1 + (2Ũ21 + y1)Z̃2;
U ′1 = 2S − y1s1 − z′2;

8 l2 = l2 − U ′1, w0 = l2U
′
0, w1 = l2U

′
1; 2M

9 V ′1 = w1 − z′1(l1 + V ′1 − U ′0), V ′0 = w0 − z′1(l0 +RṼ20); 3M
total 7S, 47M (6S, 37M)

6.2 Doubling

The formulae for doubling make obvious why we include z2 = Z2
2 as well. If space is very limited

such that one cannot apply windowing methods at all, this is the first coordinate to drop if one
needs to restrict the algorithm. Still any binary method is fastest when including z2.
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Doubling, odd characteristic
Step Expression Operations

1 Ũ0 = U0z1, w0 = V 2
1 , w1 = U2

1 , w3 = V0z1 − U1V1; 3S, 8M
r = w0U0 + V0w3, Z̃2 = Z2r, Z̃2 = Z̃2z1, Z ′2 = 2Z̃2Z1, Z̃2 = Z̃2

2 ;
2 inv1 = −V1, inv0 = w3;
3 z3 = z2

1 , w3 = f3z3 + w1, k1 = z2(2(w1 − Ũ0) + w3); 1S, 6M
z3 = z3z1, k0 = z2(U1(4Ũ0 − w3) + z3f2)− w0;

4 w0 = k0inv0, w1 = k1inv1; 5M
s1 = (inv0 + inv1)(k0 + k1)− w0 − w1(1 + U1), s0 = w0 − w1Ũ0;
If s1 = 0 different case

5 S0 = s2
0, Z ′1 = s1z1, z′1 = Z ′1

2, S = s0Z
′
1; 3S, 5M

R = rZ ′1, z′2 = Z ′22 , s0 = s0s1, s1 = Z ′1s1;
6 l2 = s1U1, l0 = s0U0, l1 = (s0 + s1)(U0 + U1)− l0 − l2; 3M

l2 = l2 + S;
7 V ′1 = RV1, U ′0 = S0 + 4(V ′1 + 2Z̃2U1), U ′1 = 2S − z′2; 2M
8 l2 = l2 − U ′1, w0 = l2U

′
0, w1 = l2U

′
1; 2M

9 V ′1 = w1 − z′1(l1 + 2V ′1 − U ′0), V ′0 = w0 − z′1(l0 + 2RV0); 3M
total 7S, 34M

7 Different Sets of Coordinates in Odd Characteristic

So far we have given algorithms to perform the computations within one system and briefly men-
tioned additions involving one input in affine coordinates. Now we are concerned with mixes of
coordinate systems. To have suitable abbreviations, we denote by C1 + C2 = C3 the computation of
an addition, where the first input is in coordinate system C1, the second in C2 and the output is in
C3. Similarly, 2C1 = C2 denotes a doubling with input in system C1 and output in C2. We denote
the affine system by A, the projective by P and the new by N . In the following we estimate the
costs of computing scalar multiples using various systems of coordinates. To have the figures in
mind, the following Table 1 lists the costs for the most useful additions and doublings.

7.1 Scalar Multiples in Odd Characteristic

In this section we concentrate on the computation of k-folds kD, where k is an integer and D is an
ideal class. For references how to compute the respective expansions of k see [7] and the references
given therein.
Let ` = blog2 kc, i. e. k =

∑`
i=0 ki2

i. The direct approach to compute kD for a given class D is to
use binary double-and-add starting with the most significant bit of k. For every ki = 1 we need to
perform an addition as well as a doubling, for a 0 one only doubles. The density, i. e. the number
of ones in the expansion divided by the length, is asymptotically 1/2.
Here we deal with the ideal class group of hyperelliptic curves and the negative of a class is obtained
by negating the coordinates Vi or vi respectively. Hence, signed binary expansions are useful. They
have the lower density of 1/3 if one uses a NAF (non-adjacent form) of the multiplier, and are
approximately of the same length.
If we can afford some precomputations, windowing methods provide better performance; we consider
signed expansions here. Let the window be of width w. The expansions we consider are of the form

k = 2k0(2k1(· · · 2kv−1(2kvW [v] +W [v − 1]) · · ·) +W [0]),
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Table 1: Addition and Doubling in Different Systems, Odd Characteristic

Doubling Addition
operation costs operation costs
2N = P 7S, 38M N +N = P 7S, 51M
2P = P 6S, 38M N + P = P 4S, 51M
2N = N 7S, 34M N +N = N 7S, 47M
2P = N 6S, 34M N + P = N 4S, 48M

P + P = P 4S, 47M
P + P = N 4S, 44M
A+N = P 5S, 40M
A+ P = P 3S, 40M
A+N = N 5S, 36M
A+ P = N 3S, 37M

2A = A 1I, 5S, 22M A+A = A 1I, 3S, 22M

Table 2: Without Precomputations, Odd Characteristic

Systems Cost
2A = A, A+A = A `/3(4I, 18S, 88M)
2N = N , A+N = N `/3(26S, 138M)
2N = N , N + P = N `/3(25S, 149M)

where W [i] is an odd integer in the range −2w + 1 ≤W [i] ≤ 2w − 1 for all i, W [v] > 0, k0 ≥ 0 and
ki ≥ w + 1 for i ≥ 1.
We first consider systems without precomputations and then investigate good matches of coor-
dinate systems for windowing methods. The reason for treating these cases separately is that
for precomputations the addition will involve the set of coordinates which is advantageous for
the precomputations, whereas in the system without precomputations this choice depends on the
efficiency of the mixed addition only.

No Precomputations In this approach we perform approximately ` doublings and `/3 additions
per scalar multiple of length `. Table 2 lists the number of operations depending on the coordinate
system, details are given below. We assume ` to be large and therefore leave out the costs for the
initial moving from one system to the other as they occur only once. However, note that except for
the first line, where inversions are assumed to be cheap, this conversion involves no divisions.
If inversions are relatively cheap, affine coordinates provide the best performance, thus, if the class
is given in a non-normalized system we first normalize it. This takes 1I, 4M for P → A and 1I, 7M
for N → A. Then we double ` times and add on average `/3 times using `/3(4I, 18S, 88M).
Otherwise, for affine input the new system is best, as the most common operation (doubling) is
cheaper than in any other fixed system and the mixed addition is also fast.
If the input is in P and inversions are very expensive, we need to find two systems C1 and C2 such
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Table 3: Precomputations, Odd Characteristic

System I S M
A 2w−1 + w − 2 3 · 2w−1 + 5w − 8 22(2w−1 + w − 2)
A w 3 · 2w−1 + 5w − 8 25 · 2w−1 + 22w − 50
A 1 5 · 2w−1 + 6w − 11 48 · 2w−1 + 38w − 89
P 5 · 2w−1 + 6w − 11 45 · 2w−1 + 38w − 83

that 2C1 = C1, 2C1 = C2 and C2 +P = C1 are as cheap as possible, the first being the most frequent
operation. By Table 1 we choose C1 = N . For C2 it is equal to choose N or P, therefore we use N
to save some bookkeeping. Thus the first doubling is done as 2P = N and all further as 2N = N .
There are approximately ` doublings 2N = N and `/3 additions N + P = N leading to `/3(25S,
149M).
If the input is in new coordinates we do the same except that the first doubling is 2N = N needing
1 more S and we use 4M for N → P of the initial point.
To compare, using only projective coordinates we would need `/3(23S, 156M) and only new
coordinates results in `/3(28S, 149M), thus mixing the coordinate systems is advantageous.

Windowing Methods To obtain the table of precomputed values, i. e. all multiples W [i]D for
1 ≤W [i] ≤ 2w − 1, W [i] odd, we need w − 1 doublings and 2w−1 − 1 additions.
Like before we distinguish cases depending on the relative cost of inversions. If inversions are
not too expensive, the precomputations are performed in affine coordinates. To still trade off
some inversions for multiplications, we make use of Montgomery’s trick of simultaneous inversions.
Like in [7] we first compute 2D, then (3D, 4D), then (5D, 7D, 8D), . . . ,((2w−2 + 1)D, . . . , (2w−1 −
1)D, 2w−1D), and finally ((2w−1 + 1)D, . . . , (2w − 1)D), where each sequence involves only 1I.
Computing m inversions simultaneously is done by 1I, 3(m− 1)M. Thus we need

wI, w − 1 class-doublings, 2w−1 − 1 class-additions, and 3(2w−1 − 2) extra M.

As most of the operations for the precomputations are additions, we choose projective coordinates
P if we want to perform the precomputations avoiding inversions. Table 1 shows that additions
involving at least one point in affine coordinates and leading to inversion free coordinates are much
faster than those involving two non-affine points. Therefore, it can be useful to allow some more
multiplications and 1 inversion to transform the precomputed points to affine coordinates. The costs
for these three approaches leading to A and also for precomputations in P are listed in Table 3.
If inversions are cheap we stick to the affine system to compute the scalar multiplication. If we can
afford the w inversions (or one more for non-affine input) to do the precomputations in affine, we use
the new system for doublings, and perform the additions using the new mixed system A+N = N .
Finally, if inversions are very expensive, the best match is obtained if one uses projective coordinates
for the precomputations, and the doublings are performed as 2N = N . Then the addition is done
as N + P = N . This approach is equal to that of the previous subsection with non-affine input.
Again, here we did not need a second system C2 for doublings.
In the main loop we perform K =

∑v
i=0 ki doublings and v additions. To ease the formulae, we

assume K = `−w/2 + θ, v = (`−w/2− θ)/(w+ 2), where θ = 1/2− 1/(w+ 2). Let n = `−w/2.
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Table 4: Windowing Method, Odd Characteristic

Systems I S M
2A = A, A+A = A n+ θ + n−θ

w+2 5(n+ θ) + 3 n−θw+2 22(n+ θ + n−θ
w+2)

2N = N , A+N = N 7(n+ θ) + 5 n−θw+2 34(n+ θ) + 36 n−θw+2

2N = N , N + P = N 7(n+ θ) + 4 n−θw+2 34(n+ θ) + 47 n−θw+2

The costs are listed in Table 4. Some more computations can be saved using the tricks of [7]. Again
we leave out the initial costs for conversions. For the precomputations see Table 3.

8 Conclusion and Outlook

As mentioned before one can save some constant number of operations in considering the first and
last additions separately. This is worthwhile for an implementation where the system of coordinates
of the input and output are fixed.
Since for hyperelliptic curve cryptography the finite field is of only half the bit size of that for
elliptic curve cryptography, the field operations are 3 to 4 times faster. Comparing the results with
the similar ones for elliptic curves one can assume that the complexity of scalar multiplications is
similar. [19] compares timings for genus 1 and 2 using standard long integer libraries. However,
as the integers considered here are rather small the comparison is biased. Avanzi [1] shows that
genus 2 curves are competitive with elliptic curves over prime fields, both using affine and inversion
free coordinate systems. His implementation uses a tailored long integer library suited for these
comparably small finite fields. For fields of even characteristic the thesis of Wollinger [39] gives an
overview of implementations also taking into account FPGA implementations. We also refer to his
thesis for a list of what has been done so far for curves of larger genus.
With the new coordinates we tried to find a balance between the number of coordinates needed to
represent a class and the speed-up obtainable. We took the case of elliptic curves as a guideline
and use the same number of additional variables as the modified Jacobian coordinates. Note that
one can apply them with fewer additional coordinates loosing not too much efficiency.
A further possibility to choose weighted coordinates is to allow even more entries to have a finer
distinction. One notices that U ′1 and V ′1 are divisible by Z1. Perhaps this can lead to further
savings.
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Appendix 1: Case of Even Characteristic with h2 6= 0

In this section we first state the algorithms to compute with the new coordinates in even character-
istic. Here, we assume h2 6= 0, however, the formulae hold universally. The more special case h2 = 0
is considered in the following section. Like before it is interesting to include some precomputations
in the coordinates which are updated during each iteration. In this approach we let:

z1 = Z2
1 , z2 = Z2

2 , z3 = Z1Z2.

This turns out to be useful for both additions and doublings. While the costs remain unchanged
for doublings if one additionally puts z4 = z1z3 one saves 1M in the addition. Thus, here N
denotes [U1, U0, V1, V0, Z1, Z2, z1, z2, z3, z4]. However, the formulae show that Z1 and Z2 are not
used separately. Therefore they can be left out leading again to 6 coordinates only.
As p = 2, h2 6= 0 we assume f3 = f2 = 0, h2 = 1 and include them in the table (but not in the
counting) only for the sake of completeness, f4 is left out completely. As shown in Subsection 4.2
this form can always be achieved.
For the addition we assume that both classes are in N . If one is in A the costs are given in
brackets. A dedicated algorithm for N +A = N needs 5S, 37M (see [21]).

Addition, even characteristic, h2 6= 0
Step Expression Operations

1 Ũ21 = U21z11, Ũ20 = U20z11, Ṽ21 = V21z14, Ṽ20 = V20z14; 6M (–)
Z1 = z11z21, Z3 = z13z23;

2 y1 = U11z21 + Ũ21, y2 = U10z21 + Ũ20, y3 = U11y1 + y2z11; 1S, 8M
r = y2y3 + y2

1U10, Z̃2 = rZ3, Z ′2 = Z̃2Z1; (1S, 7M)
3 inv1 = y1, inv0 = y3;
4 w0 = V10z24 + Ṽ20, w1 = V11z24 + Ṽ21, w2 = inv0w0, w3 = inv1w1; 8M (7M)

s1 = (inv0 + inv1z11)(w0 + w1) + w2 + w3(z11 + U11);
s0 = w2 + w3U10;
If s1 = 0 different case

5 s̃0 = s0Z1, S0 = s̃2
0, Z ′1 = s1Z1, R = rZ ′1; 3S, 10M

t = s1(y1 + Ũ21), U ′1 = y1s1, s1 = s1Z
′
1, s0 = s0Z

′
1;

z′1 = Z ′21 , z′2 = Z ′22 , z′3 = Z ′1Z
′
2, z′4 = z′1z

′
3, h̃1 = h1z

′
3;

6 l2 = s1Ũ21, l0 = s0Ũ20, l1 = (s0 + s1)(Ũ20 + Ũ21) + l0 + l2; 3M
7 U ′0 = S0 + tU ′1 + y2s1 + Z ′2(h2(s̃0 + t) + y1Z̃2) + h̃1; 5M

U ′1 = U ′1Z
′
1 + h2z

′
3 + z′2;

8 l2 = l2 + Z ′1s̃0 + h2z
′
3 + U ′1, w0 = l2U

′
0, w1 = l2U

′
1; 3M

9 V ′1 = w1 + z′1(l1 +RṼ21 + U ′0 + h̃1); 5M
V ′0 = w0 + z′1(l0 +RṼ20) + h0z

′
4;

total 4S, 48M (4S, 40M)
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Now finally we consider doublings.

Doubling, even characteristic, h2 6= 0
Step Expression Operations

1 h̃1 = z1h1, h̃0 = z1h0, Ṽ1 = h̃1 + h2U1, Ṽ0 = h̃0 + h2U0; 3S, 8M
w0 = V 2

1 , w1 = U2
1 , w2 = (h̃1)2 + h2

2w1;
w3 = z1(h1U1 + h2U0 + h̃0) + h2w1;
r = w2U0 + Ṽ0w3, Z̃2 = z3r, Z ′2 = Z̃2z4;

2 inv1 = Ṽ1, inv0 = w3;
3 w3 = f3z

2
1 + w1, k1 = w3z2 + V1h2z3; 5M

k0 = U1k1 + w0 + z4(V1h1 + V0h2 + f2z4);
4 w0 = k0inv0, w1 = k1inv1; 6M

s1 = (inv0 + inv1)(k0 + k1) + w0 + w1(1 + U1);
s0 = w0 + U0w1z1;
If s1 = 0 different case

5 t = h2s0 + s1(h2U1 + h̃1), Z ′1 = s1z1, S0 = s2
0, z′1 = Z ′1

2, S = s0Z
′
1; 3S, 8M

R = Z̃2Z
′
1, s0 = s0s1, s1 = Z ′1s1, z′2 = Z ′2

2, z′3 = Z ′1Z
′
2, z′4 = z′1z

′
3;

6 l2 = s1U1, l0 = s0U0, l1 = (s1 + s0)(U1 + U0)− l0 − l2; 3M
l2 = l2 + S + h2z

′
3;

7 U ′0 = S0 + Z ′2t; 1M
U ′1 = z′2 + h2z

′
3;

8 l2 = l2 + U ′1, w0 = l2U
′
0, w1 = l2U

′
1; 2M

9 V ′1 = w1 + z′1(l1 +RV1 + U ′0) + z′4h1; 6M
V ′0 = w0 + z′1(l0 +RV0) + z′4h0;

total 6S, 39M

Different Sets of Coordinates

Using the same abbreviations as in odd characteristic, we state the costs for the operations in
different coordinate systems in Table 5. Note, that contrary to the odd characteristic case the
advantage of using the new coordinates is smaller.

Computation of Scalar Multiples

We follow the same lines as in the odd characteristic and distinguish between precomputations and
no precomputations.

No Precomputations For cheap inversions one again uses the affine system alone. If one wants
to avoid inversions and has an affine input (or can allow 1I to achieve this) we perform the doublings
as 2N = N and the addition as A+N = N . For non-normalized input we use the new coordinates
for doublings and as non-normalized input system if necessary.

Windowing Methods To obtain the table of precomputed values we need w− 1 doublings and
2w−1 − 1 additions. Here it is advantageous to choose either C3 = A or C3 = N
The costs of computing scalar multiples are listed in Table 8 for the most useful matches of sets of
coordinates. We use the same abbreviations as in the odd characteristic case. Again we leave out
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Table 5: Different Systems, Even Characteristic, h2 6= 0

Doubling Addition
operation costs operation costs
2N = P 6S, 39M N + P = P 4S, 51M
2P = P 7S, 38M N +N = P 4S, 50M
2N = N 6S, 37M N + P = N 4S, 50M
2P = N 7S, 36M P + P = P 4S, 49M

N +N = N 4S, 48M
P + P = N 4S, 48M
A+N = P 5S, 39M
A+ P = P 4S, 39M
A+ P = N 4S, 38M
A+N = N 5S, 37M

2A = A 1I, 5S, 22M A+A = A 1I, 3S, 22M

Table 6: Without Precomputations, Even Characteristic, h2 6= 0

Systems Cost
2A = A, A+A = A `/3(4I, 18S, 88M)
2N = N , A+N = N `/3(23S, 148M)
2N = N , N +N = N `/3(22S, 159M)

Table 7: Precomputations, Even Characteristic, h2 6= 0

System I S M
A 2w−1 + w − 2 3 · 2w−1 + 5w − 8 22(2w−1 + w − 2)
A w 3 · 2w−1 + 5w − 8 25 · 2w−1 + 22w − 50
A 1 2w+1 + 6w − 10 51 · 2w−1 + 37w − 91
P 2w+1 + 6w − 10 48 · 2w−1 + 37w − 85
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Table 8: Windowing Method, Even Characteristic, h2 6= 0

Systems I S M
2A = A, A+A = A n+ θ + n−θ

w+2 5(n+ θ) + 3 n−θw+2 22((n+ θ) + n−θ
w+2))

2N = N , A+N = N 6(n+ θ) + 5 n−θw+2 37((n+ θ) + n−θ
w+2)

2N = N , N +N = N 6(n+ θ) + 4 n−θw+2 37(n+ θ) + 48 n−θw+2

the costs for the initial conversions and mention that some constant number of operations can be
saved if one considers in more detail the first doubling and the final addition/doubling like in [7].
Compared to the results in odd characteristic this case is a bit more expensive. On the other hand
the arithmetic in binary fields is easier to implement and usually faster.

Appendix 2: Case of Even Characteristic with h2 = 0

Obviously this case can be considered as a special case of Appendix 1 where f2 cannot
assumed to be 0. However, if one restricts the algorithms to this still very frequent case
one can save some operations. Like before we suggest to enlarge the set of coordinates by
z1 = Z2

1 , z2 = Z2
2 , z3 = Z1Z2, z4 = Z3

1Z2. To save space we can again discard Z1, Z2. In this case
we can assume h2 = f4 = f3 = 0. In the following tables the multiplications by h1 are still counted
even though h1 is small with large probability.

Addition, even characteristic, h2 = 0
Step Expression Operations

1 Ũ21 = U21z11, Ũ20 = U20z11, Ṽ21 = V21z14, Ṽ20 = V20z14; 6M (–)
Z1 = z11z21, Z3 = z13z23;

2 y1 = U11z21 + Ũ21, y2 = U10z21 + Ũ20, y3 = U11y1 + y2z11; 2S, 9M
r = y2y3 + y2

1U10, Z̃2 = rZ3, Z ′2 = Z̃2Z1, Z̃2 = Z̃2
2 , Z̃2 = Z̃2Z1; (2S, 8M)

3 inv1 = y1, inv0 = y3;
4 w0 = V10z24 + Ṽ20, w1 = V11z24 + Ṽ21, w2 = inv0w0, w3 = inv1w1; 8M (7M)

s1 = (inv0 + inv1z11)(w0 + w1) + w2 + w3(z11 + U11);
s0 = w2 + w3U10;
If s1 = 0 different case

5 S1 = s2
1, Z ′1 = s1Z1, R = rZ ′1, S0 = s0Z1, S = S0Z

′
1, S0 = S2

0 ; 4S, 9M
z′1 = Z ′21 , z′2 = Z ′22 , z′3 = Z ′1Z

′
2, z′4 = z′1z

′
3, h̃1 = h1z

′
3, s1 = s1Z

′
1, s0 = s0Z

′
1;

6 l2 = s1Ũ21, l0 = s0Ũ20, l1 = (s0 + s1)(Ũ20 + Ũ21) + l2 + l0; 3M
l2 = l2 + S;

7 U ′0 = S0 + y1(S1(y1 + Ũ21) + Z̃2) + y2s1 + h̃1; 4M
U ′1 = y1s1 + z′2;

8 l2 = l2 + U ′1, w0 = l2U
′
0, w1 = l2U

′
1; 2M

9 V ′1 = w1 + z′1(l1 +RṼ21 + U ′0 + h̃1); 5M
V ′0 = w0 + z′1(l0 +RṼ20) + z′4h0;

total 6S, 46M (6S, 38M)

The numbers in brackets apply if one of the input variables is affine. An algorithm dedicated to
that case needs only 6S, 36M.



Tanja Lange, Formulae for Arithmetic on Genus 2 Hyperelliptic Curves 28

Table 9: Different Systems, Even Characteristic, h2 = 0

Doubling Addition
operation costs operation costs
2N = P 6S, 37M N + P = P 4S, 51M
2P = P 7S, 36M N +N = P 6S, 48M
2N = N 6S, 35M N + P = N 4S, 49M
2P = N 7S, 34M P + P = P 4S, 49M

N +N = N 6S, 46M
P + P = N 4S, 47M
A+ P = P 4S, 39M
A+N = P 6S, 38M
A+ P = N 4S, 38M
A+N = N 6S, 36M

2A = A 1I, 5S, 22M A+A = A 1I, 3S, 22M

Doubling, even characteristic, h2 = 0
Step Expression Operations

1 w1 = h1U1 + h0z1, r = h0w1 + h2
1U0, Z̃2 = rz4, Z ′2 = Z̃2z4; 1S, 6M

2 inv1 = h1, inv0 = w1;
3 w0 = V 2

1 , w1 = U2
1 , k1 = z2(f3z

2
1 + w1); 2S, 5M

k0 = U1k1 + w0 + z4(f2z4 + V1h1);
4 w0 = k0inv0, w1 = k1inv1; 6M

s1 = (inv0 + inv1)(k0 + k1) + w0 + w1(1 + U1);
s0 = w0 + U0w1z1;
If s1 = 0 different case

5 Z ′1 = s1z1, S0 = s2
0, S = s0Z

′
1, R = Z̃2Z

′
1; 3S, 8M

z′1 = Z ′21 , z′2 = Z ′2
2, z′3 = Z ′1Z

′
2, z′4 = z′1z

′
3;

s0 = s0s1, s1 = Z ′1s1, h̃1 = h1z
′
3;

6 l2 = s1U1, l0 = s0U0, l1 = (s1 + s0)(U1 + U0) + l0 + l2; 3M
l2 = l2 + S;

7 U ′0 = S0 + h̃1, U ′1 = z′2;
8 l2 = l2 + U ′1, w0 = l2U

′
0, w1 = l2U

′
1; 2M

9 V ′1 = w1 + z′1(l1 +RV1 + U ′0 + h̃1); 5M
V ′0 = w0 + z′1(l0 +RV0 + z′3h0);

total 6S, 35M

Different Sets of Coordinates

Finally, we state the number of operations in the case of even characteristic and with h2 = 0 in
Table 9.

Computation of Scalar Multiples

Table 9 reveals that for this case additions involving N are less expensive than those involving P.
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Table 10: Without Precomputations, Even Characteristic, h2 = 0

Systems Cost
2A = A, A+A = A `/3(4I, 18S, 88M)
2N = N , A+N = N `/3(24S, 141M)
2N = N , N +N = N `/3(24S, 151M)

Table 11: Precomputations, Even Characteristic, h2 = 0

System I S M
A 2w−1 + w − 2 3 · 2w−1 + 5w − 8 22(2w−1 + w − 2)
A w 3 · 2w−1 + 5w − 8 25 · 2w−1 + 22w − 50
A 1 6(2w−1 + w − 2) 49 · 2w−1 + 35w − 87
N 6(2w−1 + w − 2) 46 · 2w−1 + 35w − 81

No Precomputations For cheap inversions one again uses the affine system alone. If one wants
to avoid inversions and has an affine input (or can allow 1I to achieve this) we do the same as in
the general case and perform the doublings as 2N = N and the addition as A + N = N . For
non-normalized input we here suggest to use C1 = C2 = C3 = N .

Windowing Methods To obtain the table of precomputed values we need w− 1 doublings and
2w−1 − 1 additions. Here we choose either C3 = A or C3 = N
Table 12 states the number of operations for the most useful matches of sets of coordinates.

Appendix 3: Koblitz curves

Koblitz curves, also called subfield curves, are curves defined over a comparably small field which
are then considered over a large extension field. To compute scalar multiples one can make use of
the Frobenius endomorphism (see [18]). Furthermore, as the coefficients of the curve come from
the small field, the individual additions and doublings get cheaper as multiplications by hi and fi
are for free. While for odd characteristic the savings are obvious and not too significant we have
the following Table 13 for even characteristic.

Table 12: Windowing Method, Even Characteristic, h2 = 0

Systems I S M
2A = A, A+A = A n+ θ + n−θ

w+2 5(n+ θ) + 3 n−θw+2 22((n+ θ) + n−θ
w+2)

2N = N , A+N = N 6((n+ θ) + n−θ
w+2) 35(n+ θ) + 36 n−θw+2

2N = N , N +N = N 6((n+ θ) + n−θ
w+2) 35(n+ θ) + 46 n−θw+2
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Table 13: Precomputations, Even Characteristic, h2 = 0

Doubling Addition
operation costs operation costs

h2 6= 0 h2 = 0 h2 6= 0 h2 = 0
2N = P 6S, 35M 5S, 29M N + P = P 4S, 48M 4S, 48M
2P = P 6S, 35M 6S, 32M N +N = P 4S, 48M 4S, 46M
2N = N 5S, 34M 5S, 27M P + P = P 4S, 46M 4S, 46M
2P = N 6S, 33M 6S, 30M N + P = N 4S, 46M 4S, 46M

N +N = N 4S, 46M 6S, 44M
P + P = N 4S, 44M 6S, 44M
A+N = P 5S, 37M 4S, 36M
A+ P = P 4S, 36M 4S, 36M
A+N = N 5S, 35M 4S, 34M
A+ P = N 4S, 35M 4S, 34M

2A = A 1I, 5S, 20M 1I, 5S, 17M A+A = A 1I, 3S, 21M 1I, 3S, 21M


