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Chapter 1

Introduction

As the name “Discrete Mathematics” suggests this module deals with discrete
objects like problems over the naturals or the integers as opposed to continuous
structures like the reals.
We first consider problems in Combinatorics - questions about the number of
different possibilities to choose k objects out of n. This is the basis to express
simple probabilities like the chance to win at lotto. Simultaneously this chapter
provides an introduction in mathematical logic and proof techniques. (12.5h)
The second part is concerned with concepts of number theory and algebra.
Groups, fields and vector spaces are introduced and explained with examples.
In number theory we deal with modular arithmetic and prime numbers. (15h)
The third part is about algorithms and running time analysis. (7.5h)
Finite fields play an important role in public key cryptography. The 4th part
provides mathematical background, ways to construct finite fields and an intro-
duction to efficient arithmetic in finite fields. (15h)
Elliptic curves are an interesting field of Algebraic Geometry which found ap-
plications in cryptography. The 5th part defines elliptic curves, the group law
and shows how to compute efficiently on elliptic curves. Some theorems on the
structure of elliptic curves over finite fields complete the introduction. (12.5h)
In all previous chapters we took for granted that primes are easy to find. This
part provides insight on factorization of integers and shows how primality testing
and proving work. (7.5h)
For each part references to the literature are given.

Acknowledgement

Thanks go to past teaching assistants and students for pointing out typos and
errors, in particular Tibor Jager, Peter Birkner, Simon Hoerder, Jan-Jaap Oost-
erwijk, Marc Kleffmann, Christian Mrugalla, Melanie Alwardt, Dominik Leichtle,
Florian Weber und Daniel Thewes. All remaining typos and errors are of course
my responsibiliy. I would also like to thank Christof Paar and Jan Pelzl for
providing the latex style file.
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Chapter 2

Combinatorics and Proofs

For this year the first chapter is replaced by several chapters from E.A. Bender
and S.G. Wiliamson “A Short Course in Discrete Mathematics”. The book in
general offers good background for the first half of this course and thus reading
it is educational in any case. Most of what we need later on is covered in any
first semester course on mathematics for engineers, so I hope the following is
easy reading just to recall the notions. From the book, please read Sections 1
and 2 of Unit SF; Section 1 of Unit EO and Section 1 and Example 11 of Unit
IS.

More precisely we will need the following concepts from the respective sections.

Unit SF:

� set, subset

� intersection, union, difference, complement

� product, Cartesian product

� algebraic rules for sets

� ordered sets

� binomial coefficient, binomial recursion, power sets

� function, domain, range, codomain, image

� relation, functional relation

� types of function: surjective (onto), injective (into), bijective

Unit EO:

� equivalence relation, equivalence class,

Unit IS:

7



Combinatorics and Proofs

� induction

� sum of first n integers

� geometric series

We will also use base-2 representations later on. This concept is covered in more
generality in Unit BF in Section 2. We use a slightly different notation, namely

(1001010)2 = 26 + 23 + 21,

i.e. with parentheses.

Exercise 2.0.1 a) Let A,B,C be sets contained in the set U . Prove or disprove

(a) (A ∩ B) ∪ C = A ∩ (B ∪ C).
(b) (A ∪ B) ∩ C = A ∪ (B ∩ C).
(c) If A is a subset of B and C is a subset of U \B then A ∩ C = ∅.

b) Use the set notation to write the set of

(a) all even integers;

(b) all integers that are divisible by 5 and larger than 29;

(c) all negative integers that are squares of an integer;

(d) all 3rd powers in IR.

c) Write out all possible orderings of the elements a, b, c, d.

d) How many ways are there to order 10 elements. Give the result as an integer.

e) How many ways are there to select 3 elements out of 10 different elements if

(a) we distinguish the order of the selected elements.

(b) we do not distinguish the order of the selected elements.

f) How many ways are there to distribute 8 identical lollipops to 4 different chil-
dren?

g) Consider the function f(x) = x−3. State image and domain of f , where the
domain should be a subset of IR

h) Give the maximal domain of g, where g(x) =
√
x3 + x and the domain and

image are subsets of IR.

i) Define f : IN→ IN by f(x) = x2 + x. Is f injective? Is f surjective?

j) Give an example of a surjective function from {1, 2, 3, 4} to {3, 4, 5}. Is it
possible to define a bijection between these sets? If yes, give one; if no, show
why.

8



Combinatorics and Proofs

k) Give an example of an injective function from {3, 4, 5} to {1, 3, 5, 7, 9}. Is it
possible to define a bijection between these sets? If yes, give one; if no, show
why.

l) Find a bijection from {0, 1, 2, 3, 4, . . . } to {. . . ,−2,−1, 0, 1, 2, . . . }, i.e. from
IN to ZZ.

m) Prove: If {{a}, {a, b}} = {{c}, {c, d}} then a = c and b = d.

n) Show that a ≡ b if and only if a− b is divisible by 5 is an equivalence relation
on the integers. Write down the equivalence classes as sets.

o) Compute
∑15

k=0(1/4)
k. Prove by induction that

n∑

k=0

qk =
1− qn+1

1− q

for any n ∈ IN and any real q 6= 1.

p) Prove by induction that

n∑

k=0

k2 =
n(n+ 1)(2n+ 1)

6

for any n ∈ IN.

q) Prove by induction and using the binomial recursion that

(a+ b)n =
n∑

k=0

(
n

k

)

akbn−k.

r) Write 974394 in binary. Write (10010010)2 as a decimal number.
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Chapter 3

Number Theory and Algebra

Most of the concepts of discrete mathematics belong to the areas of combinatorics,
number theory and algebra. In Chapter 2 we studied the first area. Now we
turn our attention to algebra and number theory and introduce the concepts in
increasing level of complexity, starting with groups, rings and fields, providing
the ring of polynomials as a long example and concluding with vector spaces. In
the examples and applications of the theory we obtain almost all the necessary
number-theoretic background as well.
The material of this chapter is very standard and can be found in any textbook
on algebra or number theory. Some recommended references are:

� K. Ireland, M. Rosen “A Classical Introduction to Modern Number The-
ory”, Springer.

� N. Jacobson, “Basic Algebra”, W. H. Freeman.

� S. Lang, “Algebra”, Springer.

� S. Lang, “Undergraduate Algebra”, Springer.

3.1 Introduction to groups

In the previous chapter we introduced sets. Some of the most familiar sets like
the integers or the reals come with more structure. We are used to adding or
subtracting numbers to obtain their sum or difference respectively, which is again
a number; we note that addition is inverse to subtraction. When we multiply or
divide two non-zero reals we obtain another real; we note that multiplication is
inverse to division. So there is some similarity between the ways of operating
in a set. Algebra is about identifying such common structures and classifying
them. One big advantage of this approach is that theorems that can be shown
to hold, using only the definition of the abstract concept automatically apply to
every concrete instantiation – let it be the integers with the operation addition,
the reals with the operation multiplication or, as we will see, the rotations and
reflections of an equilateral triangle with the operation of composition.
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3.1 Introduction to groups

Definition 3.1.1 (Group)
A set G is a group with respect to the operation ◦ if

1. G is closed under ◦: for all a, b ∈ G one has a ◦ b ∈ G.

2. Associativity: for all a, b, c ∈ G one has (a ◦ b) ◦ c = a ◦ (b ◦ c).

3. Neutral element: there exists an element e ∈ G so that for all a ∈ G one
has a ◦ e = e ◦ a = a.

4. Inverse: for all a ∈ G there exists an element inv(a) ∈ G with a◦ inv(a) = e
and inv(a) ◦ a = e.

We use (G, ◦) as a shorthand to state that G is a group with respect to ◦.
A group G is called commutative or abelian if for all a, b ∈ G one has

a ◦ b = b ◦ a.

Note that associativity allows any rearrangement of parentheses, e.g.

(a ◦ b) ◦ (c ◦ d) = a ◦ (b ◦ (c ◦ d)) = a ◦ ((b ◦ c) ◦ d).

The neutral element of a group is unique; assume on the contrary that both e
and e′ satisfy a◦e = e◦a = a and a◦e′ = e′ ◦a = a for any group element a ∈ G.
Letting e′ and then e play the role of a we obtain

e′ = e ◦ e′ = e, i.e. e = e′.

The inverse of an element is unique, i.e. if inv(a) and inv′(a) are both inverses
of a, then inv(a) = e ◦ inv(a) = inv′(a) ◦ a) ◦ inv(a) = inv′(a) ◦ (a ◦ inv(a)) =
inv′(a) ◦ e = inv′(a).
The inverse of the neutral element is the neutral element itself since by definition
of the inverse element e ◦ inv(e) = e while the definition of the neutral element
gives e ◦ inv(e) = inv(e), so e = inv(e).
Inversion changes the order of the elements inv(a ◦ b) = inv(b) ◦ inv(a); we show
that by direct computation using associativity:

(a ◦ b) ◦ (inv(b) ◦ inv(a)) = a ◦ (b ◦ inv(b)) ◦ inv(a) = a ◦ e ◦ inv(a) = a ◦ inv(a) = e.

Applying inv(·) twice leads to the original element:

inv(inv(a)) = inv(inv(a))(◦inv(a) ◦ a) = (inv(inv(a)) ◦ inv(a)) ◦ a = e ◦ a = a.

Example 3.1.2 The integers ZZ form a group with respect to +:

1. If we add two integers a, b ∈ ZZ the result is again an integer, so the integers
are closed under addition.

2. Associativity: We have (a+ b) + c = a+ (b+ c).

12
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3. Neutral element: Adding 0 to an integer does not change its value and
0 ∈ ZZ, so 0 ∈ ZZ is the neutral element.

4. Inverse element: The negative of an integer a ∈ ZZ is again an integer (by
the very definition of the integers) and we have a + (−a) = 0 and thus
inv(a) = −a.

5. Since the order of summation does not matter, a+b = b+a for all a, b ∈ ZZ,
we even have that ZZ is commutative.

The natural numbers IN do not form a group with respect to + since there are
no inverse elements. Consider IN as subset of ZZ; if a ∈ IN\{0}, i.e. a > 0, then
−a < 0 and thus not in IN which means that that IN does not fulfill the fourth
condition. Sets which are closed under an operation which is associative are
referred to as semigroups. A monoid is a semigroup with a neutral element, so
the natural numbers form a monoid. Another example of a monoid is that the
integers form a monoid with respect to multiplication since no element other
than 1 has an inverse, but ZZ is closed under · and the operation is associative.

We now state some very common examples to show that groups are quite familiar
objects. We use ’abelian group’ and ’commutative group’ interchangeably; this
is common practice in mathematics.

Example 3.1.3 1. The rationals Q form an abelian group with respect to +.

2. The reals IR form an abelian group with respect to +.

3. The complex numbers C form an abelian group with respect to +.

4. The set obtained by removing 0 from Q is usually denoted by Q∗ = Q\{0}.
Similarly one defines IR∗ and C∗.

We observe that the product of two rationals is again rational, that 1 ·a = a,
that every fraction a/b 6= 0 can be inverted to b/a with (a/b) · (b/a) = 1,
and that (a/b) · (c/d) = (c/d) · (a/b). So Q∗ is a commutative group with
respect to multiplication.

5. IR∗ is a commutative group with respect to multiplication.

6. C∗ is a commutative group with respect to multiplication.

We have not yet defined polynomials. Readers not familiar with this concept
should skip this example but for the others it might be enlightening. We provide
an extensive study of polynomials over a field in Section 3.7.

Example 3.1.4 The set of polynomials C[x] in one variable x over the complex
numbers C is a commutative group with respect to coefficientwise addition.

13



3.1 Introduction to groups

1. The set is closed under the operation +:

n∑

i=0

aix
i +

m∑

i=0

bix
i =

max{n,m}
∑

i=0

(ai + bi) x
i,

where the undefined coefficients ai for i > n and bi for i > m are put to
zero. The result is again a polynomial and the coefficients are in C , since
C forms a group with respect to the same addition +.

2. Associativity is inherited from (C ,+) as

(
n∑

i=0

aix
i +

m∑

i=0

bix
i

)

+
l∑

i=0

cix
i =

max{m,n,l}
∑

i=0

((ai + bi) + ci) x
i

=

max{m,n,l}
∑

i=0

(ai + (bi + ci)) x
i =

n∑

i=0

aix
i +

(
m∑

i=0

bix
i +

l∑

i=0

cix
i

)

,

where the missing coefficients are put to zero.

3. Neutral element:

e =
0∑

i=0

0xi = 0 ∈ C[x].

4. Inverse element: The inverse of
∑n

i=0 aix
i ∈ C[x] is given by

∑n
i=0(−ai)xi ∈

C[x].

Example 3.1.5 We consider the set of multiples of 3, which is defined by 3ZZ =
{3z | z ∈ ZZ}. We now show that this set forms a group under addition.
Let a and b be in 3ZZ, so there exist a′, b′ ∈ ZZ with a = 3a′ and b = 3b′.

1. a+ b = 3a′+3b′ = 3(a′+ b′) which is again in 3ZZ as 3(a′+ b′) is a multiple
of 3.

2. Associativity follows from the associativity in ZZ.

3. The neutral element is 0 as in the integers. Since 0 is divisible by 3 we have
0 ∈ 3ZZ.

4. The inverse of a = 3a′ is −a = 3(−a′) ∈ 3ZZ.

5. Commutativity follows from the commutativity in ZZ.

14



Number Theory and Algebra

Example 3.1.6 (Symmetry operations of equilateral triangle)

• •

•

2 3

1

m1

m3

m2

Symmetry operations of the equilateral triangle
are maps that do not change the shape of the
triangle. There are 6 different such maps:
id: identity map,
m1: reflection in axis through 1,
m2: reflection in axis through 2,
m3: reflection in axis through 3,
r1: clockwise rotation by 120◦ mapping 1 to 3,
r2: clockwise rotation by 240◦ mapping 1 to 2.

For example:

• •

•

3 2

1

m1

• •

•

3 1

2

120◦

r1
• •

•

1 2

3

240◦

r2
We now investigate whether the set of symmetry operations on the equilateral
triangle forms a group with respect to composition. The set is closed under com-
position: There are no other symmetry operations, so the result of the composition
of two operations must again be one of these operations. For further reference
we give a table with all results of composing two transformations. The symbol for
composition is ◦. We recall that for maps we write r1 ◦m1 if first m1 and then
r1 is executed. The table is to be read as follows: each table entry is the result
of performing the operation stated in the same row in the leftmost column first,
followed by the one in the same column in the top row. E.g. r1 ◦m1 is found in
the row of m1 and the column of r1 and equals m2, which can be checked directly.

◦ id m1 m2 m3 r1 r2
id id m1 m2 m3 r1 r2
m1 m1 id r1 r2 m2 m3

m2 m2 r2 id r1 m3 m1

m3 m3 r1 r2 id m1 m2

r1 r1 m3 m1 m2 r2 id
r2 r2 m2 m3 m1 id r1

Proving associativity with such a group table is cumbersome but possible since we
have only finitely many group elements. As an example let us check

m1 ◦ (m2 ◦m1) = m1 ◦ r1 = m3 = r2 ◦m1 = (m1 ◦m2) ◦m1

which shows associativity in this case. The remaining cases can be checked the
same way.
The table shows that the identity map id is the neutral element of the group.
For each symmetric transformation there exists an inverse one. This can be seen

15



3.1 Introduction to groups

from the table – and by direct inspection. The reflections mi = inv(mi) are their
own inverses while inv(r1) = r2 and inv(r2) = r1.
So the symmetric transformations on a equilateral triangle form a group with
respect to ◦. It is commonly called S3, the symmetry group of a triangle. It is
interesting to note that (S3, ◦) is not commutative:

m1 ◦m2 = r2 6= r1 = m2 ◦m1.

We will encounter group tables like in the previous example more often in the
course. They offer a convenient way of stating group laws for finite groups.
For an entertaining example have a look at “Group Theory in the Bedroom –
An insomniac’s guide to the curious mathematics of mattress flipping” by Brian
Hayes which appeared in American Scientist, September-October 2005, volume
93, page 395.

Example 3.1.7 Let (G1, ◦1) and (G2, ◦2) be groups. The Cartesian product G1×
G2 of G1 and G2 is defined to be the set

G1 ×G2 = {(a1, a2)|a1 ∈ G1, a2 ∈ G2}.

The operation ◦ defined by

(a1, a2) ◦ (b1, b2) = ((a1 ◦1 b1), (a2 ◦2 b2))

turns G1×G2 into a group, called the direct product of G1 and G2 . The detailed
proof is posed as Exercise 3.1.27 g) below.
The same holds for products of finitely many groups.

A useful tool is the cancellation rule.

Lemma 3.1.8 (Cancellation rule)
Let (G, ◦) be a group and let a, b, c ∈ G. If a ◦ b = a ◦ c then b = c.

Proof. The proof is posed as Exercise 3.1.27 f). ✷

Definition 3.1.9 (Subgroup)
Let (G, ◦) be a group. A subset G′ of G is a subgroup of G if G′ is a group with
respect to ◦.

Lemma 3.1.10 Let (G, ◦) be a group. A subset G′ ⊆ G is a subgroup of G if
and only if the following three conditions are satisfied:

1. The neutral element e of G is in G′.

2. For all a, b ∈ G′ we have a ◦ b ∈ G′.

3. For all a ∈ G′ we have inv(a) ∈ G′.

If G is commutative then so is G′.

16



Number Theory and Algebra

Proof. Let G′ ⊆ G be a group. Then it must have a neutral element and by the
uniqueness of the neutral element we obtain e ∈ G′. The other two conditions
are the same as in the definition of a group.
Conversely, let G′ ⊆ G satisfy the above conditions. The only condition of the
definition that is missing is associativity. We know that G′ is contained in G
which is associative, so by the associativity of G we have for all a′, b′, c′ ∈ G′ ⊆ G
a ◦ (b ◦ c) = (a ◦ b) ◦ c which gives associativity in G′. Similarly, if G is
commutative then this property is inherited by the subgroup. ✷

Remark 3.1.11 The converse of the last statement in the lemma does not hold;
there are non-commutative groups which have commutative subgroups. See Ex-
ample 3.1.16.

There is an equivalent version which is sometimes easier to use.

Lemma 3.1.12 Let (G, ◦) be a group. A subset G′ ⊆ G is a subgroup of G if
and only if the following two conditions are satisfied:

1. The neutral element e of G is in G′.

2. For all a, b ∈ G′ we have a ◦ inv(b) ∈ G′.

Proof. Let G′ ⊆ G be a group. Like before we get e ∈ G′. For every b ∈ G′

we must have inv(b) ∈ G′ and since a group is closed and a, inv(b) ∈ G′ we must
have a ◦ inv(b) ∈ G′.
Assume now that G′ ⊆ G satisfies the conditions. Like in the previous lemma
we obtain associativity for G′. We need to show that G′ is closed under ◦ and
that inverses exist in G′. The latter one is seen since e ∈ G′ and by the second
condition thus e ◦ inv(b) = inv(b) ∈ G′. Consequently, for any a, b ∈ G′ we have
a, inv(b) ∈ G′ and by the second condition we obtain a ◦ inv(inv(b)) = a ◦ b ∈ G′,
so G′ is closed. ✷

Example 3.1.13 Let G be a group and let e ∈ G be the neutral element. We
have two (trivial) subgroups of G, namely G1 = {e} ⊂ G and G2 = G itself.
The latter one is clearly a group. Let us check G1 now. Since e ◦ e = e we have
inv(e) = e and so using the criterion from Lemma 3.1.12 we only need to see that
e ◦ inv(e) = e ◦ e = e is indeed in G1 = {e} which obviously holds.

If we want to exclude the trivial subgroups considered in the previous example
we speak of proper subgroups.

Example 3.1.14 We have seen that (C ,+) forms a group. With Lemma 3.1.10,
the observation that 0 ∈ ZZ ⊂ Q ⊂ IR ⊂ C , and checking that in all these sets ad-
dition and inversion is closed we get the earlier obtained result that (ZZ,+), (Q,+),
and (IR,+) are groups.
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3.1 Introduction to groups

Example 3.1.15 We have seen that (ZZ,+) forms a group and that 5ZZ ⊂ ZZ.
The neutral element of ZZ is 0 which is also in 5ZZ as 0 = 5 · 0. Let a, b ∈ 5ZZ,
i.e. a = 5a′, b = 5b′. Then

a ◦ inv(b) = a+ (−b) = 5a′ − 5b′ = 5(a′ − b′) ∈ 5ZZ

and so (5ZZ,+) forms a subgroup of (ZZ,+) by Lemma 3.1.12.

Example 3.1.16 (Subgroups of S3)
In Example 3.1.6 we considered S3, the group of symmetric transformations of
the equilateral triangle, as an example of a non-abelian group. We now state all
subgroups of S3.
Clearly ({id}, ◦) satisfies the criteria of Lemma 3.1.12 and thus is a subgroup.
The reflections are self-inverse and thus ({id,m1}, ◦), ({id,m2}, ◦), and
({id,m3}, ◦) are further subgroups.
If we want a subgroup containing r1 then it must also contain r1 ◦ r1 = r2 by the
second criterion and any combination of them. Since the rotations are inverse
to each other and r2 ◦ r2 = r1 these three elements are sufficient leading to the
subgroup ({id, r1, r2}, ◦).
As soon as we combine two different reflections or one reflection with a rotation
and try to obtain a subgroup containing them, the second criterion dictates that
we obtain the whole group. Thus the sixth and last subgroup is the full group
({id,m1,m2,m3, r1, r2}, ◦) = (S3, ◦).
It is interesting to note that all proper subgroups are commutative while the full
group is not.

In the example we constructed subgroups starting from one element a ∈ G and
considering the elements obtained as a ◦ a etc. For a natural number m ∈ IN we
introduce the notation [m]a to denote the m-fold composition of a with itself:

[m]a = a ◦ a ◦ · · · ◦ a
︸ ︷︷ ︸

m− copies of a

.

We extend this to negative scalars m as [m]a = [−m]inv(a) for m < 0.
The set of all such scalar multiples of a is denoted by

〈a〉 = {[m]a | m ∈ ZZ} .

Definition 3.1.17 (Cyclic group)
A group (G, ◦) is called a cyclic group if there exists an element g ∈ G so that

G = 〈g〉.
A group element g with G = 〈g〉 is called a generator of G.
Let a ∈ G. The set 〈a〉 is called the cyclic subgroup generated by a.

The following lemma shows that the notion “subgroup” is justified since 〈a〉 is
indeed a subgroup of G.

Lemma 3.1.18
Let (G, ◦) be a group and let a ∈ G. The set 〈a〉 is a commutative subgroup of G.
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Proof. The neutral element e = [0]a is contained in 〈a〉. Since inv(a) = [−1]a
we have inv([m]a) = [−m]a and

[m]a ◦ inv([n]a) = [m]a ◦ [−n]a = [m− n]a ∈ 〈a〉
as m− n ∈ ZZ and the result follows by Lemma 3.1.12.
Since ZZ is abelian and [m]a ◦ [n]a = [m+ n]a = [n]a ◦ [m]a also 〈a〉 is abelian. ✷

Example 3.1.19 1. Any integer m can be written as m = 1 + 1 + · · · + 1 =
[m]1. So the group (ZZ,+) is cyclic and generated by 1. Similarly also −1
is a generator.

2. (3ZZ,+) is cyclic and generated by 3.

3. For any integer n the set (nZZ,+) is a cyclic group and generated by n.

4. (Q,+) is not cyclic; one cannot find a generator for this group. It contains
(ZZ,+) and (3ZZ,+) as cyclic subgroups.

5. The subgroup ({id, r1, r2}, ◦) of S3 is generated by r1. Another generator is
r2.

Definition 3.1.20 (Order of element)
Let (G, ◦) be a group and let a ∈ G. If there exists an m ∈ IN such that [m]a = e
then a has finite order. The smallest such m is called the order of a, denoted by
ord(a) = m.
If no such number exists then a has infinite order.

Example 3.1.21 In S3 every element has finite order. Since m1 ◦ m1 = id
we have ord(m1) = 2 = ord(m2) = ord(m3). The rotations have order 3 since
r1 ◦ r1 = r2 6= id but r1 ◦ r1 ◦ r1 = r2 ◦ r1 = id.

Definition 3.1.22 (Order of group )
Let (G, ◦) be a group. The order of G is the cardinality of G.

If a group has finite order then there are only finitely many elements in it and
thus each element must have finite order. The converse does not hold: There are
infinite groups which contain elements of finite order.
For discrete mathematics finite groups are particularly interesting. Therefore, we
now investigate some details of finite groups. The groups we encounter later on
are mostly abelian, so we give some results only for this case. The interested
reader may consult any of the algebra books mentioned in the introduction for
the general case.
There is a nice connection between the order of a group and the order of an
element given by the following lemma.

Lemma 3.1.23 Let (G, ◦) be a finite abelian group of order |G| = n.
For all a ∈ G one has [n]a = e.
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Proof. Let a ∈ G. Since G is finite of order n, it can be written as G =
{a1, a2, . . . , an}.
The results a ◦ a1, a ◦ a2, a ◦ a3, . . . , a ◦ an are all distinct as from a ◦ ai = a ◦ aj
the cancellation rule gives ai = aj. There are n results, so we can also write G
as G = {a ◦ a1, a ◦ a2, a ◦ a3, . . . , a ◦ an}.
We now take the product over all elements ofG – the left side in the representation
involving a and the right side without – and use that the group is abelian so that
we can re-arrange the order of the elements.

(a ◦ a1) ◦ (a ◦ a2) ◦ (a ◦ a3) ◦ · · · ◦ (a ◦ an) = a1 ◦ a2 ◦ a3 ◦ · · · ◦ an,
([n]a) ◦ (a1 ◦ a2 ◦ a3 ◦ · · · ◦ an) = a1 ◦ a2 ◦ a3 ◦ · · · ◦ an.

Using the cancellation rule we obtain

[n]a = e

which proves the claim. ✷

The lemma is actually a special case of Lagrange’s Theorem (Theorem 3.3.8)
which also holds for non-commutative groups.

Lemma 3.1.24 Let (G, ◦) be a group and let a ∈ G. If [m]a = e then ord(a) | m.
In particular if G is finite and abelian with |G| = n then for all a ∈ G one has
ord(a)|n.

Proof. Assume on the contrary that m = k ord(a) + r for 0 < r < ord(a). Then

e = [m]a = [k ord(a) + r]a = [k ord(a)]a ◦ [r]a = e ◦ [r]a = [r]a,

so e = [r]a which contradicts the minimality of ord(a).
By Lemma 3.1.23 for all group elements a we have [n]a = e. By the first part of
the lemma we obtain ord(a)|n. ✷

The converse of this lemma is not true in general. For m|ord(G) there need not
exist an element a ∈ G of order m. Only for prime numbers Cauchy’s Theorem
(Theorem 3.3.17) guarantees the existence of an element with that order.
The second part holds also for non-abelian groups by Langrange’s theorem. La-
grange’s and Cauchy’s theorems will both be presented in Section 3.3.

Definition 3.1.25 (Exponent)
Let (G, ◦) be a finite group. The smallest m ∈ IN such that [m]a = e for all a ∈ G
is called the exponent of G.

Example 3.1.26 The symmetry group (S3, ◦) is finite. The elements have order
2 and 3, therefore [6]a = id for any a ∈ S3. No smaller integer with this property
exists since it must be divisible by 2 and 3, thus S3 has exponent 6.
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In more generality let g1, g2, . . . , gk be elements of a group G with orders
m1,m2, . . . ,mk respectively. The exponent of G must be divisible by the least
common multiple lcm(m1,m2, . . . ,mk) of the orders.

Exercise 3.1.27 a) Consider the subset ZZ[i] of the complex numbers given by

ZZ[i] = {a+ bi ∈ C |a, b ∈ ZZ}.
Show that (ZZ[i],+) is a subgroup of (C ,+).

b) Find all symmetric transformations of the square and show that they form a
group with respect to composition. Give the group table. State all subgroups.
Compute the order of this group and the exponent.

c) Find all symmetry operations of a rectangle which is not a square and show
that they form a group with respect to composition. Give the group table. State
all subgroups.
Compute the order of this group and the exponent. You do not need to prove
associativity.

d) Define the following equivalence relation

(a, b) ∼ (c, d)⇔ a · d = b · c
on ZZ × (ZZ \ {0}). Let M = ZZ × (ZZ \ {0})/ ∼ be the set of residue classes
under ∼. Define the operation ◦ on M as follows:

(a, b) ◦ (c, d) = (a · d+ c · b, b · d).
(a) Show that ∼ is indeed an equivalence relation on ZZ×(ZZ\{0}), i.e. show

that ∼ is reflexive, symmetric and transitive.

(b) Show that (M, ◦) is a group.

(c) Investigate whether (M, ◦) is a commutative group.

e) Define the following operation ◦ on the set of rational numbers

a ◦ b = a · b− 3 · (a+ b) + 12,

where + and · denote the regular addition and multiplication in Q.

(a) Find the neutral element in Q with respect to the operation ◦.
(b) Determine all invertible elements in Q with respect to the operation ◦.
(c) Determine the maximal subset M of Q that forms a group with respect

to ◦. Show that (M, ◦) is a group.
Note: the expressions in the proof of associativity get very long, you may
skip this part if you are sure that you can prove associativity.

f) Prove the cancellation rule, Lemma 3.1.8.

g) Let (G1, ◦1) and (G2, ◦2) be groups. Give all details of the proof that the
Cartesian product G1 ×G2 is a group.
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3.2 Modular arithmetic

3.2 Modular arithmetic

We briefly pause our algebraic considerations and introduce modular arithmetic
in ZZ and consider quotient groups in general.

We have seen that the relation a ∼ b⇔ 3|(a− b) is an equivalence relation. We
now study such relations systematically for arbitrary numbers n in place of 3 and
introduce names for the different concepts.

Definition 3.2.1 (Modulus)
Let n, a, b be integers. If n divides (a− b) we write

a ≡ b mod n,

read “a is equivalent to b modulo n”. In such a relation, the integer n is called
the modulus.

The equivalence classes under ≡ are called residue classes modulo n.

Example 3.2.2 We have 12 ≡ 27 mod 5 since 12− 27 = −15 is divisible by 5.

Since any number which is divisible by n is also divisible by −n we restrict to
positive integers n in most of the following considerations.

We have a ≡ b mod n exactly if a and b have the same remainder under division
by n, i.e. if we write a = a′n + ra and b = b′n + rb with minimal remainders
0 ≤ ra, rb < n then ra = rb.

We often represent the residue classes by the smallest non-negative integer in the
class, i.e. for 0 ≤ r < n we let

r̄ = {a ∈ ZZ|a = a′n+ r},

where the notation assumes that the modulus n is fixed.

One can combine the operations + and · with modular reduction. The following
lemma shows that this is compatible.

Lemma 3.2.3 Let a, b, n ∈ ZZ with a = a′n+ra, b = b′n+rb, where the remainders
are not necessarily minimal. We have the following equivalences

1. (a+ b) ≡ (ra + rb) mod n,

2. (a · b) ≡ (ra · rb) mod n.
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Proof. The proof is left to the reader as Exercise 3.2.11 a. ✷

So we can also define operations + and · on the residue classes and the lemma
shows that one can work with any representative of the class.

Example 3.2.4 1. Let n = 6. A complete set of residue classes is given by

{0̄, 1̄, 2̄, 3̄, 4̄, 5̄}.

To determine the value of 3̄ + 4̄, we find one element in the resulting class,
e.g. 3 + 4 = 7 and then reduce it modulo 6 to find the smallest remainder,
here 7 ≡ 1 mod 6. So, as classes: 3̄ + 4̄ = 1̄.

Multiplication works the same: To find the resulting class of 3̄·4̄ we multiply
the representatives of the classes 3 · 4 = 12 and reduce the result modulo 6,
so 3̄ · 4̄ = 0̄.

The complete tables of addition and multiplication of classes look as follows:

+ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄

0̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
1̄ 1̄ 2̄ 3̄ 4̄ 5̄ 0̄
2̄ 2̄ 3̄ 4̄ 5̄ 0̄ 1̄
3̄ 3̄ 4̄ 5̄ 0̄ 1̄ 2̄
4̄ 4̄ 5̄ 0̄ 1̄ 2̄ 3̄
5̄ 5̄ 0̄ 1̄ 2̄ 3̄ 4̄

· 0̄ 1̄ 2̄ 3̄ 4̄ 5̄

0̄ 0̄ 0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
2̄ 0̄ 2̄ 4̄ 0̄ 2̄ 4̄
3̄ 0̄ 3̄ 0̄ 3̄ 0̄ 3̄
4̄ 0̄ 4̄ 2̄ 0̄ 4̄ 2̄
5̄ 0̄ 5̄ 4̄ 3̄ 2̄ 1̄

The set {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} forms an abelian group under addition – the table
shows that the set is closed under this operation, 0̄ is the neutral element and
each element has an inverse. Associativity and commutativity are inherited
from ZZ.

The set does not does not form a group under multiplication. The neutral
element is 1̄ but there are elements that do not have an inverse, namely
there are no inverses of 0̄, 2̄, 3̄, and 4̄.

The subset {1̄, 5̄} forms a group under multiplication with 1̄ as neutral ele-
ment and 5̄ · 5̄ = 1̄.

2. We now do the same considerations modulo 3 and demonstrate, that one
can also use other representatives for the classes, e.g. {−1̄, 0̄, 1̄} can be used
just as well as the more standard choice {0̄, 1̄, 2̄}.

+ −1̄ 0̄ 1̄

−1̄ 1̄ −1̄ 0̄
0̄ −1̄ 0̄ 1̄
1̄ 0̄ 1̄ −1̄

· −1̄ 0̄ 1̄

−1̄ 1̄ 0̄ −1̄
0̄ 0̄ 0̄ 0̄
1̄ −1̄ 0̄ 1̄

We see that ({−1̄, 0̄, 1̄},+) and ({−1̄, 1̄}, ·) are both abelian groups.

These examples can be generalized.
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Lemma 3.2.5 Let n ∈ ZZ be positive. The residue classes modulo n form a
commutative group with respect to addition, where the addition is defined as

r̄1 + r̄2 = r̄3 ⇔ r1 + r2 ≡ r3 mod n

and r3 is the unique representative of the class containing r1 + r2.

Proof. We first have to show that the operation is well-defined, i.e. that
for any element in the class of r̄1 and for any element in the class of r̄2 the
result is in the same class r̄3. So let a ∈ r̄1, b ∈ r̄2, then there exist integers
a′ and b′ so that a = a′n + r1 and b = b′n + r2. Their sum is in the class of
a + b = (a′n + r1) + (b′n + r2) = (a′ + b′)n + r1 + r2 ≡ r1 + r2 ≡ r3 mod n by
definition of r3.
The neutral element is 0̄ and the inverse of r̄ is the residue class containing −r.
If one uses representatives 0 ≤ r < n then for r 6= 0 the inverse is n− r.
Associativity and commutativity follow from ZZ. ✷

The example with n = 6 demonstrated that one cannot hope for the same general-
ity for multiplication. Analyzing which elements besides 0̄ do not have an inverse
one sees that those are exactly the elements which have a factor in common with
6.

Lemma 3.2.6 Let a, n ∈ ZZ be integers. The class containing a is invertible
modulo n with respect to multiplication · if and only if

gcd(n, a) = 1.

Proof. Let a = a′n + ra with 0 ≤ ra < n. We first observe that gcd(a, n) =
gcd(ra, n) because any divisor of a and n also divides linear combinations of them
like a− a′n = ra. Similarly any divisor of ra and n also divides a′n+ ra = a.
Let b = b′n + rb with 0 ≤ rb < n be a candidate multiplicative inverse. Their
product is

a · b = (a′n+ ra) · (b′n+ rb) = (a′b′n+ a′rb + b′ra)n+ rarb.

Let rarb be in the residue class of 0 ≤ rc < n. By the same considerations,
gcd(a, n) also divides rarb and rc. So if gcd(a, n) = k 6= 1 is non-trivial then k
divides rc which therefore cannot be 1 no matter which b is chosen.
Now let gcd(a, n) = 1. Let {r0, r1, . . . , rn−1} be a complete set of remain-
ders modulo n. The products a · ri are all different modulo n; because if
a · ri ≡ a · rj mod n then n|a(ri − rj) and since gcd(a, n) = 1 it must be that
n|(ri − rj) which by the size restrictions implies ri = rj. This means that there
is one rl such that arl ≡ 1 mod n and so a is invertible. ✷

Definition 3.2.7 (Euler ϕ-function)
Let n ∈ ZZ be positive. We define the Euler ϕ-function ϕ(n) of n as the number
of integers a with 0 ≤ a < n and gcd(a, n) = 1.
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Sometimes the Euler ϕ-function is also called Euler’s totient function.

Example 3.2.8 1. We have ϕ(7) = 7 − 1 = 6 since all positive integers < 7
are coprime to 7.

2. Let p be a prime. Like in the previous example we have ϕ(p) = p− 1.

3. Let n = p2 be the square of a prime. The integers 0 ≤ a < n which have
gcd(a, n) 6= 1 are exactly the multiples of p, i.e. p, 2p, 3p, . . . , (p − 1)p.
There are p2−1− (p−1) = p(p−1) numbers 0 ≤ a < n with gcd(a, n) = 1.

4. Let n = pq be the product of two different primes p and q. The integers a
with 1 ≤ a ≤ pq − 1 and gcd(a, n) 6= 1 are multiples of p or q, precisely the
numbers p, 2p, 3p, . . . , (q− 1)p, q, 2q, 3q, . . . (p− 1)q. I.e. there are pq− 1−
(q− 1)− (p− 1) = pq− p− q+1 = (p− 1)(q− 1) positive integers coprime
to pq and smaller than pq.

The Euler ϕ-function is a typical function of elementary number theory. The
examples in Example 3.2.8 can be generalized to the following lemma which
we will not prove here but in Section 3.4 after stating the Chinese Remainder
Theorem 3.4.20.

Lemma 3.2.9 Let n = pe11 p
e2
2 p

e3
3 · · · perr with p1, p2, . . . , pr distinct primes and

positive exponents e1, e2, . . . , er ∈ ZZ. We have

ϕ(n) =
r∏

i=1

(peii − pei−1
i ) = n ·

r∏

i=1

(

1− 1

pi

)

.

The following lemma gives a nice illustration of the use of modular reduction in
proofs.

Lemma 3.2.10 For any nonzero a, b ∈ ZZ there exist m,n ∈ ZZ with |m| < |b|
and |n| < |a| so that

gcd(a, b) = ma+ nb.

Proof. Let d = gcd(a, b). For simplicity assume that a and b are positive.
Put p = a/d and q = b/d, then p and q are coprime. The q − 1 multiples
p, 2p, 3p, . . . , (q − 1)p of p are all not divisible by q and all in distinct residue
classes modulo q. Since there are q − 1 non-zero residue classes modulo q one of
the multiples, say pm, is in the class of 1 modulo q, i.e. pm ≡ 1 mod q. This
implies 1 = pm+ qn for some 1 ≤ n < p. Multiplying both sides of this equation
by d we obtain the desired equation d = am + bn, where 1 ≤ m < q ≤ b and
1 ≤ n < p ≤ a. For negative values of a or b similar considerations hold. ✷

This representation is often called Bézout’s identity and is obtained using the
Extended Euclidean Algorithm 4.3.1 which we will state later in this chapter and
consider in detail in Chapter 4. It is possible to extend Bézout’s identity to give
a linear combination of any number of elements.
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Exercise 3.2.11 a) Prove Lemma 3.2.3.

b) Write addition and multiplication tables for arithmetic modulo 4 and modulo
8. How many elements are invertible modulo 4 and modulo 8 respectively.

c) Compute ϕ(1001). You may use Lemma 3.2.9.

3.3 Advanced concepts of groups

Modular arithmetic as considered in the previous section is one example of con-
sidering one group modulo a subgroup, in this case the group ZZ modulo nZZ
for some integer n. In this section we generalize the approach and show some
properties of the resulting constructs. The whole section is rather technical and
the proofs can be skipped on first reading but the results will be needed in later
sections and chapters.
Let (G, ◦) be a group and let G′ be a subgroup. We define a relation ∼ on G by

a ∼ b⇔ a ◦ inv(b) ∈ G′. (3.1)

We observe that ∼ is an equivalence relation as it is

reflexive: a ∼ a as a ◦ inv(a) = e ∈ G′ since G′ is a subgroup.

symmetric: If a ∼ b then also b ∼ a, because with a ◦ inv(b) = c ∈ G′ also
inv(c) = inv(a ◦ inv(b)) = b ◦ inv(a) must be in G′ by the second criterion
in Lemma 3.1.12.

transitive: If a ∼ b and b ∼ c then also a ∼ c because a ◦ inv(c) = a ◦ (inv(b) ◦
b) ◦ inv(c) = (a ◦ inv(b)) ◦ (b ◦ inv(c)) must be in G′ as combination of the
two group elements a ◦ inv(b) and b ◦ inv(c).

The set of equivalence classes is denoted by G/G′ and we have

G/G′ = {a ◦G′|a ∈ G}.

Example 3.3.1 In Example 3.2.4 we considered ZZ/6ZZ and ZZ/3ZZ.

Lemma 3.3.2 Let (G, ◦) be an abelian group and let G′ be a subgroup. The set
of equivalence classes G/G′ forms an abelian group under the operation

◦′ : (a ◦G′) ◦′ (b ◦G′) = (a ◦ b) ◦G′

inherited from G.
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Proof. We first need to show that the operation is well defined on the classes.
Let a′ ∈ a ◦ G′ and b′ ∈ b ◦ G′, so there exist c, d ∈ G′ so that a′ = a ◦ c and
b′ = b ◦ d. The result of a′ ◦ b′ is

a′ ◦ b′ = (a ◦ c) ◦ (b ◦ d) = (a ◦ b) ◦ (c ◦ d) ∈ (a ◦ b) ◦G′,

where in the last step we used associativity and commutativity of G and that
c ◦ d ∈ G′. So the resulting class is independent of the chosen representative.
The set G/G′ is closed under ◦′, associativity and commutativity
are inherited from G. The neutral element is G′ = e ◦ G′ since
(a ◦ G′) ◦′ (e ◦ G′) = (a ◦ e) ◦ G′ = a ◦ G′. The inverse element to a ◦ G′

is inv(a) ◦G′. ✷

Because ◦′ is so closely related to ◦ we drop the extra notation and use the same
symbol ◦ for the group operation in G/G′.

Definition 3.3.3
Let (G, ◦) be an abelian group and let G′ be a subgroup. The group G/G′ =
{a ◦G′|a ∈ G} is called the quotient group of G modulo G′.

With this theoretical background, the earlier proven fact that (ZZ/nZZ,+) is a
group follows as an easy corollary from Lemma 3.3.2.

Example 3.3.4 In Example 3.1.13 we saw that every group G has trivial sub-
groups, namely G1 = {e} and G2 = G. The first one leads to equivalence classes
which contain only one element each, since a ∼ b requires a ◦ inv(b) ∈ G1, i.e.
a ◦ inv(b) = e and thus a = b. This means that G/{e} behaves like G itself.
The same considerations for G2 show that there is only one equivalence class
which contains all of G, so the quotient group G/G has only one element.

The integers are not a group with respect to multiplication, so we cannot use this
lemma to deduce anything about ZZ/nZZ under multiplication. Example 3.2.4
showed that there are subsets of ZZ/nZZ of elements that are invertible modulo n
and that these subsets formed groups.

Definition 3.3.5 (Multiplicative group modulo n)
Let n ∈ IN. We denote by (ZZ/nZZ)× the set of multiplicatively invertible ele-
ments modulo n. By Lemma 3.2.6 we have with unique representatives for the
equivalence classes

(ZZ/nZZ)× = {a+ nZZ | 0 ≤ a < n, gcd(a, n) = 1} .

Lemma 3.3.6 Let n ∈ IN. The set (ZZ/nZZ)× forms a commutative group un-
der multiplication. It is called the multiplicative group modulo n. We have
|(ZZ/nZZ)×| = ϕ(n).
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Proof. We use the definition and Lemma 3.2.6. Let a+nZZ, b+nZZ ∈ (ZZ/nZZ)×,
i.e. gcd(a, n) = gcd(b, n) = 1. Since ab is coprime to n, so is the remainder
of ab modulo n and thus the set is closed under multiplication. Associativity
and commutativity follow from the same properties in ZZ. The neutral element
is 1 + nZZ which is clearly in the set. By definition, the a’s are exactly those
integers which are invertible modulo n and so there exists a b with ab ≡ 1 mod n
and (a + nZZ)−1 = b + nZZ. The second claim follows from the definition of the
Euler ϕ-function. ✷

Since ϕ(n) is the cardinality of the multiplicative group modulo n we get Fermat’s
little theorem as a corollary of Lemma 3.1.23

Corollary 3.3.7 (Fermat’s Little Theorem)
Let n ∈ IN. For all a ∈ (ZZ/nZZ)× one has aϕ(n) ≡ 1 mod n.

The proof of the following theorem is rather technical and can be skipped on first
reading. However, the result is important.

Theorem 3.3.8 (Lagrange’s Theorem)
Let (G, ◦) be a finite group of order |G| = n.
Let G′ be a subgroup of G. The order of G′ divides n.

Proof. We use again the equivalence relation (3.1) a ∼ b if and only if a◦inv(b) ∈
G′ and decompose G into disjoint equivalence classes

G = H1 ∪H2 ∪ · · · ∪Hk,

for some number k. Since G′ is closed under ◦, the equivalence class of any b ∈ G′

equals G′ and so we can assume H1 = G′.
For each equivalence class we can define a bijection between it and G′. Let c ∈ Hi

for some 1 ≤ i ≤ k, i.e.

Hi = {a ∈ G|c ◦ inv(a) ∈ G′}

and this gives us a map

ψc : Hi → G′, a 7→ c ◦ inv(a).

By the definition of Hi we have c ◦ inv(a) ∈ G′ and so the map indeed maps to
G′. It is easy to give the inverse map ψ−1

c of ψc as

ψ−1
c : G′ → Hi, b 7→ inv(b) ◦ c.

Indeed

ψ−1
c (ψc(a)) = ψ−1

c (c ◦ inv(a)) = inv(c ◦ inv(a)) ◦ c = a ◦ inv(c) ◦ c = a

and

ψc(ψ
−1
c (b)) = ψc(inv(b) ◦ c) = c ◦ inv(inv(b) ◦ c) = c ◦ inv(c) ◦ b = b.
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So |Hi| = |G′| for any 1 ≤ i ≤ k and from the above partition we have

|G| = |H1|+ |H2|+ · · ·+ |Hk| = k · |G′|
which proves the claim. ✷
So we have that the order of any subgroup divides the group order.
The ψc’s in the previous proof were maps between sets. We now consider maps
that respect the group operation.

Definition 3.3.9 (Group homomorphism)
Let (G1, ◦1) and (G2, ◦2) be two groups and let ψ : G1 → G2 be a map between
them.
It is a group homomorphism (or homomorphism) if for all a1, b1 ∈ G1 one has

ψ(a1 ◦1 b1) = ψ(a1) ◦2 ψ(b1).
A group homomorphism is an isomorphism if it is bijective.
Two groups G1, G2 are isomorphic, written G1

∼= G2, if there exists an isomor-
phism between them.

Example 3.3.10 1. The map [3] : ZZ → 3ZZ, a 7→ 3a is a group homomor-
phism between (ZZ,+) and (3ZZ,+). First we observe that the map is well-
defined since each element of ZZ is indeed mapped into 3ZZ. Since for all
integers a and b we have 3(a+b) = (3a)+(3b) the map is a homomorphism.
It is easy to give the inverse map [1/3] : 3ZZ → ZZ, a 7→ a/3. This map is
actually well-defined since any a ∈ 3ZZ is divisible by 3. So in fact ZZ and
3ZZ are isomorphic ZZ ∼= 3ZZ.

2. Let (G, ◦) be a group. For any integer n the map

[n] : G→ G, a 7→ [n]a

is a group homomorphism. Clearly, [n]a ∈ G for any a ∈ G and by the
definition of [n] it is a homomorphism.

A group homomorphism might map some elements to the neutral element in the
target group. These elements will play a special role later on.

Definition 3.3.11 (Image and kernel of homomorphism)
Let (G1, ◦1) and (G2, ◦2) be two groups and let ψ : G1 → G2 be a group homo-
morphism.
The image of ψ, denoted Im(ψ), is the subset of G2 defined by

Im(ψ) = {ψ(a1) ∈ G2|a1 ∈ G1}.
The kernel of ψ, denoted Ker(ψ), is the subset of G1 that is mapped to the neutral
element e2 of G2

Ker(ψ) = {a1 ∈ G1|ψ(a1) = e2}.
Theorem 3.3.12 (First isomorphism theorem) Let (G1, ◦1) and (G2, ◦2) be
abelian groups and let ψ : G1 → G2 be a group homomorphism. The kernel of ψ
is a subgroup of G1 and Im(ψ) ∼= G1/Ker(ψ).
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Proof. We use Lemma 3.1.12. Since e1 ◦1 a1 = a1 for any a1 ∈ G1 and by the
definition of homomorphisms we have

ψ(a1) = ψ(e1 ◦1 a1) = ψ(e1) ◦2 ψ(a1).
By the cancellation rule we get ψ(e1) = e2, the neutral element in G2. So e1 ∈
Ker(ψ).
We remark that for a1 ∈ G1 we have ψ(inv1(a1)) = inv2(ψ(a1)), where the
first inverse is with respect to ◦1 and the second one with respect to ◦2, as
e2 = ψ(e1) = ψ(a1 ◦1 inv1(a1)) = ψ(a1) ◦2 ψ(inv1(a1)).
Let a1, b1 ∈ Ker(ψ), i.e. ψ(a1) = ψ(b1) = e2. We see that

ψ(a1 ◦1 inv1(b1)) = ψ(a1) ◦2 ψ(inv1(b1)) = e2 ◦2 inv2(ψ(b1)) = inv2(e2) = e2

and so a1 ◦1 inv1(b1) ∈ Ker(ψ).
To prove the isomorphism we construct a homomorphism between the sets and
show that an inverse map exists. Let

ψ′ : G/Ker(ψ)→ Im(ψ), ψ′(a1 ◦Ker(ψ)) = ψ(a1).

By definition of Im(ψ) indeed ψ′ maps to Im(ψ) and the map is well-defined since
for k ∈ Ker(ψ) we have ψ′((a1 ◦ k) ◦Ker(ψ)) = ψ(a1 ◦ k) = ψ(a1) ◦ ψ(k) = ψ(a1)
and so the image is independent of the representative. Since ψ is a homomor-
phism so is ψ′. If a2 ∈ Im(ψ) there must exist an a1 ∈ G with a2 = ψ(a1);
a1 is unique up to elements from Ker(ψ): If ψ(a1) = ψ(b1) = a2 then
ψ(b1 ◦ inv1(a1)) = ψ(b1) ◦ inv2(ψ(a1)) = e2 and so b1 ◦ inv1(a1) ∈ Ker(ψ) and
a1 and b1 are in the same residue class modulo Ker(ψ). This allows to define
the inverse map (ψ′)−1 : Im(ψ) → G/Ker(ψ) as (ψ′)−1(a2) = a1 ◦ Ker(ψ) if
ψ(a1) = a2. ✷

Example 3.3.13 Let ψ : G → H be an isomorphism, i.e. ψ is injective and so
Ker(ψ) = {e} and surjective, i.e. Im(ψ) = H. Theorem 3.3.12 says that

H = Im(ψ) ∼= G/{e} ∼= G, i.e. H ∼= G

which we knew already from ψ being an isomorphism. So the lemma fits with our
expectation.

Example 3.3.14 Let (G, ◦) be a group. The elements of order n for some integer
n form a group as they are the kernel of the homomorphism

[n] : G→ G, a 7→ [n]a.

Definition 3.3.15 (Product of groups)
Let (G, ◦) be a group and let G′ and G′′ be subgroups of G. The set

G′G′′ = {a′ ◦ a′′|a′ ∈ G′, a′′ ∈ G′′}
is called the product of G′ and G′′.

Lemma 3.3.16 Let (G, ◦) be an abelian group and let G′ and G′′ be subgroups
of G. The product G′G′′ is a subgroup of G and

|G′G′′| = |G′| · |G′′|/|G′ ∩G′′|.
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Proof. We use Lemma 3.1.12. Since G′ and G′′ are subgroups of G they both
contain e and thus e = e ◦ e ∈ G′G′′.
Let a′, b′ ∈ G′ and a′′, b′′ ∈ G′′. We show that with a′◦a′′ ∈ G′G′′ and b′◦b′′ ∈ G′G′′

also (a′ ◦ a′′) ◦ inv(b′ ◦ b′′) is in G′G′′. Since G is abelian we can rearrange the last
expression to

(a′ ◦ a′′) ◦ inv(b′ ◦ b′′) = (a′ ◦ inv(b′)) ◦ (a′′ ◦ inv(b′))
and use that (a′ ◦ inv(b′)) ∈ G′ and (a′ ◦ inv(b′)) ∈ G′′ so that the result is indeed
in G′G′′.
To prove the statement about the cardinality of G′G′′ we consider the following
map between the Cartesian product G′ ×G′′ and G′G′′:

ψ : G′ ×G′′ → G′G′′, (a′, a′′) 7→ a′ ◦ inv(a′′).
Since all groups involved are abelian and subgroups of G, this is a group homo-
morphism and in particular G′G′′ = Im(ψ). The kernel consists of

Ker(ψ) = {(a′, a′′) ∈ G′ ×G′′|a′ ◦ inv(a′′) = e},
in other words of the tuples (a, a) such that a ∈ G′ ∩G′′ and so the proof follows
by Theorem 3.3.12 and taking cardinalities. ✷

The next theorem provides a partial inverse to Lagrange’s Theorem. The proof
needs all the concepts introduced so far.

Theorem 3.3.17 Cauchy’s Theorem
Let (G, ◦) be a finite abelian group of order n and let p be a prime dividing n.
There exists an element a ∈ G with ord(a) = p. The subgroup generated by this
a is cyclic of order p.

Proof. Let G = {g1, g2, . . . , gn} and consider the finite product of groups
Pm = 〈g1〉〈g2〉〈g3〉 · · · 〈gm〉 for some m ≤ n, which by m − 1-fold application
of Lemma 3.3.16 is a subgroup of G. By the same lemma the cardinality is

|Pm| = |〈g1〉||〈g2〉||〈g3〉| · · · |〈gm〉|/km,
where km is an integer taking care of the cardinalities of the intersections.
By construction Pn contains all gi and since Pn is a subgroup of G we actually
have G = Pn, so we get

|G| = |Pn| = |〈g1〉||〈g2〉||〈g3〉| · · · |〈gn〉|/kn.
Since p is a prime and divides |G| it must also divide the product on the
right hand side, and by the primality it must divide one of the factors |〈gi〉|
for one 1 ≤ i ≤ n. Let c = |〈gi〉|/p and put a = [c]gi. By construction
[p]a = [p]([c]gi) = [ordgi]gi = e and a 6= e. ✷

Corollary 3.3.18 Every finite abelian group of prime order is cyclic.
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Proof. Let |G| = p be a prime. There exists an element g ∈ G of order
ord(g) = p and thus G = 〈g〉. ✷

Example 3.3.19 Let (G, ◦) be a cyclic group of order m. How many generators
does G have?
Since G is cyclic there exists a generator g, so let G = 〈g〉 = {[n]g | n ∈ ZZ}.
For any a = [n]g ∈ G we have [m]a = [n]([m]g) = e but if n has a non-
trivial common divisor with m then a ord(a) < m. So there are exactly
|{0 ≤ n < m | gcd(n,m) = 1}| = ϕ(m) generators.

Example 3.3.20 In Exercise 3.2.11 we considered the multiplicative group mod-
ulo 8 and found that (ZZ/8ZZ)× = {1̄, 3̄, 5̄, 7̄} has order 4. The multiplica-
tion table shows that there is no element of order 4 but that the orders are
ord(1̄) = 1, ord(3̄) = 2, ord(5̄) = 2, ord(7̄) = 2.
This structure – a non-cyclic group of order 4 – is a famous example in the theory
of finite groups. It is called the Klein four-group.

Exercise 3.3.21 a) Let (G, ◦) be a group and let G1, G2 be two subgroups of it.
Show that their intersection is also a subgroup of G.
In fact one can even show that the intersection of arbitrarily many subgroups
is a subgroup.

b) Consider the group (ZZ/12ZZ,+). Find all subgroups. Note that Lagrange’s
Theorem helps to determine possible group orders.

c) The multiplicative group (ZZ/299ZZ)× is of order (13− 1)(23− 1) = 264 which
is divisible by 11. Find an element of order 11.

d) Let G be an abelian group of order 13 · p, where p 6= 13 is a prime. State a
randomized algorithm to find an element of order p in G.

3.4 Rings

We have seen that the integers form an abelian group with respect to addition
and only a semigroup with respect to multiplication and we have seen other sets
on which we can define more than one operation. Such structures are called rings
if they satisfy some extra conditions. The integers are a particularly familiar
example of a ring. In the following section we study fields, which are rings in
which both are sets which are closed under two different operations.

Definition 3.4.1 (Ring)
A set R is a ring with respect to two operations ◦, ⋄ denoted by (R, ◦, ⋄) if

1. (R, ◦) is an abelian group.

2. (R, ⋄) is a semi-group (closed under ⋄ and the associative rule holds).
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3. The distributive laws hold in R:

Let a, b, c ∈ R. Then we must have

a ⋄ (b ◦ c) = (a ⋄ b) ◦ (a ⋄ c),
(a ◦ b) ⋄ c = (a ⋄ c) ◦ (b ⋄ c).

If there exists a neutral element e⋄ with respect to ⋄ then R is called a ring with
unity.
If ⋄ is commutative in R then R is called a commutative ring.

Example 3.4.2 The integers (ZZ,+, ·) form a ring. We have already seen that
(ZZ,+) is an abelian group and that (ZZ, ·) is a semi-group. It remains to be shown
that the distributive laws hold. We first observe that multiplication is commutative
as can be seen in rearranging a ·b = b+b+ · · ·+b (a times) and b = 1+1+ · · ·+1
(b times) to a · b = b · a. This implies that only one of the two laws need to be
checked explicitly.
By definition and commutativity of (ZZ,+) we have a·(b+c) = (b+c)+· · ·+(b+c) =
(b+ · · ·+ b) + (c+ · · ·+ c) = ab+ ac.
The number 1 is the neutral element with respect to multiplication since 1 · a =
a · 1 = a.
To sum up, the integers form a commutative ring with unity.

Example 3.4.3 1. The rational numbers (Q,+, ·), the reals (IR,+, ·) and the
complex numbers (C ,+, ·) form commutative rings with 1.

2. Let n ∈ IN. The set nZZ of multiples of n forms a ring with addition and
multiplication as in ZZ: associativity, commutativity, and the distributive
laws follow from ZZ. We have shown that (nZZ,+) is a group. The only
thing we need to check is that the set is closed under multiplication which
holds since an · bn = (abn)n is a multiple of n.

3. In Example 3.1.4 we considered the additive group of polynomials C[x] over
C . We can define multiplication of polynomials by

(
n∑

i=0

aix
i

)

·
(

m∑

i=0

bix
i

)

=
n+m∑

i=0

(
i∑

j=0

ajbi−j

)

xi,

where ai = 0 for i > n and bi = 0 for i > m. The set C[x] is closed
under multiplication since all coefficients are again in C . Associativity can
be checked by direct computation and follows from associativity in C . The
polynomial 1 ∈ C[x] is the neutral element with respect to multiplication
and the operation is commutative. So, C[x] is a commutative ring with
unity. We study polynomial rings in more detail in Section 3.7.
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4. Let n ∈ IN and consider the set ZZ/nZZ. We have seen in Lemma 3.2.5 that
(ZZ/nZZ,+) is an abelian group. Multiplication of residue classes is well-
defined and closed by Lemma 3.2.3. Associativity follows from associativity
of (ZZ, ·). The residue class 1 + nZZ is the neutral element of multiplica-
tion. Commutativity and distributive laws are inherited from (ZZ, ·). So
(ZZ/nZZ,+, ·) is a commutative ring with unity for any n.

5. Let (R, ◦R, ⋄R) and (S, ◦S, ⋄S) be rings. The Cartesian product R × S is
defined by

R× S = {(r, s)|r ∈ R, s ∈ S}.
With the operations ◦ and ⋄ defined by

(r1, s1) ◦ (r2, s2) = ((r1 ◦R r2), (s1 ◦S s2))
(r1, s1) ⋄ (r2, s2) = ((r1 ⋄R r2), (s1 ⋄S s2))

the Cartesian product R × S is a ring. If both R and S are commutative
rings then so is R× S; if both are rings with unity then so is R× S.
This example can be generalized to arbitrarily many rings.

In a ring we have the following useful computation laws which we know very well
for the integers.

Lemma 3.4.4 Let (R, ◦, ⋄) be a ring and let e◦ be the neutral element with respect
to ◦. If R is a ring with unity, let e⋄ be the neutral element of ⋄. We have for
arbitrary a, b ∈ R:

1. e◦ ⋄ a = a ⋄ e◦ = e◦.

2. inv◦(e⋄) ⋄ a = a ⋄ inv◦(e⋄) = inv◦(a).

3. inv◦(a) ⋄ b = a ⋄ inv◦(b) = inv◦(a ⋄ b).

Proof. By the distributive laws we have

(e◦ ⋄ a) ◦ (e◦ ⋄ a) = (e◦ ◦ e◦) ⋄ a = e◦ ⋄ a = (e◦ ⋄ a) ◦ e◦.

By the cancellation rule, Lemma 3.1.8, it follows that

e◦ ⋄ a = e◦.

Similarly one proves a ⋄ e◦ = e◦.
For the second result we use the definitions of e◦ and e⋄, the first result and the
distributive laws on

e◦ = e◦ ⋄ a = (e⋄ ◦ inv◦(e⋄)) ⋄ a = (e⋄ ⋄ a) ◦ (inv◦(e⋄) ⋄ a) = a ◦ (inv◦(e⋄) ⋄ a)

and add inv◦(a) on both sides from the left giving inv◦(a) = inv◦(e⋄) ⋄ a as
claimed. The proof for a ⋄ inv◦(e⋄) = inv◦(a) follows along the same lines.
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The last result follows from the second and associativity

inv◦(a) ⋄ b = (a ⋄ inv◦(e⋄)) ⋄ b = a ⋄ (inv◦(e⋄) ⋄ b) = a ⋄ inv◦(b)

and
inv◦(a) ⋄ b = (inv◦(e⋄) ⋄ a) ⋄ b = inv◦(e⋄) ⋄ (a ⋄ b) = inv◦(a ⋄ b).

✷

Definition 3.4.5 (Divisibility)
Let (R, ◦, ⋄) be a ring and let a, b ∈ R. We say that a divides b, written a|b, if
there exists c ∈ R with

a ⋄ c = b.

Definition 3.4.6 (Domain, zero-product property)
Let (R, ◦, ⋄) be a ring with unity. It is called a domain if e◦ 6= e⋄ and there are
no zero divisors, i.e. if

a ⋄ b = e◦ implies a = e◦ or b = e◦.

This last property is called the zero-product property.

Definition 3.4.7 (Greatest common divisor)
Let R be a commutative ring and let a, b ∈ R. A greatest common divisor d of a
and b is a common divisor of a and b so that for all common divisors c of a and
b one has that c|d.

In the integers we have that if a|b then also −a|b and the factorization of an
integer is unique only up to factors of −1 – even though one usually restricts
to positive primes. In general rings, greatest common divisors and factorizations
can be unique only up to invertible elements from R.

Definition 3.4.8 (Units)
Let (R, ◦, ⋄) be a commutative ring with unity e⋄. An element a ∈ R is called a
unit if there exists an element b = inv⋄(a) ∈ R so that a ⋄ b = e⋄.
The set of units in R is denoted by R× and we have

R× = {a ∈ R| there exists an element b ∈ R so that a ⋄ b = e⋄}.

Example 3.4.9 The invertible elements in (ZZ/nZZ, ·) are exactly the elements
in the multiplicative group modulo n, so the notation (ZZ/nZZ)× is consistent with
these elements being the units in (ZZ/nZZ, ·).

Lemma 3.4.10 Let (R, ◦, ⋄) be a commutative ring with unity e⋄. The set of
units R× of R forms a group under ⋄.
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Proof. Left to the reader as Exercise 3.4.21 d. ✷

Lemma 3.4.11 Let (R, ◦, ⋄) be a domain and let e◦ 6= a, b ∈ R. If a|b and b|a
then there exists a unit u ∈ R× so that a = b ⋄ u.

Proof. By the definition of divisibility, a|b and b|a imply that there exist c, d ∈ R
with b = a ⋄ c and a = b ⋄ d. The combination leads to

a ⋄ e⋄ = a = b ⋄ d = (a ⋄ c) ⋄ d = a ⋄ (c ⋄ d).

Using distributive laws this gives a ⋄ (e⋄ ◦ inv◦(c ⋄ d)) = e◦. Since R is a domain
and a 6= e◦, the zero-product property gives e⋄ ◦ inv◦(c ⋄ d)) = e◦, i.e. e⋄ = c ⋄ d,
and so c, d ∈ R× are units. ✷

Modular arithmetic (cf. Section 3.2) is about computing with remainders of divi-
sion by an integer n. For the integers it is very easy to find unique representatives
for the residue classes, namely one uses the non-negative integers < n to represent
their respective classes and all classes are distinct. In general one cannot hope to
find a canonical representative for each class and so rings in which we can define
a division with remainder in a unique way deserve a special name.

Definition 3.4.12 (Euclidean domain)
Let (R, ◦, ⋄) be a commutative domain and let v : R\{e◦} → ZZ+ be a function.
The ring R is called a Euclidean domain with respect to v if for each a, b ∈ R
with b 6= e◦ one can find q, r ∈ R with

a = q ⋄ b ◦ r and r = e◦ or v(r) < v(b).

In Euclidean domains any two elements have a greatest common divisor and one
can give an algorithm to determine it. The method to find greatest common
divisors makes extensive use of the following lemma.

Lemma 3.4.13 Let (R, ◦, ⋄) be a Euclidean domain. Let a, b, q, r ∈ R with a =
q ⋄ b ◦ r.
The set of common divisors of a and b equals the set of common divisors of b and
r.

Proof. Let d|a and d|b which implies that d|(a◦ inv◦(q ⋄ b)), i.e. d|r and so every
divisor of a and b also divides r. Reversing the same argument gives that ev-
ery common divisor f of b and r also divides the linear combination q⋄b◦r = a. ✷

As a shorthand we speak of computing modulo b when using the remainder r of
division by b instead of a itself, so we write a ≡ r mod b and speak of r as the
remainder. Since R is Euclidean we can find a remainder r such that v(r) < v(b)
or r = e◦. We use (a mod b) to denote this (smallest) remainder.
Repeated application of this lemma leads to remainders ri with strictly decreas-
ing values under v and since v maps to the non-negative integers this process
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must eventually lead to a remainder rj = 0. This recursive algorithm is known
as Euclidean algorithm and will be studied in much more algorithmic detail in
Chapter 4.

Lemma 3.4.14 Let (R, ◦, ⋄) be a Euclidean domain. For any two elements a, b ∈
R there exists a greatest common divisor d = gcd(a, b) and d is unique up to units
from R×.

Proof. The sequence of values v(ri) of the remainders ri in the following al-
gorithm is strictly decreasing and consists of non-negative integers so it must
terminate which means that rj = e◦ for some j. By Lemma 3.4.13 we have that
each two consecutive remainders ri−1 and ri have the same common divisors as a
and b. Since rj = e◦ the common divisors of a and b are the same as those of rj−1

and e◦. These are precisely all divisors of rj−1 and a greatest common divisor is
thus given by rj−1 itself.
Let d be another greatest common divisor of a and b. Then we have rj−1|d since
d is greatest common divisor and d|rj−1 since rj−1 is greatest common divisor.
By Lemma 3.4.11 this means that there exists a unit u ∈ R× with d = u ⋄ rj−1.
✷

Algorithm 3.4.15 (Euclid’s Algorithm)
IN: e◦ 6= a, b ∈ R
OUT: gcd(a, b)

1. i←0

2. r−1←a
3. r0←b
4. while ri 6= e◦

(a) i←i+ 1

(b) ri←(ri−2 mod ri−1) where ri−2 = qi ⋄ ri−1 ◦ ri with ri = e◦ or v(ri) <
v(ri−1)

5. return ri−1

This algorithm must terminate since the size of the remainder is strictly decreas-
ing until ri = e◦ is reached. This implies that ri−1|ri−2 and by Lemma 3.4.13 this
ri−1 is the greatest common divisor of the input values a and b.
In Section 3.2 we gave a special version of the following result as Lemma 3.2.10.
With the help of the Euclidean algorithm we can not only generalize the result to
arbitrary Euclidean rings but also give a constructive proof of Bézout’s identity.

Lemma 3.4.16 Let R be a Euclidean domain with respect to v. For any non-zero
a, b ∈ R there exist m,n ∈ R so that

gcd(a, b) = m ⋄ a ◦ n ⋄ b.
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Proof. Algorithm 3.4.15 produces a sequence of remainders ri and (implicitly)
of quotients qi with the property that ri−2 = qi ⋄ ri−1 ◦ ri. When the algorithm
terminates we have ri = e◦ and before that ri−3 = qi−1 ⋄ ri−2 ◦ ri−1, i.e.
gcd(a, b) = ri−3 ◦ inv◦(qi−1 ⋄ ri−2). Recursively replacing ri−2, ri−3 etc. by these
linear combinations leads to an equation of the requested form since the first
equation was a = r−1 = q1 ⋄ r0 ◦ r1 = q1 ⋄ b ◦ r1. ✷

Example 3.4.17 Bézout’s identity leads to an efficient way of computing modu-
lar inverses. Let a, n ∈ IN and let gcd(a, n) = 1. By Lemma 3.2.6 a is invertible
modulo n and indeed the previous lemma shows that there exists b,m such that

1 = gcd(a, n) = ab+ nm, i.e. 1 ≡ ab mod n,

so the b computed in Bézout’s identity is the inverse of a modulo n.

Lemma 3.4.18 Let R be a Euclidean domain and let a, b ∈ R so that a and
b have no non-trivial common divisor and let c ∈ R. If a|c and b|c then also
(a ⋄ b)|c.

Proof. There exist k, l with c = a⋄k and c = b⋄l. If a and b are co-prime we have
gcd(a, b) = e⋄ and by Lemma 3.4.16 there exist m,n ∈ R so that e⋄ = m⋄a◦n⋄b.
This leads to c = a ⋄ k = (a ⋄ k) ⋄ e⋄ = (a ⋄ k) ⋄ (m ⋄ a ◦ n ⋄ b) =
(b ⋄ l) ⋄ (m ⋄ a) ◦ (a ⋄ k) ⋄ (n ⋄ b) = (a ⋄ b) ⋄ ((m ⋄ l) ◦ (n ⋄ k)), so a ⋄ b divides c. ✷

Example 3.4.19 In recreational mathematics one often encounters stories like
the following example:
A Chinese general has a fast way of “counting” the number of soldiers in his
army. He first lets them line up in rows of 11 and counts the number of soldiers
in the last, incomplete row. He then repeats the process with rows of 13 and rows
of 17.
One morning, he finds that there are 3 soldiers left when the rest are in rows of
11, 4 soldiers left when the rest are in rows of 13, and 9 soldiers left when the
rest are in rows of 17. He knows that there are 1000 soldiers in his army. How
many of the soldiers are present this morning?
We fist look what the numbers would look like if all 1000 were present. We have

1000 ≡ 10 mod 11; 1000 ≡ 12 mod 13; 1000 ≡ 14 mod 17,

so clearly not all soldiers are present. So we are asked to find a number X such
that the following systems of equivalences is satisfied

X ≡ 3 mod 11;

X ≡ 4 mod 13;

X ≡ 9 mod 17.
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From the last equivalence we get X = 17Y + 9 for some Y . From the second we

get X = 17Y +9 ≡ 4Y +9
!≡ 4 mod 13, i.e., 4Y ≡ 8 mod 13. In this case we can

divide both sides by 4 and get Y ≡ 2 mod 13; in general we could use Bézout’s
identity to compute the inverse of 4 modulo 13, namely 4 · 10 ≡ 1 mod 13, to
obtain Y ≡ 2 mod 13. This means that with some Z we have

X = 17 · 13Z + 17 · 2 + 9 = 17 · 13Z + 43

as combination of the last two equations. Continuing to the first we get X =

17 · 13Z + 43 ≡ Z + 10
!≡ 3 mod 11 which immediately gives Z ≡ 4 mod 11 and

thus for some A

X = 17 · 13 · 11A+ 17 · 13 · 4 + 43 = 2431A+ 927.

From the story we know that the number of soldiers is positive and at most 1000
and so A = 0 is the only possibility leading to X = 927.
So apparently the general got a very bad day to count his soldiers since 73 were
absent (which is a sufficiently high number to avoid students guessing the correct
solution).

In the following section we show a generalization of this example to arbitrary
rings; to conclude this section we state the Chinese Remainder Theorem only for
the integers.

Theorem 3.4.20 (Chinese Remainder Theorem)
Let r1, . . . , rk ∈ ZZ and let 0 6= n1, · · · , nk ∈ IN such that the ni are pairwise
coprime. The system of equivalences

X ≡ r1 mod n1,

X ≡ r2 mod n2,
...

X ≡ rk mod nk,

has a solution X which is unique up to multiples of N = n1 · n2 · · ·nk. The set
of all solutions is given by {X + aN |a ∈ ZZ} = X +NZZ.

Proof. To prove the theorem we state a homomorphism between ZZ/NZZ and
the Cartesian product ZZ/n1ZZ × ZZ/n2ZZ × · · · × ZZ/nkZZ and show it to be an
isomorphism. That implies that every set of equations (right hand side of the
map) has a unique preimage X ∈ ZZ/NZZ.
Define ψ : ZZ/NZZ→ ZZ/n1ZZ×ZZ/n2ZZ×· · ·×ZZ/nkZZ; X+NZZ 7→ ((X mod n1)+
n1ZZ, (X mod n2) + n2ZZ, . . . , (X mod nk) + nkZZ). The map ψ is homomorphic
with respect to + and to · since by Lemma 3.2.3 we have X +Y ≡ (X mod ni)+
(Y mod ni) and X · Y ≡ (X mod ni) · (Y mod ni) and each ni divides N .
The image and the domain have the same cardinality N and so the map is an
isomorphism if it is injective. The kernel of ψ consists of those elements which
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map to (n1ZZ, n2ZZ, . . . , nkZZ), which are exactly those X + NZZ where X is
divisible by n1, n2, . . . , nk. Since the ni are coprime, X must be divisible by their
product, i.e. by N , which implies X ≡ 0 mod N and so ψ is an isomorphism. ✷

If the ni are not all coprime the system might not have a solution at all. E.g. the
system X ≡ 1 mod 8 and X ≡ 2 mod 6 does not have a solution since the first
congruence implies that X is odd while the second one implies that X is even.
If the system has a solution then it is unique only modulo lcm(n1, n2, . . . , nk).
E.g. the system X ≡ 4 mod 8 and X ≡ 2 mod 6 has solutions and the solutions
are unique modulo 24. Replace X ≡ 2 mod 6 by X ≡ 2 mod 3; the system still

carries the same information and we obtain X = 8a + 4 ≡ 2a + 1
!≡ 2 mod 3,

thus a ≡ 2 mod 3 and X = 8(3b + 2) + 4 = 24b + 20. The smallest positive
solution is thus 20.

We can now prove Lemma 3.2.9 which states that for n = pe11 p
e2
2 p

e3
3 · · · perr with

p1, p2, . . . , pr distinct primes and positive exponents e1, e2, . . . , er ∈ ZZ we have

ϕ(n) =
r∏

i=1

(peii − pei−1
i ) = n ·

r∏

i=1

(

1− 1

pi

)

.

Proof. We first observe that the two expressions are equal as peii − pei−1
i =

peii (1− 1/pi) and n = pe11 p
e2
2 p

e3
3 · · · perr .

We prove the main result by induction on the number of prime factors r. For
r = 1, i.e. n = pe11 a prime power, there are pe11 − pe1−1

1 positive numbers coprime
to n and < n because there are pe1−1

1 multiples of p1 in {0, 1, 2, . . . , n− 1}.
By assumption we have ϕ

(
pe11 p

e2
2 p

e3
3 · · · per−1

r−1

)
=
∏r−1

i=1 (p
ei
i − pei−1

i ) and ϕ (perr ) =
perr − per−1

r . Let 0 ≤ a < pe11 p
e2
2 p

e3
3 · · · per−1

r−1 and 0 ≤ b < perr . The system of
equations

X ≡ a mod pe11 p
e2
2 p

e3
3 · · · per−1

r−1 ,

X ≡ b mod perr ,

has a unique solution 0 ≤ X < n. So for each of the ϕ
(
pe11 p

e2
2 p

e3
3 · · · per−1

r−1

)
values

of a coprime to pe11 p
e2
2 p

e3
3 · · · per−1

r−1 and each of the ϕ (perr ) values of b coprime to
perr there is exactly one solution 0 ≤ X < n which shows that

ϕ(n) =
(
perr − per−1

r

)
r−1∏

i=1

(peii − pei−1
i ) =

r∏

i=1

(peii − pei−1
i ).

✷

Exercise 3.4.21 a) The Gaussian integers ZZ[i] are a subset of the complex num-
bers, defined as

ZZ[i] = {a+ bi|a, b ∈ ZZ} .
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We define addition and multiplication as in C by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

Show that (ZZ[i],+, ·) is a commutative ring with unity.

b) Let (R, ◦, ⋄) be a commutative ring with unity and let a, b ∈ R, n ∈ IN. Show
that

(a ◦ b)n =
n∑

i=0

[(
n

i

)]

aibn−i,

where [n]g = g ◦ g ◦ · · · ◦ g (n-times), the binomial coefficients are as in
Chapter 2, and the exponentiation ai denotes the i fold product of a with
itself: ai = a ⋄ a ⋄ · · · ⋄ a (i-times).
Hint: Use induction on n.

c) Show that the set

C[x, y] =

{
n∑

i=0

m∑

j=0

aijx
iyj

∣
∣
∣
∣
∣
aij ∈ C , n,m ∈ IN

}

is a ring with respect to the usual addition and multiplication.

d) Prove Lemma 3.4.10. Note that the proof is completely analogous to the con-
siderations for the special case (ZZ/nZZ)×.

3.5 Further reading on rings

This section introduces ideals and subrings. These concepts are important in
algebra and the proofs in the previous section could be stated more elegantly and
in full generality using these notations but we decided to go for a more direct
approach of proving results for special cases only. We include this section for the
interested reader. The exercises are optional.
In Example 3.4.3 we considered the ring nZZ which is a subset of ZZ and forms a
ring with respect to the same operations. So we can define subrings analogously
to subgroups. However, even more is true: we can multiply an element an ∈ nZZ
by any integer b ∈ Z and obtain an · b = (ab)n, a multiple of n. Subrings with
this property are called ideals.
For simplicity and since all examples we encounter are commutative, we from
now on work with commutative rings R.

Definition 3.5.1 (Subring, ideal)
Let (R, ◦, ⋄) be a ring and let R′ ⊆ R be a subset of R. If (R′, ◦, ⋄) is a ring then
R′ is a subring of R.
Let I ⊆ R be a subset of the commutative ring R. If I is a subring of R and
closed under ⋄ with arbitrary elements from R, i.e. I ⋄R ⊆ I then I is called an
ideal of R.
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Example 3.5.2 1. Let n ∈ IN. The set nZZ of multiples of n is a ring and
thus a subring of ZZ. Since an · b = (ab)n a multiple of n for arbitrary
integers b, the set nZZ is an ideal in ZZ.

2. Consider the ring of polynomials C[x] in x over C and the subset

xC[x] =

{

x

n∑

i=0

aix
i|ai ∈ C , n ∈ IN

}

.

Sums and differences of such polynomials are of the same form

x
n∑

i=0

aix
i − x

m∑

i=0

bix
i = x

max{n,m}
∑

i=0

(ai + bi)x
i

and if we multiply a polynomial in xC[x] by an arbitrary one, the resulting
polynomial is a multiple of x since

x

(
n∑

i=0

ai+1x
i

)

·
(

m∑

i=0

bix
i

)

= x

n+m∑

i=0

(
i∑

j=0

ajbi−j

)

xi.

So xC[x] not only forms a subring of C[x] but even an ideal.

Ideals are an important concept particularly since they allow to generalize the
concept of quotient groups to rings.

Definition 3.5.3 (Quotient ring)
Let (R, ◦, ⋄) be a commutative ring and let I be an ideal of R. The quotient ring
R/I of R modulo I is defined as

R/I = {a ◦ I|a ∈ R}.

We have the analogue of Lemma 3.3.2 in the setting of rings:

Lemma 3.5.4 Let (R, ◦, ⋄) be a commutative ring and let I be an ideal in R. The
quotient ring R/I is a commutative ring with respect to the following operations
inherited from R:

(a ◦ I) ◦ (b ◦ I) = (a ◦ b) ◦ I
(a ◦ I) ⋄ (b ◦ I) = (a ⋄ b) ◦ I.
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Proof. Since an ideal is in particular a subgroup with respect to the first
operation ◦ we get from Lemma 3.3.2 that (R/I, ◦) is a group. If R is abelian
with respect to ◦ then so is R/I.
For the second operation we first need to show that the operation is well-defined.
Let a′ ◦ I = a ◦ I and b′ ◦ I = b ◦ I, i.e. there exist ia, ib ∈ I so that a′ = a ◦ ia
and b′ = b ◦ ib. We have (a′ ◦ I) ⋄ (b′ ◦ I) = ((a ◦ ia) ◦ I) ⋄ ((b ◦ ib) ◦ I) =
(((a ◦ ia) ⋄ (b ◦ ib))) ◦ I = (a ⋄ b) ◦ (a ⋄ ib) ◦ (ia ⋄ b) ◦ (ia ⋄ ib) ◦ I = (a ⋄ b) ◦ I since
a ⋄ ib, ia ⋄ b, ia ⋄ ib ∈ I by the definition of an ideal. So the resulting residue class
is independent of the representatives chosen.
Since R is closed under ⋄ so is R/I and associativity, commutativity, and the
distributive laws are inherited, too. ✷

Remark 3.5.5 Note that this lemma does not hold if the conditions on I are
released and only a subring is required.
Let R′ be a subring, then the operation ⋄ need not necessarily be well-defined on
R/R′ since we have no reason to assume that a ⋄ ib and ia ⋄ b (expressions from
the proof of Lemma 3.5.4) are in R′. This is where the property that ideals are
closed under ⋄ with arbitrary elements is crucial.

Example 3.5.6 Since for any n ∈ IN we have that nZZ is an ideal in ZZ,
Lemma 3.5.4 directly gives that ZZ/nZZ is a ring for any n.

Definition 3.5.7 (Ring homomorphism)
Let (R, ◦, ⋄) and (R′, ◦′, ⋄′) be rings and let ψ be a map ψ : R → R′. If for any
a, b ∈ R the map ψ satisfies

ψ(a ◦ b) = ψ(a) ◦′ ψ(b)
ψ(a ⋄ b) = ψ(a) ⋄′ ψ(b)

then ψ is a ring homomorphism.
A homomorphism ψ is an isomorphism if it is bijective.

Similar to the group case one can study the kernel and image of this map.

Theorem 3.5.8 Let (R, ◦, ⋄) and (R′, ◦′, ⋄′) be rings with unity and let ψ be a
homomorphism. The kernel Ker(ψ) of ψ is an ideal in R and Im(ψ) ∼= R/Ker(ψ).

Proof. Theorem 3.3.12 shows that (Ker(ψ), ◦) is a subgroup of (R, ◦). Let
a ∈ Ker(ψ), i.e. ψ(a) = e◦′ . We have to show that for any r ∈ R we have
r ⋄ a ∈ Ker(ψ):

ψ(r ⋄ a) = ψ(r) ⋄′ ψ(a) = ψ(r) ⋄′ e◦′ = e◦′ ,

where the last result followed by Lemma 3.4.4. So Ker(ψ) is indeed an ideal.
To show the isomorphism the same construction as in Theorem 3.3.12 works. ✷
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Remark 3.5.9 A different way to motivate ideals is to start from the properties
a ring homomorphisms should have and obtain, that the kernel of that map is not
only a subring but has additional multiplicative structure.

Definition 3.5.10 (Generator, principal ideal)
Let (R, ◦, ⋄) be a commutative ring and let I be an ideal.
If there exist elements g1, . . . , gl such that

I = {(g1 ⋄ r1) ◦ · · · ◦ (gl ⋄ rl)|r1, . . . rl ∈ R}

then I is generated by g1, . . . , gl written

I = (g1, . . . , gl).

If there exists a single element g ∈ I such that

I = (g) = {g ⋄ r|r ∈ R}

then I is called a principal ideal. In this case, I is the ideal generated by g and
g is called the generator of I.
The ring R is called a principal ideal domain (PID) if every ideal is a principal
ideal.

Lemma 3.5.11 Let (R, ◦, ⋄) be a commutative ring and let g ∈ R. The set
(g) = {g ⋄ r|r ∈ R} forms an ideal in R.
In more generality, let g1, . . . , gl ∈ R. The set (g1, . . . , gl) is an ideal.

Proof. The proof is left to the reader as Exercise 3.5.14 a. ✷

Example 3.5.12 1. Consider the ring of integers Z. We have seen that the
subrings nZZ for n ∈ IN are ideals in ZZ. This gives

nZZ = {nz|z ∈ ZZ} = (n),

and so nZZ is a principal ideal generated by n.

We now show that every ideal in ZZ is a principal ideal and thus ZZ is a
principal ideal domain. We have to distinguish two cases, I = {0} = (0)
which is generated by 0 and I 6= {0}.
Let g ∈ I be the smallest positive integer in I. We now show that I = (g).
Since I is an ideal all multiples of g are in I and thus I ⊇ (g). Assume that
there is an element b ∈ I\(g). Then we can divide b by g with remainder
0 < r < g and obtain b = qg + r. Since b and qg are in I so is r = b− qg
by the definition of ideals. This contradicts the minimality of g.

So ZZ is a principal ideal domain.
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2. The Gaussian integers ZZ[i] ⊂ C are a principal ideal domain. As for the
integers we can define greatest common divisors and the proof follows along
the same lines.

3. The set

C[x, y] =

{
n∑

i=0

m∑

j=0

aijx
iyj | aij ∈ C , n,m ∈ IN

}

is a ring, the polynomial ring in two variables (cf. Exercise 3.4.21 c). The
ideal (x, y) generated by x and y is not a principal ideal. Assume on the
contrary that there exists some f(x, y) ∈ C[x, y] such that (f) = (x, y), so
in particular there must exist fx and fy such that x = fx · f and y = fy · f .
The first condition limits f to constants f ∈ C or constant multiples of x,
i.e. f ∈ xC , while the second condition eliminates the latter possibility. So
f ∈ C but since (x, y) does not contain any constant except for 0 we must
have f = 0 which contradicts that f can generate a non-trivial ideal.

In the previous section we showed the Chinese remainder theorem for the integers.
Now that we have the vocabulary of quotient rings and homomorphisms we can
state the general version.

Theorem 3.5.13 (Chinese Remainder Theorem)
Let R be a Euclidean domain and let n1, . . . , nk ∈ R be pairwise coprime. Let
n = n1 ⋄ n2 ⋄ · · · ⋄ nk. The quotient ring R/nR and the product ring R/n1R ×
R/n2R× · · · ×R/nkR are isomorphic via the map

ψ : R/nR→ (R/n1R× · · · ×R/nkR); ψ(x ◦ nR) = (x ◦ n1R, . . . , x ◦ nkR).

Proof. The proof is similar to the integer case. We first note that ψ is a
homomorphism since ◦ and ⋄ are compatible with computing modulo principal
ideals.
For the integers we could argue with the cardinalities of the domain and image.
In the general case it is easier to give the inverse map to show that ψ is an
isomorphism. Let li be defined by li ⋄ ni = n. Since li and ni are coprime,
Bézout’s identity (Lemma 3.4.16) says that there exist elements ai, bi ∈ R such
that ai ⋄ li ◦ bi ⋄ ni = e⋄. Put ci = ai ⋄ li. The inverse map is given by

ψ−1 : (R/n1R×· · ·×R/nkR)→ R/nR; (x1◦n1R, . . . , xk◦nkR) 7→
(

k∑

i=1

xi ⋄ ci
)

◦nR,

where the summation sign stands for repeated application of ◦. To see that ψ−1 is
well defined note that ((xi◦(ni⋄ri))⋄ci)◦nR = ((xi⋄ci)◦((ni⋄ri)⋄ci))◦nR = ((xi⋄
ci)◦((ni⋄ri)⋄(ai⋄li)))◦nR = (xi⋄ci)◦nR since (ni⋄ri)⋄(ai⋄li) = (ni⋄li)⋄(ai⋄ri)
is a multiple of n.
We have

ψ(ψ−1(x◦n1R, . . . , x◦nkR)) = ψ

((
k∑

i=1

xi ⋄ ci
)

◦ nR
)

= (x◦n1R, . . . , x◦nkR),
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since for every 1 ≤ j ≤ k we have
(
∑k

i=1 xi ⋄ ci
)

◦ njR =
(
∑k

i=1 xi ⋄ (ai ⋄ li)
)

◦
njR = xj ⋄ (aj ⋄ lj) ◦ njR = xj ⋄ e⋄ ◦ njR = xj ◦ njR. Here we used that li ∈ njR
for i 6= j.
Likewise we have

ψ−1(ψ(x ◦ nR)) = ψ−1(x ◦ n1R, . . . , x ◦ nkR) =

(
k∑

i=1

(x ◦ (ni ⋄ ri)) ⋄ ci
)

◦ nR

=

(
k∑

i=1

((x ⋄ ci) ◦ ((ni ⋄ ri) ⋄ (ai ⋄ li)))
)

◦ nR = x
k∑

i=1

ci ◦ nR.

To show that
∑k

i=1 ci ◦nR = e⋄ ◦nR we show that n
∣
∣
∣

((
∑k

i=1 ci

)

◦ inv◦(e⋄)
)

. By

definition of ci = ai ⋄ li we have for every factor nj of n that nj|ai ⋄ li for i 6= j and

nj|aj ⋄ lj ◦ inv◦(e⋄). So for every 1 ≤ j ≤ k we have nj

∣
∣
∣

((
∑k

i=1 ci

)

◦ inv◦(e⋄)
)

.

Since the nj are co-prime the claim follows from Lemma 3.4.18. ✷

Exercise 3.5.14 a) Prove Lemma 3.5.11.

3.6 Fields

Fields are special rings in which also the second operation ⋄ is commutative and
in which every element 6= e◦ has an inverse with respect to ⋄. Familiar examples
are the rational numbers, the reals and the complex numbers. This section is
kept very short since most of the concepts are only needed for finite fields with
are studied separately in Chapter 5.

Definition 3.6.1 (Field)
A set K is a field with respect to two operations ◦, ⋄ denoted by (K, ◦, ⋄) if

1. (K, ◦) is an abelian group.

2. (K∗, ⋄) is an abelian group, where K∗ = K\{e◦} is all of K except for the
neutral element with respect to ◦.

3. The distributive law holds in K:

a ⋄ (b ◦ c) = a ⋄ b ◦ a ⋄ c for all a, b, c ∈ K.

Let L be a field and K ⊆ L. If K is a field itself it is a subfield of L and L is an
extension field of K.

An alternative definition is to say that a field is a commutative ring with unity
in which every element in K∗ has an inverse with respect to ⋄.
We start with an easy but important observation
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Lemma 3.6.2 Let (K, ◦, ⋄) be a field and let e◦ be the neutral element with re-
spect to ◦.
For any a ∈ K we have:

a ⋄ e◦ = e◦.

Fields are free of zero divisors, i.e. if for a, b ∈ K one has a ⋄ b = e◦ then either
a = e◦ or b = e◦ or both.

Proof. The first part was shown already in Lemma 3.4.4. To prove the second
part assume a 6= e◦. Thus a ∈ K∗ has an inverse inv⋄(a) 6= e◦ since K∗ is closed
under ⋄. So we get:

e◦ = inv⋄(a) ⋄ (a ⋄ b)
= (inv⋄(a) ⋄ a) ⋄ b = b,

i.e. e◦ = b. ✷

Example 3.6.3 1. The rational numbers (Q,+, ·) form a field. We have al-
ready seen that they form a commutative ring with unity so the only thing to
show is that in (Q∗, ·) every element has an inverse. By the very construc-
tion of the rationals the inverse of 0 6= a

b
is given by b

a
since a

b
· b
a
= 1. If

a 6= 0 then the inverse exists and since 0 is the neutral element of addition
it is not in Q∗.

2. Further fields are (C ,+, ·) and (IR,+, ·), where IR is an extension field of
Q and a subfield of C while C is an extension field of both.

3. The integers form a commutative ring with unity but not a field since only
1 and −1 are invertible.

4. Let p ∈ IN be a prime number. The set of residue classes modulo p
(ZZ/pZZ,+, ·) is a field:
We have seen that (ZZ/nZZ,+, ·) is a commutative ring with unity for any
integer n. By Lemma 3.2.6 we have that the invertible elements a+ pZZ are
exactly those classes for which a is coprime to p. Since p is prime these
are all nonzero classes, so (ZZ/pZZ)× = ZZ/pZZ \ {0} and so (ZZ/pZZ,+, ·) is
a field.

This is the first example of a finite field. We will study finite fields in much
more detail in Chapter 5.

For those readers who read the previous section on ideals we would like to add
the following lemma.

Lemma 3.6.4 Let (K, ◦, ⋄) be a field and let I ⊂ K be an ideal. Then I = K or
I = {e◦}.
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Proof. We first note that a field is also a ring, so speaking of an ideal makes
sense. Let us first consider the case that there is an element a 6= e◦ in I. Since
K is a field there exists inv⋄(a) ∈ K and by the multiplicative property of ideals
we must have a ⋄ inv⋄(a) = e⋄ ∈ I. Again by the multiplicative property every
b ∈ K is also in I as e⋄ ⋄ b = b, so I = K.
We have seen earlier that I = {e◦} is an ideal for any ring with unity, so this
also holds for a field. ✷

Exercise 3.6.5 Consider the subset Q(i) ⊂ C defined by

Q(i) = {a+ bi|a, b ∈ Q}.

Show that (Q(i),+, ·) is a field, where addition and multiplication are defined as
in C.

3.7 Polynomials

Polynomials become very important in the construction of finite fields in the fol-
lowing chapter. They are also a nice example of a ring and share many properties
with the ring of integers.

Definition 3.7.1 (Polynomial)
Let K be a field. A polynomial in one variable x over K is a finite sum of powers
of x with coefficients fi in the field K

f(x) =
n∑

i=0

fix
i, fi ∈ K.

We denote the set of polynomials in x over K by K[x] and have

K[x] =

{
n∑

i=0

fix
i|n ∈ IN, fi ∈ K

}

.

Example 3.7.2 f(x) = 3x7 +
√
2x4 − 27x3 + 2x + 100 and g(x) = 1024x10 +

256x8 + 32x5 + 16x4 + 4x2 + 1 are polynomials over the reals f(x), g(x) ∈ IR[x].
Instead of calling the variable x one can also define K[y] or K[t], e.g. h(t) =
23t12 − 4t+ 3 ∈ Q[t].

Note that
∑n

i=0 fix
i and 0 · xn+1 +

∑n
i=0 fix

i define the same polynomial just as
one can also write 0127 instead of 127. It would be more correct to introduce
polynomials as equivalence classes which can be filled up with leading zeros. We
usually omit leading zeros.
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Definition 3.7.3 (Degree and leading term)
Let f ∈ K[x] be a nonzero polynomial over a field K. Let n be the largest integer
with fn 6= 0, then n is called the degree of f , denoted by deg(f) = n, and fn is
called the leading coefficient of f , denoted by LC(f) = fn. The leading term of
f is LT (f) = fnx

n.
A polynomial f is called monic if LC(f) = 1.

All the definitions carry through for the case that the coefficients are from a ring
R rather than from a field K. However, if K is a field one can normalize each
polynomial to make it monic by dividing by LC(f). Over a ring the leading term
need not be invertible.

Example 3.7.4 Consider f, g ∈ IR[x] as defined in Example 3.7.2. We have

f(x) = 3x7 +
√
2x4 − 27x3 + 2x+ 100, deg(f) = 7, LC(f) = 3

and

g(x) = 1024x10 + 256x8 + 32x5 + 16x4 + 4x2 + 1, deg(g) = 10, LC(g) = 1024.

Lemma 3.7.5 Let (K,+, ·) be a field. The polynomials K[x] form a ring with
the operations

f(x) + g(x) =
n∑

i=0

fix
i +

m∑

i=0

gix
i =

max{n,m}
∑

i=0

(fi + gi)x
i,

f(x) · g(x) =
n∑

i=0

fix
i ·

m∑

i=0

gix
i =

n+m∑

i=0

(
i∑

j=0

fjgi−j

)

xi,

where f, g ∈ K[x] and fi = 0 for i > n and gi = 0 for i > m.
Furthermore, multiplication in K[x] is commutative and K[x] is a ring with unity,
namely 1 ∈ K ⊂ K[x] is the neutral element with respect to multiplication. There
are no zero divisors in K[x].

Proof. Obviously the results are sums of powers of x of finite lengths (max{n,m}
and n+m). Since K is a field, the new coefficients (fi + gi) and

∑i
j=0 fjgi−j are

in K as well. So K[x] is closed under addition and multiplication.
Associativity and commutativity of + and · follow from the same properties of
K. The neutral element of addition is 0 ∈ K ⊂ K[x] and of multiplication
1 ∈ K ⊂ K[x] as can be seen directly.
The additive inverse of f(x) =

∑n
i=0 fix

i is −f(x) =
∑n

i=0(−fi)xi which is in
K[x] since −fi ∈ K for 0 ≤ i ≤ n.
The distributive laws can be checked by direct inspection. We leave that part of
the proof as an exercise to the reader.
Let f(x) · g(x) = 0, i.e.

∑i
j=0 fjgi−j = 0 for all 0 ≤ i ≤ m+ n. Since K is a field

we obtain for i = 0 that either g0 = 0 or f0 = 0 or both. Assume first f0 = 0 and
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g0 6= 0. For i = 1 we obtain that f0g1 + f1g0 = f1g0 = 0 and so f1 = 0. For i = 2
we obtain that f0g2 + f1g1 + f2g0 = f2g0 = 0 and so f2 = 0. Repeating the same
argument leads to f(x) = 0. If both f0 = g0 = 0 then i = 1 does not lead to any
condition on f1 or g1. For i = 2 we obtain that f0g2+ f1g1+ f2g0 = f1g1 = 0 and
so either f1 = 0 or g1 = 0 or both. Eventually we obtain f(x) = 0 or g(x) = 0 or
both, so there are no zero divisors in K[x]. ✷

Example 3.7.6 With f, g ∈ IR[x] as in Example 3.7.2 we have

f(x)+g(x) = 1024x10+256x8+3x7+32x5+(16+
√
2)x4−27x3+4x2+2x+101.

and

f(x) · g(x) = 3072x17 + 768x15 + 1024
√
2x14 − 27648x13 + (96 + 256

√
2)x12 − 4816x11 +

102400x10 + (524 + 32
√
2)x9 + (24736 + 16

√
2)x8 − 429x7 + (64 + 4

√
2)x6 +

3124x5 + (1600 +
√
2)x4 − 19x3 + 400x2 − 2x+ 100.

Definition 3.7.7 (Roots)
One can consider a polynomial f(x) =

∑n
i=0 fix

i ∈ K[x] as a function

f : K → K,α 7→ f(α) =
n∑

i=0

fiα
i.

Computing f(α) is called evaluating f(x) in x = α.
A root of f is an element α ∈ K such that f(α) = 0. So the roots form the kernel
of the map f defined above.

Lemma 3.7.8 Let f ∈ K[x]. If α ∈ K is a root of f then

(x− α)|f(x).
The proof is left to the reader as Exercise 3.7.17. An immediate consequence of
this lemma is the following corollary.

Corollary 3.7.9 Let f ∈ K[x] be a polynomial of degree n. It has at most n
roots.

Sometimes it is helpful to change the variables in a reversible way, e.g. in the
polynomial g(x) in Example 3.7.2 one can substitute y = 2x and obtain g̃(y) =
y10 + y8 + y5 + y4 + y2 + 1. A transformation of the form y = ax + b does not
change the degree and there is a simple linear relation between the roots of the
original and the resulting polynomial. In this example the relation between g and
g̃ is particularly simple.

There are many similarities between the ring of integers and the ring of polyno-
mials over a field, in particular we find “primes” and show that each polynomial
can be factored uniquely into a product of them. These so-called “irreducible
polynomials” play an important role in constructing finite fields as we will see in
Chapter 5.
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Definition 3.7.10 (Irreducible polynomial)
Let K be a field. A polynomial f(x) ∈ K [x] of degree at least 1 is irreducible if it
cannot be written as a product of polynomials of lower degree over the same field,
i.e. if u(x)|f(x) implies u is constant or u(x) = f(x).
Otherwise f(x) is reducible.

Example 3.7.11 Consider polynomials over the rational numbers Q.

a) f(x) = x2+2x−8 has roots 2 and −4 and thus splits as f(x) = (x−2)(x+4).
The factors x− 2 and x+ 4 are both irreducible.

b) g(x) = x2 + 2x + 8 does not split over Q but only over C . Therefore, g is
irreducible as polynomial in Q[x].

c) h(x) = x4 + 4x3 + 20x2 + 32x + 64 does not have a root over Q but factors
into x4 + 4x3 + 20x2 + 32x+ 64 = (x2 + 2x+ 8)2 = g(x)2.

Note that for a polynomial of degree less than 4 it is enough to check for roots
to determine whether it is irreducible or not. For polynomials of larger degree
there can be non-linear factors as in the last example.
A prominent example of Euclidean domains is the ring of integers which, as we
mentioned in the introduction, shares many properties with the ring of polynomi-
als over a field. We now show that the polynomial ring is also a Euclidean domain.
That means that one can define division with remainder and has an algorithm to
compute greatest common divisors, namely the Euclidean algorithm.

Lemma 3.7.12 Let K be a field. The ring of polynomials over K is a Euclidean
domain with respect to the degree function v(f) = deg(f), i.e. K[x] is a ring with
unity and without zero divisors, · is commutative and one can define division with
remainder so that the remainder has smaller degree than the divisor or equals 0.

Proof. We have already seen in Lemma 3.7.5 that K[x] is a domain with unity
1 and that · is commutative. Consider the division with remainder of f by g,
where both f, g ∈ K[x]. Let r ∈ K[x] be the remainder. Let the leading term
of f be LT (f) = axn and of g be LT (g) = bxm. If n < m then r = f is the
remainder and obviously deg(r) < deg(g). Otherwise there exists a polynomial
q ∈ K[x] with LT (q) = (a/b)xn−m (note that a/b is defined since a, b ∈ K \ {0})
such that f splits as f = q ·g+r. The coefficient of xn in r equals a− (a/b) ·b = 0
and so the degree of r is strictly smaller than n. Clearly it is possible that more
coefficients in r vanish and the degree drops dramatically, for example if g|f
then r = 0. ✷

This lemma implies in particular that greatest common divisors are defined and
computable via the Euclidean algorithm.
As in the integers ZZ we have that in K[x] irreducible is the same as prime.

Lemma 3.7.13 Let p, f, g ∈ K[x] and let p be irreducible. Then one has

p|f · g ⇒ p|f or p|g.
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Proof. Let d = gcd(p, f), then d|p. Since p is irreducible, we must have d = 1
or d = p, where we use the convention that the gcd is monic.
If d = p then p|f by the definition of gcd. So p|f and we are done.
In case d = 1 we use Lemma 3.4.16 and know that there exist u, v ∈ K[x] with
d = 1 = u · p+ v · f . Multiplying both sides by g gives the expression

g = u · p · g + v · f · g.

Both summands on the right are divisible by p. For the second one note that by
assumption p|f · g. Thus also the left hand side must be divisible by p and thus
p|g. ✷

We are used to factoring integers n ∈ ZZ into powers of primes in a unique manner.
The following lemma shows that the ring of polynomials over a field has the same
property of unique factorization that every non-zero element can be written as a
product of irreducible elements.

Lemma 3.7.14 For all f ∈ K[x] there exist monic irreducible polynomials
p1, . . . , pr ∈ K[x] all distinct and exponents e1, . . . , er ∈ IN so that f can be
written as

f = k
r∏

i=1

peii ,

where k ∈ K.

Proof. We first show that such a representation exists and then consider unique-
ness.
There are two cases, either f itself is irreducible, in which case we put p1 =
f/LC(f) and k = LC(f), or it splits as f = a · b with deg(a), deg(b) < deg(f)
and we continue separately with f = a and f = b. In the latter case both parts
have strictly smaller degree than f which means that this process terminates with
some factorization into irreducible polynomials

f = k
∏

peii .

We now assume that the representation is not unique, i.e. there exist monic
irreducible polynomials q1, . . . , qs ∈ K[x], exponents a1, . . . , as ∈ IN, and a field
element l ∈ K so that f can be written as

f = k
r∏

i=1

peii = l
s∏

j=1

q
aj
j .

The irreducible polynomial p1 must divide one of the polynomials on the right
hand side by Lemma 3.7.13. So there is some qj with p1|qj. Since qj is also
irreducible they must be equal up to constants from K and since both are monic
we even have p1 = qj. The left side is divisible by pe11 and so must be the right
hand side. Since the qj are all distinct we must have e1 ≤ aj. By reversing the
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arguments we obtain the opposite inclusion and thus e1 = aj. We divide both
sides by pe11 and repeat the same considerations for p2.
Since the exponents coincide we must have r = s which concludes the proof. ✷

Remark 3.7.15 It is worth mentioning that the property of having unique fac-
torization is weaker than being Euclidean. In fact every Euclidean ring has unique
factorization. Since we did not show the general statement we had to prove the
result in the special case of polynomial rings.

Example 3.7.16 Let K = ZZ/2ZZ be the field of integers modulo 2. We consider
the residue classes of K[x] modulo f(x) = xn + 1 for some integer n, R =
K[x]/(xn + 1)K[x]. In this important example we show that R is a commutative
ring with unity.
We represent each residue class in R by the polynomial of smallest degree in it

R =
{
a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 | ai ∈ K

}
.

1. (K[x]/fK[x],+) is a group: obviously it is closed under addition, associa-
tivity is inherited from K[x], the neutral element is 0+ fK[x], and additive
inverses exist inv

((∑n−1
i=0 aix

i
)
+ fK[x]

)
=
(∑n−1

i=0 (−ai) xi
)
+ fK[x].

2. (K[x]/fK[x], ·) is a commutative monoid with 1: the product of two classes
is another class, associativity is inherited from K[x], and the neutral ele-
ment with respect to multiplication is 1 + fK[x].

3. The distributive laws are inherited from K[x].

The same proof works for any field K and any polynomial f .

Exercise 3.7.17 Prove Lemma 3.7.8. Hint: divide f(x) by x− α and study the
remainder.

3.8 Vector spaces

The last algebraic concept we introduce in this chapter is one that most readers
will be familiar with from introductory courses on linear algebra and solving of
linear equations. Vector spaces also appear in daily life since we are living in a
three dimensional space and thus positions can be specified by giving the height
and extensions in width and length.

Definition 3.8.1 (Vector space)
A set V is a vector space over a field (K, ◦, ⋄) with respect to one operation ⊕ if

1. (V,⊕) is an abelian group.

53



3.8 Vector spaces

2. There exists an operation ⊙ : K × V → V such that for all a, b ∈ K and
for all v, w ∈ V we have

(a ◦ b)⊙ v = a⊙ v ⊕ b⊙ v
a⊙ (v ⊕ w) = a⊙ v ⊕ a⊙ w

e⋄ ⊙ v = v,

where e⋄ is the neutral element with respect to ⋄.

Example 3.8.2 Consider the field (IR,+, ·) and define an operation on the 3-
tuples (x, y, z) ∈ IR3 by componentwise addition

(x1, y1, z1)⊕ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)

and for a ∈ IR let

a⊙ (x1, y1, z1) = (ax1, ay1, az1).

Since IR is closed under addition and multiplication and since the distributive
laws hold we have that IR3 forms a vector space over IR with these operations.
The same holds for IRn for any integer n.
To ease notation we replace ⊕ by + and omit ⊙ in IRn.

Example 3.8.3 The complex numbers C form a vector space over the reals
(IR,+, ·) where the operations are defined as follows:
⊕ is the standard addition of complex numbers, i.e.

(a+ bi)⊕ (c+ di) = (a+ c) + (b+ d)i,

and ⊙ is the standard multiplication, i.e.

a⊙ (b+ ci) = (a · b) + (a · c)i,

in which the first argument is restricted to IR.
This fulfills the definition since we have already seen that (IR,+, ·) and (C ,+, ·)
are both fields. The last three conditions are automatically satisfied since C is a
field.

The previous section dealt extensively with polynomials. They are also a good
example of vector spaces.

Example 3.8.4 Let K be a field and consider the polynomial ring K [x] over K.
We define ⊕ to be the coefficientwise addition, i.e. the usual addition in K[x] and
⊙ as the multiplication of each coefficient by a scalar from K, i.e. polynomial
multiplication restricted to the case that one input polynomial is constant.
Since K[x] forms a ring and K is a field, K[x] also forms a vector space over K.
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Example 3.8.5 Let K be a field, n ∈ IN and consider the subset Pn of K[x]
defined by

Pn = {f(x) ∈ K[x]| deg(f) ≤ n} .
Since addition of polynomials and multiplication by constants do not increase the
degree, Pn is closed under addition and multiplication by scalars from K and is
thus a vector space over K.

The example of C being a vector space over IR can be generalized to arbitrary
extension fields.

Example 3.8.6 Let (K, ◦, ⋄) be a field and let L ⊇ K be an extension field of
K. Then L is a vector space over K, where ⊕ = ◦ and ⊙ = ⋄.

Definition 3.8.7 (Linear combination, basis, dimension)
Let V be a vector space over the field K and let v1, v2, . . . , vn ∈ V .
A linear combination of the vectors v1, v2, . . . , vn is given by

n∑

i=1

λi ⊙ vi,

for some λ1, λ2, . . . , λn ∈ K, where the summation sign stands for repeated appli-
cation of ⊕.
The elements v1, . . . , vn are linearly independent if

∑n
i=1 λi⊙vi = e⊕ implies that

for all 1 ≤ i ≤ n we have λi = e◦.
A set {v1, v2, . . . , vn} is a basis of V if v1, . . . , vn are linearly independent and
each element can be represented as a linear combination of them, i.e.

V =

{
n∑

i=1

λi ⊙ vi | λi ∈ K
}

.

The cardinality of the basis is the dimension of V , denoted by dimK(V ).

An alternative definition of basis are that {v1, v2, . . . , vn} is a minimal set of
generators, meaning that there are no fewer elements of V such that each element
can be represented as a linear combination of them.
Yet another definition states that a basis is a maximal set of linearly independent
vectors.

Example 3.8.8 Consider the vector space IR3. The vectors (1, 0, 0) and (0, 1, 0)
are linearly independent since

λ1(1, 0, 0) + λ2(0, 1, 0) = (λ1, λ2, 0)
!
= (0, 0, 0)

forces λ1 = λ2 = 0. They do not form a basis since, e.g., the vector (0, 0, 3)
cannot be represented as a linear combination of them.
Since 2(1, 0, 0) = (2, 0, 0) the vectors (1, 0, 0) and (2, 0, 0) are linearly dependent.
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The vectors (1, 0, 0), (0, 1, 0), and (1, 3, 0) are linearly dependent since a non-
trivial linear combination is given by

(1, 0, 0) + 3(0, 1, 0)− (1, 3, 0) = (0, 0, 0).

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent and every other
vector (x, y, z) ∈ IR3 can be represented as a linear combination of them as

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So we have that a basis of IR3 is given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and that the
dimension is dimIR(IR

3) = 3.
In general dimIR(IR

n) = n.

Example 3.8.9 We have already seen that the complex numbers form a vector
space over the reals. A basis is given by {1, i} and so the dimension is dimIR(C) =
2.

Example 3.8.10 Let K be a field and let Pn ⊂ K [x] be the set of polynomials of
degree at most n. A basis is given by {1, x, x2, x3, . . . , xn} and so the dimension
is dimK(Pn) = n+ 1.
Alternative bases are easy to give. Since K is a field, xi can be replaced by aix

i

for any nonzero ai ∈ K, also linear combinations are possible. So another basis is
given by {5, 3x− 1,−x2, 2x3 + x, . . . , xn + xn−1 + xn−2 + · · ·+ x+ 1}, since the
degrees are all different and so none can be a linear combination of the others,
while using linear algebra we can get every element as a linear combination.

Definition 3.8.11 (Subspace)
Let V be a vector space over the field K. A subset W ⊆ V is a subspace if W is
a vector space with respect to the same operations.

Vector spaces will be an important tool in constructing finite fields. Our interest
in their general properties is, however, rather limited. We state some results on
fields that need the definition of vector spaces.

Definition 3.8.12 (Extension degree)
Let L be a field and let K be a subfield of L. The extension degree of L over K
is defined as [L : K] = dimK(L).
If dimK(L) is finite, L is a finite extension of K. Otherwise L is a infinite
extension of K.

Lemma 3.8.13 Let L be a finite extension field of K and let F be a finite ex-
tension field of L, so K ⊆ L ⊆ F . Then

[F : K] = [F : L] · [L : K].

Let [F : L] = n and [L : K] = m. Let f1, f2, . . . , fn be a basis of F over L and
l1, l2, . . . , lm be a basis of L over K. A basis of F over K is given by

{l1 ⋄ f1, l2 ⋄ f1, . . . , lm ⋄ f1, l1 ⋄ f2, l2 ⋄ f2, . . . , lm ⋄ f2, . . . , l1 ⋄ fn, l2 ⋄ fn, . . . , lm ⋄ fn}.
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Proof. Once we have proved the second claim the first one follows automatically
since the basis has dimK(F ) = nm = dimL(F ) dimK(L) elements.
We first show that every element of F can be represented by a K-linear combina-
tion of l1⋄f1, l2⋄f1, . . . , lm⋄f1, l1⋄f2, l2⋄f2, . . . , lm⋄f2, . . . , l1⋄fn, l2⋄fn, . . . , lm⋄fn.
Since f1, f2, . . . , fn is a basis of F over L, for every element f ∈ F there exist
c1, c2, . . . , cn ∈ L so that f =

∑n
i=1 ci ⋄ fi. Likewise every ci ∈ L can be written

as a K-linear combination of l1, l2, . . . , lm as ci =
∑m

j=1 dij ⋄ lj with coefficients
dij ∈ K. So

f =
n∑

i=1

ci ⋄ fi =
n∑

i=1

(
m∑

j=1

dij ⋄ lj
)

⋄ fi =
n∑

i=1

m∑

j=1

dij ⋄ (lj ⋄ fi).

Assume now that l1 ⋄f1, l2 ⋄f1, . . . , lm ⋄f1, l1 ⋄f2, l2 ⋄f2, . . . , lm ⋄f2, . . . , l1 ⋄fn, l2 ⋄
fn, . . . , lm⋄fn are linear dependent, i.e. there exist a nontrivial linear combination

n∑

i=1

m∑

j=1

dij ⋄ (lj ⋄ fi) = e◦

and not all dij = e◦. Put ci =
∑m

j=1 dij ⋄ lj then
∑n

i=1 ci ⋄ fi = e◦. Since the
fi form a basis and are thus linearly independent we must have ci = e◦ for all
1 ≤ i ≤ n. However, since l1, l2, . . . , lm form a basis the equality

∑m
j=1 dij ⋄ lj = e◦

implies that all dij = e◦ which contradicts the assumption. ✷
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Chapter 4

Algorithms and their Complexity

Algorithms are like recipes for how to compose big computations out of smaller
ones. In the extreme case the steps can be individual machine instructions for a
specified computer but usually more complex arithmetic operations like addition
or multiplication are used as smallest units. It is up to the programmer to
instantiate these lowest level operations in an implementation. An algorithm
has specified inputs and outputs, it might use randomness for its operations.
Algorithms state in a step-by-step manner how to obtain the desired output from
the input.
This chapter serves two purposes – it introduces algorithms that are important
to implement efficient cryptographic algorithms and it provides the concepts and
tools necessary to analyze the running time of algorithms.
We use sorting algorithms to explain the basics of time and space complexity –
and because they are used in many applications.
We introduce different integer recodings which are useful to compute exponen-
tiations and scalar multiplications, the main operations in discrete logarithm
based cryptosystems. The Euclidean algorithm was introduced in the previous
chapter. Here we consider efficient implementations, particularly of the extended
Euclidean algorithm which is used to compute modular inverses. In Chapter 5
we work in finite fields. The extended Euclidean algorithm is the main way of
computing inverses in such fields. Finally, we consider an explicit version of the
nhinese Remainder theorem 3.4.20 over the integers.
Several books deal with algorithms and efficient implementations. The bible in
this area is certainly Knuth’s “Art of Computer Programming”. For the contents
of this course Volume 2 “Seminumerical algorithms” is particularly interesting.
Our first examples are sorting algorithms which are treated in Volume 3 “Sorting
and Searching”. The below-mentioned handbook contains a very nice chapter by
A. K. Lenstra and H. W. Lenstra titled “Algorithms in number theory” which
covers the more advanced algorithms discussed here. Most of the material pre-
sented here is also already well covered in online resources.

� A. Aho, J. Hopcraft and J. Ullman, “The Design and Analysis of Computer
Algorithm”, Addison-Wesley.
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� D. E. Knuth, “The art of computer programming”, Addison-Wesley.

� J. van Leeuwen, “Handbook of theoretical computer science, Volume A,
algorithms and complexity”, Elsevier.

4.1 Sorting and complexity

The objective of sorting algorithms is to take an unsorted list of objects and
transform it into a sorted list according to some ordering. The reader may think
of a list of words to be sorted like in a dictionary or of a list of merchants to
be sorted according to the price they offer. For simplicity we stick to sorting
numbers by size with the smallest number put first.
Let L be an unsorted list of m integers, i.e. L[i] = ni for 0 ≤ i < m and ni ∈ ZZ.
The idea of this sorting algorithm is to iteratively produce a sorted sublist so
that the list L[0], . . . , L[i−1] is sorted before L[i] is processed. The next element
L[i] is then inserted, hence the name insertion sort, at the correct position into
the sorted list and the entries are relabeled accordingly.

Algorithm 4.1.1 (Insertion sort)
IN: unsorted list L of length m.
OUT: sorted list L′ with L = L′ as sets.

1. for i = 1 to m− 1

(a) d← L[i]

(b) j ← i

(c) while j > 0 and L[j − 1] > d

i. L[j]← L[j − 1]

ii. j ← j − 1

(d) L[j]← d

2. return L

The variable d is used as dummy variable to carry L[i], because this position is
taken by the largest element in the so far sorted list. All elements larger than d
are shifted so that d can be inserted at the right place, here L[j] at the end of
the while loop.
For any list of length m this algorithm will do m−1 rounds in the outer loop and
the inner loop takes at most m − 1 comparisons and shifts. The worst case for
this sorting algorithm is if the starting list is sorted with the element in opposite
order because then the inner loop uses i−1 comparisons and shifts. So the worst
case needs

m∑

i=2

(i− 1) =
m−1∑

i=1

i = m(m− 1)/2
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comparisons and shifts. A random unsorted list will require less operations but
still in the order of magnitude of m2 many. If the list is already sorted then each
inner loop consists of only one comparison, so then only m− 1 steps are needed.
When comparing different algorithms one wants to choose the most efficient one
which usually means the one with the best performance. While performance is
related to an actual execution of the algorithm on given data and on a given
machine, the complexity of an algorithm is the theoretical measure of how the
algorithm scales with larger inputs.
Counting the number of comparisons in terms of the length of the list m gives a
measure of the time complexity of a sorting algorithm. Often not only the time
is important but also the space complexity is considered.
For insertion sort we stated how many comparisons are needed in the worst case.
We can also look at the best case, namely the case where the input is already
sorted. In this case m− 1 comparisons and no swaps are performed.

Definition 4.1.2 (Complexities)
Consider an algorithm with input size growing in some parameter n.

� The worst-case complexityof the algorithm is the function defined by the
maximum number of steps taken on any instance of size n.

� The best-case complexity of the algorithm is the function defined by the
minimum number of steps taken on any instance of size n.

� The average-case complexity of the algorithm is the function defined by the
average number of steps taken on any instance of size n.

Not only the time is important but also the space requirements. Some algorithms
might not be implementable on small devices such as smart cards. When stating
the space complexity in terms of the input size we use the same terminology, i.e.
worst-case, average-case, and best-case as for the time complexity.
In the insertion sort we took into account the storage requirements by sorting the
results into the same list. It would have been easier to state the algorithm with
a separate output list into which the elements are inserted in the correct relative
location. This would avoid some shifts in the original list on the cost of twice as
much storage space.
While for an actual execution of the algorithm a factor of 2 in the execution time
or space requirement matters, it does not influence the growth in the parame-
ter. To capture the asymptotic behavior appropriately we introduce the big-O
notation.

Definition 4.1.3 (big-O)
A function g(n) is O(f(n)) if for some positive constant c and for values of n
greater than some value n0 we have

g(n) ≤ cf(n).
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Note that the big-O expressions do not involve constants or low-order terms and
consider growth in the parameter n. The statements are of asymptotic nature
and clearly, if n gets large enough, constants and low-order terms do not matter.
In the context of algorithms the function g(n) is thought of as the exact com-
plexity of an algorithm as a function of the problem size n. The function f(n)
inside the big-O gives an upper bound on that complexity.

Example 4.1.4 The easiest case is when g(n) is a polynomial in n, e.g. g(n) =
10n2 +30n+5000. The highest order term, here 10n2, dominates the asymptotic
behavior and so determines the function f in the big-O. In this example g(n) is
O(n2), which can be checked easily for c = 5040 and n0 = 1.
We could have stated just as well that g is O(n3) or O(n2000) but these functions
n3 and n2000 grow much faster than g. In practice we try to find tight bounds, i.e.
the smallest possible upper bound.

We say that an algorithm has linear complexity if its running time is O(n). Anal-
ogously we speak of quadratic complexity for O(n2) and in general of polynomial
complexity if there exists a polynomial f(n) so that the complexity is O(f(n)).
If the complexity is O(exp(f(n)) for some polynomial f , where exp is the expo-
nential function, then the algorithm has exponential complexity.

Example 4.1.5 Insertion sort as presented in Algorithm 4.1.1 has worst-case
complexity in O(m2) and best-case complexity in O(m). In the big-O estimates the
constants do not matter and so we analyze the version with two lists to determine
the average-case complexity. When the i-th element is inserted in the sorted list,
on average (i−1)/2 elements have to shift to create space. So instead of summing
up over i − 1 as in the worst-case complexity we sum up over this value of half
the size. However, constants are neglected and so we obtain that insertion sort
takes O(m2) on average.
The space complexity is m + 1 elements – m to hold the list and one for the
intermediate variable d. This is O(m). If we only consider the extra storage
needed then insertion sort needs O(1) storage.
Note that the counters i and j also require space, but this is typically neglected
and we only count space for the elements we sort. An example would be that the
L[i] are movies of several GB and there are only 1024 of them, so the counters
have 10 bits.

The big-O estimates are important to get a feeling for the performance of an
algorithm. Apart from constants, they give an upper bound on the performance.
In most of this book and in cryptography constants do matter and a factor 2
speed-up is worth a lot. It might be that for a concrete parameter size n an
asymptotically faster algorithm performs worse because the constants hidden
in the big-O might be much larger. So special care is needed to select the
appropriate algorithm for given sizes.
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We now present some more sorting algorithms and analyze their complexities.
The following bubble sort algorithm predates insertion sort. In practice it is less
efficient but we state it for historic reasons.
The name bubble sort comes from the idea that the comparison bubbles through
the list. At each moment two adjacent elements are compared and the order of
the pair is swapped if L[i− 1] > L[i].

Algorithm 4.1.6 (Bubble sort)
IN: unsorted list L of length m.
OUT: sorted list L′ with L = L′ as sets.

1. for i = m− 1 downto 0

(a) for j = 1 to i

i. if L[j − 1] > L[j]

A. d← L[j − 1]

B. L[j − 1]← L[j]

C. L[j]← d

2. return L

A big element “bubbles” towards the (m − 1)-th position in the list by moving
forward one position in each comparison. While “insertion sort” creates a sorted
sublist into which the handled element is inserted at the correct position, the
bubble sort algorithm creates a sublist starting with L[m− 1] which is no longer
touched; each iteration handles a position, not an element as in insertion sort.
If the input list is sorted starting with the largest element, then bubble sort per-
forms just as good (or bad) as insertion search. Again this case is the worst case
and determines the worst-case complexity to O(n2). The average-case complex-
ity is also O(n2) while the best-case complexity is O(n) for just reading through
an already sorted list. Bubble sort needs only one extra element storage space,
namely the intermediate variable d, so the space requirement is just the same as
in insertion sort.
From the big-O expressions insertion sort and bubble sort are equally fast,
however in practice, insertion sort is twice as fast.

We now present our first recursive algorithm. Such an algorithm calls itself as a
subroutine, usually on a problem of smaller size so that eventually the innermost
call finishes, passes its result to the calling routine which processes the output
and finishes etc.
The merge sort function recursively chops the list into two sublists of half size
which are in turn fed to merge sort. Finally, a sublist consists of only 1 element
and is thus sorted.

Example 4.1.7 This example shows the division into sublists of (approximately)
half size and the ordering of the resulting lists with only 1 or 2 elements starting
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from a list with 7 entries.

29|10|19|71|31|01|75

29|10|19|71 31|01|75

29|10 19|71 31|01 75

29 10 19 71 31 01 75

The algorithm uses a second routine to merge two sorted sublists to form one
sorted sublist. Merging two sorted lists is easy since only the initial elements
need to be compared. The smaller one is selected and inserted in the new list
and so on.

Example 4.1.8 We continue with the previous example sorting a list with 7
entries.

29 10 19 71 31 01 75

10|29 19|71 01|31 75

10|19|29|71 01|31|75

01|10|19|29|31|71|75

To understand why merge sort is faster than the two previously discussed sorting
algorithms, note that the resulting tree has logm levels, where m is the length
of the list and log denotes the base 2 logarithm. The outer loop runs through
the number of levels, so has length logm. For each level, merges between sorted
sublists are needed and in the worst case, each of the m elements takes part in a
comparison. This leads to a running time of m logm comparisons. We note that
with the implementation as sketched here, also the best-case needs O(m logm)
comparisons, even though the constants are smaller.
We now state the algorithm in two functions – mergesort which calls itself re-
cursively on the lists of half size and merge which merges two sorted lists to
one.

Algorithm 4.1.9 (mergesort)
IN: unsorted list L of length m.
OUT: sorted list L′ with L = L′ as sets.
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1. if m ≤ 1
return L

2. else

(a) m′ = m/2

(b) for i = 0 to m′ − 1
Ll[i]← L[i]

(c) for i = 0 to m−m′ − 1
Lr[i]← L[i+m′]

(d) Ll ← mergesort(Ll)

(e) Lr ← mergesort(Lr)

(f) L′ ← merge(Ll, Lr)

(g) return L′

Algorithm 4.1.10 (merge)
IN: sorted lists Ll and Lr of lengths ml and mr.
OUT: sorted list L with L = Ll ∪ Lr as sets.

1. i← 0, il ← 0, ir ← 0

2. while il < ml − 1 and ir < mr − 1

(a) if Ll[il] ≤ Lr[ir]

i. L[i]← Ll[il]

ii. i← i+ 1, il ← il + 1

(b) else

i. L[i]← Lr[ir]

ii. i← i+ 1, ir ← ir + 1

3. if il < ml − 1

(a) for j = 0 to < ml − il − 1
L[i+ j]← Ll[il + j]

4. if ir < mr − 1

(a) for j = 0 to < mr − ir − 1
L[i+ j]← Lr[ir + j]

5. return L

We first analyze the space requirement of this naive way of writing the algorithm
and then show how to improve the space complexity.
We have written the algorithm like in the example, so using fresh arrays for each
layer. While mergesort is splitting the input list it allocates space for two new
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lists of lengths m′ and m−m′, so at total of m elements. There are logm layers,
so in the current implementation space for m logm elements would be needed.
The way merge is stated it also allocates new space for the resulting list. At each
layer a total of m elements is stored, adding another m(logm − 1) elements, so
that the algorithm uses a total of 2m logm elements.
It is not hard to get rid of the factor logm in the space complexity by using one
additional list of length m and alternating between the two lists for writing and
reading. This version uses 2m elements.
Much more tricky to implement, but possible, is in-place-merge-sort in which
only one extra element is used like the d in insertion or bubble sort. One has
to be very careful not to spoil the O(m logm) running time by using too many
shifts in the implementation.
There are many other nice sorting algorithms, particularly the heap sort and radix
sort algorithms. Heap sort also runs in O(m logm) and needs only one extra
element for storage. Radix sort takes into account the length of the numbers
to be sorted and is faster than all methods presented here. Giving a complete
study of sorting algorithms is way beyond the scope of this script. Knuth is using
almost an entire volume on sorting. Readers are encouraged to check the related
literature given in the introduction of this chapter.

Exercise 4.1.11 a) Give big-O estimates for g(n) = 100n3 − 30000n2 +
1200123n+ 1, h(n) = sin(n), and l(n) = (50n6 + 30n3 + 20n+ 1)/(40000n4 −
40n3 + 2n− 10).

b) Write out explicitly all steps of insertion sort and of bubble sort to sort the

list 29|10|19|71|31|01|75 .

4.2 Integer recodings

The main purpose of integer recodings is to improve the speed of exponentiation
and scalar multiplication algorithms. The naive way of computing [n]P for some
integer n and some group element P ∈ (G,⊕) is to iteratively add ⊕P to the in-
termediate result, which needs n−1 group operations. This approach corresponds
to viewing n as n = 1 + 1 + · · · + 1. The running time of scalar multiplication
algorithms can be enormously reduced by using another representation of n, e.g.
binary or NAF, which we introduce in this section. To ease notation we refer to
the group operation ⊕ as addition. If the two inputs to the addition are the same
we speak of doubling.
Assuming the integer n is given in binary form as

n =
l−1∑

i=0

ni2
i = (nl−1nl−2 . . . n1n0)2,

we can perform the scalar multiplication [n]P using the (left-to-right) double-
and-add algorithm with l − 2 doublings and at most l − 1 additions, where l =
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⌊log2 n⌋+ 1. The number of necessary additions depends on the number of non-
zero bits ni. The algorithm works as follows:

Algorithm 4.2.1 (Left-to-right binary)
IN: P ∈ (G,⊕), positive integer n = (nl−1 . . . n0), nl−1 = 1.
OUT: [n]P .

1. Q← P

2. for i = l − 2 downto 0

(a) Q← [2]Q

(b) if ni = 1
Q← Q⊕ P

3. return Q

Note, there is also a right-to-left version of the above algorithm where the bits
are scanned in opposite order.

Example 4.2.2 We want to compute [45]P . The binary representation of 45 is
(101101)2. So we perform the left-to-right binary as follows:

[2]([2]([2]([2]([2]P )⊕ P )⊕ P ))⊕ P = [45]P.

This computations needs 5 doublings and 3 additions. The naive method would
need 44 additions instead.

Averaging over all integers of length l, the probability of a digit ni being one or
zero is one half. So on average there are l/2 non-zero digits. The Hamming weight
of a vector is the number of non-zero entries. If all representations have the same
length we care about the density which is defined as the Hamming weight divided
by the length. The average Hamming weight of the binary representations of
length l is l/2. Thus, on average one needs l−2 doublings and (l−1)/2 additions
to compute the scalar multiple.
We now consider alternative representations which need the same number of
doublings but fewer additions, i.e. we find representations with a lower average
Hamming weight. This requires extending the digit set. In particular we deal
with signed digits – this is not good in the context of exponentiations since then
a negative digit corresponds to an inversion but we will see in Chapter 6 that on
elliptic curve an addition takes about as much time as a subtraction.

Definition 4.2.3 (non-adjacent form (NAF))
Let n be a positive integer. The non-adjacent form (NAF) representation of n is

the representation n =
∑l−1

i=0 ni2
i with ni ∈ {0,±1} such that no two consecutive

digits are nonzero, i.e. nini−1 = 0 for l − 1 ≤ i ≤ 1. To indicate that a
representation is in NAF we write (nl−1 . . . n0)NAF .
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As the definition indicates, the NAF of an integer is unique. We will comment
on this later. The following algorithm computes the NAF of an integer given in
binary form.

Algorithm 4.2.4 (Signed-binary representation in non-adjacent form)

IN: positive integer n = (nlnl−1 . . . n0)2 with nl = nl−1 = 0.
OUT: NAF of n as (n′

l−1 . . . n
′
0)NAF .

1. c0 ← 0

2. for i = 0 to ℓ− 1

(a) ci+1 ← ⌊(ci + ni + ni+1)/2⌋
(b) n′

i ← ci + ni − 2ci+1

3. return (n′
ℓ−1 . . . n

′
0)NAF

Example 4.2.5 We want to compute the NAF of 15 = (1111)2. Here we go
through the steps of the previous algorithm.

i ci ci+1 ni ni+1 n′
i

0 0 1 1 1 -1
1 1 1 1 1 0
2 1 1 1 1 0
3 1 1 1 0 0
4 1 0 0 1

The NAF of 15 is (1, 0, 0, 0,−1)NAF as can be seen in the last column of the table.
The density is 2/5.

Observe, that there are other signed digit representations of 15, e.g. 15 =
(1, 0,−1, 1, 1), but one can show that the NAF form is unique and that it has
minimal Hamming weight (i.e. the number of non-zero digits) among all represen-
tations with digit set {0,±1}. Note that the length can increase by 1 compared
to the binary representation.
A value in NAF form has an average density of 1/3, i.e. one-third of the digits
are (on average) non-zero. To see this we determine the ratio of non-zero to zero
digits in the NAF representation. According to the definition of the (unique)
NAF form we know that after a non-zero value there is always a zero. The
probability of a second zero is 1/2 since we have only the choices zero or non-zero
and the definition does not give any restriction (note, that the next coefficient
deals with divisibility by 8; while divisibility by 4 is imposed due to the choice
of digit, divisibility by 8 is at random). The probability of a third zero in row is
then 1/4 etc. If we sum up the probabilities we get

1 + 1/2 + 1/4 + 1/8 + · · · =
∞∑

i=0

1/2i = 2.

68



Algorithms and their Complexity

(See the first chapter for the geometric series.) So the ratio of non-zero to zero
digits is 1 : 2 which implies that 1/3 of all digits are non-zero and the so we have
a density of 1/3.
Using the NAF form of an integer n we can compute the scalar multiplication [n]P
by a variant of the left-to-right binary algorithm, where we need to distinguish
the non-zero coefficients.

Algorithm 4.2.6 (Left–to–right NAF)
IN: P ∈ (G,⊕), positive integer n = (nl−1 . . . n0)NAF , nl−1 = 1.
OUT: [n]P .

1. Q← P

2. for i = l − 2 to 0

(a) Q← [2]Q

(b) if ni = 1
Q← Q⊕ P

(c) if ni = −1
Q← Q⊖ P

(d) i← i− 1

3. return Q

Example 4.2.7 We compute again [15]P but this time using the NAF of 15.
The NAF form of 15 is (1, 0, 0, 0,−1)NAF . So we compute

([2]([2]([2]([2]P ))))⊖ P = [15]P.

This computations needs 4 doublings and 1 subtraction.

The average case complexity of scalar multiplication by scalars of binary size l
using the NAF representation is 4/3l group operations while the binary method
needs 3/2l group operations on average. The worst case complexity for the NAF
is 3/2l additions while for the binary representation it is 2l.

To further reduce the number of additions it is possible to extend the set of coef-
ficients. For a literature search the key words are signed and unsigned windowing
methods and sliding windows. If a coefficient |ni| > 1 appears then adding
(or subtracting) [ni]P requires that either this value has been precomputed or
that the additions are done at that moment. We refer the reader to the literature.

In the context of elliptic curves we will encounter Montgomery coordinates. To
use them most efficiently one needs to ensure that, when adding two elements
P⊕Q, one knows the difference Q⊖P . One easy way of achieving this for a scalar
multiplication [n]P is known as Montgomery’s ladder in which two intermediate
results Q and R are used with the property that at any moment R = Q ⊕ P .

69



4.2 Integer recodings

Clearly, one could compute this by applying the left-to-right algorithm twice but
we now show how to obtain the same results with fewer doublings.
Let Qj =

∑l
i=j[ni2

i−j ]P be the intermediate result after l−j rounds; accordingly
Ri = Qi ⊕ P . To compute Qj−1 from Qj and Rj we have several possibilities as
in

Qj−1 = [2]Qj ⊕ [nj−1]P = Qj ⊕Rj ⊕ [nj−1]P ⊖ P = [2]Rj ⊕ [nj−1]P ⊖ [2]P.

This implies that the next intermediate results are computed as follows:

(Qj−1, Rj−1) =

{
([2]Qj , Qj ⊕Rj) if nj−1 = 0,
(Qj ⊕Rj, [2]Rj) if nj−1 = 1.

Example 4.2.8 We show how to compute [13]P using Montgomery’s ladder.
The binary representation of 13 is 13 = (1101)2 and so the intermediate steps are

(Q3, R3) = (P, [2]P ),
(Q2, R2) = ([3]P, [4]P ) n2 = 1,
(Q1, R1) = ([6]P, [7]P ) n1 = 0,
(Q0, R0) = ([13]P, [14]P ) n0 = 1.

For any integer of binary length l, this method needs l additions and l doublings
independent of the binary representation of the integer. So, if this method is
used, there is no need to start with a NAF representation.

If one wants to compute [n1]P1⊕ [n2]P2⊕· · ·⊕ [nm]Pm, multi-scalar multiplication
methods are available. We concentrate on the case m = 2 here. Let

n1 = n1,l−12
l−1 +n1,l−22

l−2 +n1,l−32
l−3 . . . +n1,12 +n1,0,

n2 = n2,l−12
l−1 +n2,l−22

l−2 +n2,l−32
l−3 . . . +n2,12 +n2,0.

The first observation is that one can share the doublings and compute

[2] ([2](n1,l−1P1 ⊕ n2,l−1P2)⊕ (n1,l−2P1 ⊕ n2,l−2P2))⊕ · · ·
If we start with binary representations, i.e. the ni,j are in {0, 1}, then any addition
is with P1, P2 or P1 ⊕ P2. The last value should be precomputed so that in any
case only one addition is needed. The joint Hamming weight is defined as the
number of non-zero columns, where the i-th digits n1,i, n2,i together form the i-th
column. The average joint density, i.e. the average joint Hamming weight divided
by the length of the representation, is 3/4. On average 7/4l group operations are
needed which is much less than the 2 ·3/2l used by individually computing [n1]P1

and [n2]P2.
If both integers are given in NAF and both combinations P1⊕P2 and P1⊖P2 are
precomputed, then at most one addition is performed between two doublings.
To determine the density, observe that the initial NAFs have density 1/3 and
are independent, so with probability 2/3 · 2/3 both n1,i and n2,i are 0 leading to
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a joint density of 5/9.

One can do better! Solinas introduced the Joint Sparse Form (JSF) which has
a joint density of only 1/2. It is defined by the following conditions.

(JSF 1) Of any three consecutive columns at least one is a zero column.
(JSF 2) It is never the case that ni,j+1ni,j = −1.
(JSF 3) If ni,j+1ni,j 6= 0 then n1−i,j+1 = ±1 and n1−i,j = 0.

Example 4.2.9 Let n1 = 403 and n2 = 334, the NAF expansions of n1 and n2

are given on the left, while the JSF is on the right.

n1 = (1 0 −1 0 0 1 0 1 0 −1)NAF = (1 0 −1 0 0 1 0 0 1 1)
n2 = (0 1 0 1 0 1 0 0 −1 0)NAF = (1 0 −1 −1 0 1 0 0 −1 0)

One can show that the Joint Sparse Form of any two integers exists and is unique.
It has minimal joint Hamming weight among all joint signed binary expansions.
If n1 and n2 have maximal length l, then the joint double and add algorithm
computes [n1]P1 ⊕ [n2]P2 from the JSF with an average of l doubles and l/2
additions of either ±P1, ±P2, ±(P1 ⊕ P2) or ±(P1 ⊖ P2).

Exercise 4.2.10 a) Compute the NAFs of 31 and 33.

b) Look up the algorithm to compute the JSF and compute the JSF of 31 and 33.

4.3 Euclidean algorithm

In the previous chapter we considered the Euclidean algorithm for arbitrary Eu-
clidean rings R in Algorithm 3.4.15. We briefly recall the algorithm as we pre-
sented it earlier and then give a more efficient version of the extended Euclidean
algorithm. The main purpose of the Euclidean algorithm is to compute greatest
common divisors. The extended version is heavily used in the arithmetic of finite
fields to compute inverses. For this exposition we concentrate on the case that R
is the polynomial ring K[x] over a field K.
On input f, g ∈ K[x] the algorithm computes the greatest common divisor d of
them and also shows how to compute u, v ∈ K[x] such that

d(x) = gcd(f(x), g(x))

d(x) = u(x)f(x) + v(x)g(x).

We briefly repeat the recursive version, for proofs see Section 3.4. The algorithm
uses division with remainder as subroutine.
Let f split as f(x) = g(x) · q1(x) + r1(x) with deg(r1) < deg(g). Interchanging
the roles of (f, g) with (g, q1) we continue as

g(x) = r1(x) · q2(x) + r2(x), deg(r2) < deg(r1)
...

rn−2(x) = rn−1(x) · qn(x) + rn(x), deg(rn) < deg(rn−1)
rn−1(x) = rn(x) · qn+1(x) + 0,
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where rn 6= 0.
The greatest common divisor gcd(f, g) equals d = rn, the last non-zero remainder.
It is common to make the gcd monic to work with unique values.
The algorithm works since from rn+1 = 0 one has rn|rn−1. Inserting that in the
previous equation one gets rn|rn−2 which eventually leads to rn|g and rn|f . So
clearly rn is a divisor of both f and g. Any polynomial e ∈ K[x] which also
divides f and g must divide r1 and therefore r2 etc. and thus is a divisor of
d = rn, so d is the greatest common divisor of f and g where size is measured in
terms of the degree of the polynomial.
Starting from the bottom row, repeatedly inserting leads to two polynomials
u and v satisfying d = u · f + v · g. Checking their degrees, one sees that
deg(u) < deg(g) and deg(v) < deg(f).
While this description allows to compute the polynomials d, u, and v it will not
be very efficient and in particular a lot of storage is needed to store all the
intermediate values qi and ri. The following algorithm computes u and v along
with the computation of d.

Algorithm 4.3.1 (Extended Euclidean algorithm)
IN: f(x), g(x) ∈ K[x]
OUT: d(x), u(x), v(x) ∈ K[x] with d(x) = u(x)f(x) + v(x)g(x)

1. a← [f(x), 1, 0]

2. b← [g(x), 0, 1]

3. repeat

(a) c← a− (a[1] div b[1])b

(b) a← b

(c) b← c

while b[1] 6= 0

4. l ← LC(a[1]), a← (1/l)a

5. d(x)← a[1], u(x)← a[2], v(x)← a[3]

6. return d(x), u(x), v(x)

In this algorithm, div denotes division with remainder. The first component of
c is thus easier written as c[1] ← a[1] mod b[1] but by operating on the whole
vector we get to update the values leading to u and v, too. At each step we have

a[1] = a[2]f + a[3]g and b[1] = b[2]f + b[3]g.

To see this, note that this holds trivially for the initial conditions. If it holds for
both a and b then also for c since it computes a linear relation of both vectors. So
each update maintains the relation and eventually when b[1] = 0, we have that
a[1] holds the previous remainder, which is the gcd of f and g. At the end the
gcd is made monic by dividing by the leading coefficient LC(a[1]).
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Example 4.3.2 Let K = IR and f(x) = x5 + 3x3 + x2 + 2x + 1,
g(x) = x4 − 5x3 − 5x2 − 5x− 6. So at first we have a = [f, 1, 0], b = [g, 0, 1].

We have (a[1] div b[1]) = x+ 5 and so end the first round with

a = [g, 0, 1],

b = [33x3 + 31x2 + 33x+ 31, 1,−x− 5].

Indeed b[1] = f(x) + (−x− 5)g(x).

With these new values we have (a[1] div b[1]) = 1/33x − 196/1089 and so the
second round ends with

a = [33x3 + 31x2 + 33x+ 31, 1,−x− 5],

b = [−458/1089x2 − 458/1089,−1/33x+ 196/1089, 1/33x2 − 31/1089x+ 109/1089].

In the third round we have (a[1] div b[1]) = −35937/458x−33759/458 and obtain

a = [−458/1089x2 − 458/1089,−1/33x+ 196/1089, 1/33x2 − 31/1089x+ 109/1089],

b = [0,−1089/458x2 + 5445/458x+ 3267/229, 1089/458x3 + 1089/229x+ 1089/458].

Since b[1] = 0 the loop terminates. We have LC(a[1]) = −458/1089 and thus
normalize to

a = [x2 + 1, 33/458x− 98/229,−33/458x2 + 31/458x− 109/458].

We check that indeed

x2+1 = (
33

458
x− 98

229
)(x5+3x3+x2+2x+1)+(

−33
458

x2+
31

458
x−109

458
)(x4−5x3−5x2−5x−6).

Exercise 4.3.3 a) Compute the extended gcd of f(x) = x5 + 3x3 − x2 − 4x+ 1
and g(x) = x4 − 8x3 + 8x2 + 8x− 9 in Q[x] using Algorithm 4.3.1.

b) If one skips the one to last step of making a[1] monic, the same algorithm
works for computing extend greatest common divisors of integers. Use it to
compute the inverse of 71 modulo the prime 101.

4.4 Chinese remainder computations

Let R be a ring. For our considerations, it is either the ring of integers or the poly-
nomial ring over a field K, so coprimality is easily defined. Theorems 3.4.20 and
3.5.13 show that for coprime elements n1, . . . , nk ∈ R the system of equivalences

X ≡ r1 mod n1,

X ≡ r2 mod n2,
...

X ≡ rk mod nk,

73



4.4 Chinese remainder computations

has a solution X which is unique up to multiples of N = n1 · n2 · · ·nk.
We now present a constructive algorithm to find this solution, making heavy use
of the extended Euclidean algorithm presented in the previous section. Since all
ni are coprime, we have gcd(ni, N/ni) = 1 and we can use Algorithm 4.3.1 to
compute ui and vi with

uini + vi(N/ni) = 1.

Let ei = vi(N/ni), then this equation becomes uini + ei = 1 or ei ≡ 1 mod ni.
Furthermore, since all nj|(N/ni) for j 6= i we also have ei = vi(N/ni) ≡ 0 mod nj

for j 6= i.
Using these values ei a solution to the system of equivalences is given by

X =
k∑

i=1

riei,

since X satisfies X ≡ ri mod ni for each 1 ≤ i ≤ k.

Example 4.4.1 Consider the system of integer equivalences

X ≡ 1 mod 3,

X ≡ 2 mod 5,

X ≡ 5 mod 7.

The moduli are coprime and we have N = 105. For n1 = 3, N1 = 35 we get
v1 = 2 by just observing that 2 · 35 = 70 ≡ 1 mod 3. So e1 = 70.

Next we compute N2 = 21 and see v2 = 1 since 21 ≡ 1 mod 5. This gives e2 = 21.

Finally, N3 = 15 and v3 = 1 so that e3 = 15.
The result is X = 70+2 ·21+5 ·15 = 187 which indeed satisfies all 3 congruences.
To obtain the smallest positive result we reduce 187 modulo N to obtain 82.

For easier reference we phrase this approach as an algorithm.

Algorithm 4.4.2 (Chinese remainder computation)
IN: system of k equivalences as (r1, n1), (r2, n2), . . . (rk, nk) with pairwise coprime
ni

OUT: smallest positive solution to system

1. N ←∏k
i=1 ni

2. X ← 0

3. for i = 1 to k

(a) M ← N div ni

(b) v ← (M−1 mod ni) (use Algorithm 4.3.1)
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(c) e← vM

(d) X ← X + rie

4. X ← X mod N

Alternatively M can be computed as
∏k

j=1
j 6=i

nj.

Exercise 4.4.3 a) Find the smallest positive integer X satisfying

X ≡ 1 mod 2,

X ≡ 4 mod 7,

X ≡ 2 mod 11.

b) Find the polynomial f(x) ∈ IF2[x] of smallest degree satisfying

f(x) ≡ 1 mod (x+ 1),

f(x) ≡ x+ 1 mod (x2 + x+ 1),

f(x) ≡ x mod (x3 + x2 + 1).
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Chapter 5

Finite Fields

Finite fields are one of the essential building blocks in coding theory and cryp-
tography and thus appear in many areas in IT security. This section introduces
finite fields systematically stating for which orders finite fields exist, shows how
to construct them and how to compute in them efficiently.
For applications 3 types of fields are particularly interesting – fields with a prime
number of elements, extension fields of the minimal field {0, 1} and optimal ex-
tension fields. We met prime fields, the first kind of fields, already in Chapter 3
as ZZ/pZZ, the second one appeared as an example of a vector space and we also
defined some multiplicative structure on it which lead to a ring but not to a field.
Here were show how one constructs a binary field. These fields are particularly
suitable for hardware implementations as the arithmetic involves basic bit op-
erations. If, however, software implementations are the focus then it might be
interesting to go for yet another construction in which the size of the elements is
tailored to the word size of the processor, such fields are called optimal extension
fields.
References for this chapter are:

� T. Høholdt and J. Justesen, ”A Course In Error-Correcting Codes”,
Springer Verlag. Contains details for binary fields.

� R. Lidl and H. Niederreiter, ”Finite Fields, Encyclopedia of Mathematics
and its Applications 20”, Addison-Wesley.

� R. Lidl and H. Niederreiter, ”Introduction to finite fields and their applica-
tions”, Cambridge University Press.

� A. Menezes, ”Applications of Finite Fields”, Kluwer.

� T. Murphy, ”Finite Fields”, Script online at
https://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/GF.pdf

� V. Shoup, ”A Computational Introduction to Number Theory and Alge-
bra”, Cambridge University Press. This book is also available online for
download at http://www.shoup.net/ntb/ntb-b5.pdf
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5.1 First definitions

In this chapter we first assume that finite fields exist and study their properties.
We show that for any prime p and for any natural number n there exists a field
with pn elements. We then detail constructions of finite fields and go into the
arithmetic properties.

5.1 First definitions

Definition 5.1.1 (Finite field) A field with finitely many elements is called a
finite field. We denote a finite field with q elements by IFq.

Finite fields are also called Galois fields, named after Évariste Galois, and several
books and scientific papers thus use GF (q) to denote a finite field with q elements.

Definition 5.1.2 (Characteristic) LetK be a field. The smallest natural num-
ber n > 0 such that

n · 1 = 1 + 1 + . . .+ 1
︸ ︷︷ ︸

n −times

= 0

is called the characteristic of K, denoted by char(K) = n.
If no such n exists one puts char(K) = 0.

We have already encountered the following example in the previous chapter but
state it again here as the first example of a finite field.

Example 5.1.3 The ring IFp = ZZ/pZZ is a finite field of characteristic p. Obvi-
ously IFp has exactly p elements and is thus finite, we have seen that it is a field
and every element vanishes under multiplication by p, thus the characteristic is
p.

The following lemma gives useful properties of the characteristic.

Lemma 5.1.4 Let K be a field.

1. If the characteristic of K is positive, char(K) is prime.

2. Finite fields have char(K) > 0. By the first part of this lemma we even
have that a finite field has prime characteristic.

Proof.

1. Assume on the contrary that there exists a nontrivial factorization
char(K) = n = p · q. Then

0 = n·1 = (p · q)·1 = p·(q·1) = (p·1)·(q·1) = (1 + 1 + · · ·+ 1)
︸ ︷︷ ︸

p -times

· (1 + 1 + · · ·+ 1)
︸ ︷︷ ︸

q -times

.

We encountered earlier that fields have no zero divisors, that means that one
of the terms in the product must be zero which contradicts the minimality
of the characteristic.
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2. In a finite field not all of 1, 2 · 1, 3 · 1, . . . can be distinct, e.g. r · 1 = s · 1 for
some s > r. Then ⇒ (s− r) · 1 = 0 and so char(K)|s− r > 0

✷

Lemma 5.1.5 Let K be a field. Then there exists a smallest subfield of K.

Proof. Let F1, F2 be subfields of K, then their intersection F1 ∩ F2 is also a
subfield of K.
This holds for arbitrary many subfields, thus also for the intersection of all
subfields of K. Obviously, the resulting intersection is the smallest subfield of
K. ✷

This smallest subfield is an important concept and thus deserves a name.

Definition 5.1.6 (Prime subfield)
The smallest subfield of a field K is called the prime subfield or short prime field
of K.

Depending on K the prime subfield can be finite or infinite. If the characteristic
of the field is zero one finds a copy isomorphic to Q the rational numbers by
observing that all “integer” multiples of 1 must be in the field and that the
field must be closed under division. For finite fields – and generally for fields of
positive characteristic – one can always find a subfield of the type encountered
in Example 5.1.3.

Lemma 5.1.7 Let K be a finite field of characteristic p. The prime subfield of
K is isomorphic to IFp, the finite field with p elements.

Proof. We represent IFp as {0, 1, 2, . . . , p− 1} and define a map into K as

ϕ : IFp 7→ K, r 7→ r · 1 = 1 + . . .+ 1
︸ ︷︷ ︸

r -times

where 1 is the multiplicative unit in K and + denotes addition in K.
One easily checks that ϕ is additive and multiplicative, thus a field homomor-
phism. To show that the field IFp is embedded into K it remains to show that the
map is injective. Assume on the contrary that for some p > r > s ≥ 0 we have
ϕ(r) = ϕ(s). Put c = r− s > 0. By the definitions of r and s one can consider c
as an element of IF∗

p and thus it has a multiplicative inverse c−1 in IFp. We obtain

ϕ (1) = ϕ
(
c · c−1

)
= ϕ (c) · ϕ

(
c−1
)
= (ϕ (r)− ϕ (s)) · ϕ

(
c−1
)
= 0.

However, by the definition of ϕ one has ϕ(1) = 1 6= 0 since K is a field. Because
of this contradiction, ϕ is an isomorphism between IFp and the image of the
homomorphism Im(ϕ) ⊂ K.
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This isomorphism proves that Im(ϕ) is a subfield of K (the image contains 0 and
1 and the field operations are inherited). Since IFp has no non-trivial subfield, it
is its own prime subfield and the argument carries over to Im(ϕ). So Im(ϕ) is
the prime field of K. ✷

We already used the notation IFp as if this would be a unique field. Indeed this
holds true up to isomorphism.

Corollary 5.1.8 Let p be a prime. Up to isomorphism there is only one finite
field with p elements, denoted by IFp.

The proof follows from Lemma 5.1.7 by observing that IFp is isomorphic to its
own prime subfield.

Finite fields with a prime number of elements are often referred to as prime fields.

Exercise 5.1.9 Let K be a field of characteristic p, where p is prime. Show that
for any integer n one has

(a+ b)p
n

= ap
n

+ bp
n

for all a, b ∈ K.

5.2 The additive structure of finite fields

So far we do not know whether fields other than IFp exist but we can find criteria
a more general finite field has to satisfy. That reduces the search space and
actually gives rise to a construction method.

In the Section 3.8 we considered extension fields as vector spaces over their sub-
field. This approach helps to determine the additive structure of finite fields and
limits the possible sizes for which finite fields can exist.

Let K be a finite field of characteristic char(K) = p, |K| > p. By Lemma 5.1.7
there exists a subfield of K isomorphic to IFp. For ease of notation we identify
this field with IFp.

K is a vector space over IFp and so there must exist a basis of linearly independent
elements a1, . . . , an for some dimension n. This is the main observation leading
to the proof of the following lemma.

Lemma 5.2.1 Let K be a finite field of char(K) = p. There exists an integer
n ≥ 1 so that |K| = pn.
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Proof. Consider K as vector space over IFp. Let dimIFp(K : IFp) = n and let
{ξ1, . . . , ξn} be a basis.
Then every element a ∈ K can be represented via a linear combination of the
basis elements with coefficients in IFp. So there exist c1, . . . , cn ∈ IFp satisfying
a = c1ξ1 + · · ·+ cnξn.
Each ci can have p different values, since we consider linear combinations over a
basis all these pn elements in K are distinct. Again by the property of a basis
each element of K can be represented as linear combination this way. Thus
|K| = pn. ✷

So for any finite field the number of elements must be a prime or a prime power.
E.g. there exists no finite field with 6 elements since 6 is not a prime or prime
power. In the following q denotes a prime power q = pn.
We also get conditions on the relative sizes of subfields.

Lemma 5.2.2 Let L be a finite field with |L| = pn and let K be a subfield of L.
There exists an integer n ≥ 1 so that |K| = pm and m|n.
The extension degree of L over K is [L : K] = n/m.

Proof. Left to the reader as Exercise 5.2.4. ✷

We now have a necessary condition on the number of elements in a finite field.
The following example studies one finite field which is not a prime field.

Example 5.2.3 The number 4 is a prime power, so there could be a finite field
with 4 elements. What would IF4 = IF22 look like? For the moment let us assume
that IF4 exists (we will later see that this is indeed the case).
Let 0 be the additive and 1 be the multiplicative neutral element. Let a be one
of the other two elements. Since IF4 is closed under addition the other element
must equal a+ 1, so IF4 = {0, 1, a, a+ 1}. We now give the addition table which
follows easily from the fact that the characteristic is 2, thus x + x = 0 for any
x ∈ IF4. Since every element must appear in each row and each column of the
table we obtain a · a = a+ 1 and consequently a · (a+ 1) = 1.

+ 0 1 a a+ 1

0 0 1 a a+ 1
1 1 0 a+ 1 a
a a a+ 1 0 1

a+ 1 a+ 1 a 1 0

· 0 1 a a+ 1

0 0 0 0 0
1 0 1 a a+ 1
a 0 a a+ 1 1

a+ 1 0 a+ 1 1 a

We were able to fill the tables completely using just necessary conditions. We
note that a basis of IF4 over IF2 could be given by {1, a} or likewise by {1, a+1}.
But: do these tables actually form a field? To answer this we need to check
associativity of + and · and prove that the distributive laws hold. Since the number
of elements is very small we could check these by explicitly considering all possible
cases. The next section provides us with a better understanding of finite fields and
their multiplicative structure so that we skip this tedious work here.
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Let ξ1, ξ2, . . . , ξn be a basis of the finite field K with |K| = pn over IFp. We can
state K as a set as

K = {a1ξ1 + a2ξ2 + · · ·+ cnξn|ai ∈ IFp for 1 ≤ i ≤ n}.

It is very easy to add two field elements by using the vector space structure:
Let a =

∑n
i=1 aiξi and b =

∑n
i=1 biξi be elements of K. Their sum is given by

a+ b =
n∑

i=1

(ai + bi)ξi,

where ai + bi is computed as an element of IFp, i.e. modulo p.

However, we are not able to multiply in this representation unless we know the
value of ξi · ξj expressed in this basis for all 1 ≤ i, j ≤ n. Apparently one can
store all n(n+1)/2 results of the multiplication of the basis vectors and perform
multiplications with table lookups but that seems rather tedious. The following
section suggests a representation which is particularly suitable for multiplications
and Section 5.5 gives the representation which we will use for most applications.

Exercise 5.2.4 Prove Lemma 5.2.2. Hint: consider L as vector space over K
and follow the proof of Lemma 5.2.1.

5.3 The multiplicative structure of finite fields

The previous section gave us insight in the number of elements of a finite field
and determined the additive structure. Given a basis of a finite field K over its
prime subfield we are able to perform additions. We now turn our attention to
the study of K∗, the multiplicative group of K.

Lemma 5.3.1 Let K be a finite field with |K| = pn. The multiplicative group
K∗ = K \ {0} is cyclic.

Proof. For ease of notation put q = pn. Since K is a field, K∗ consists of all
elements of K but 0. So |K∗| = q − 1.
According to Lagrange’s Theorem (Theorem 3.3.8) for each a ∈ K∗ we have
aq−1 = 1 and ord(a)|q − 1.
If K∗ is cyclic then there must exist at least one element g with ord(g) = q − 1.
Let e be the exponent of K∗. By the definition of e the order of every element
divides e, i.e. ae = 1 for all a ∈ K∗. This implies that all a ∈ K∗ are roots of
F (x) = xe−1. Thus F (x) is a non-zero polynomial of degree e which has at least
q − 1 different roots which implies q − 1 ≤ e by Corollary 3.7.9.
Since the exponent of a group divides its order we have e|q−1 and thus e ≤ q−1.
Together this gives e = q − 1, i.e. the exponent is the full group order which
implies that there is at least one element of order q − 1. ✷
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Definition 5.3.2 (Primitive element)
Let K be a finite field. A generator of K∗ is called primitive element.

An obvious consequence of Lemma 5.3.1 is the following:

Corollary 5.3.3 Every finite field contains at least one primitive element.

More precisely there are exactly ϕ (q − 1) primitive elements.

This gives a second possibility of representing finite fields. Let g be a primitive
element of K then

K = {0, 1, g, g2, . . . , gq−2} = {0} ∪ 〈g〉.

In this representation it is very easy to multiply two elements a = gi and b = gj

as

a · b = gi · gj = gi+j,

where the exponent i+ j is taken modulo q− 1. However, we don’t know how to
add a and b. Assume j ≤ i. We observe that

a+ b = gi + gj = gj(gi−j + 1)

and so it would be enough to tabulate all q − 1 values of gk + 1, 1 ≤ k ≤ q − 2
expressed as a power of g to be able to add in this representation.

The lemma also allows to obtain properties of power maps and find possible
orders.

Corollary 5.3.4 Let K be a finite field with |K| = q elements. There exist
elements of order k if and only if k|(q − 1).

The power map τ : K → K; a 7→ ak is a bijection if and only if gcd(k, q− 1) = 1.

The following section deals with polynomials over finite fields. We obtain nec-
essary knowledge to find a representation of finite fields that allows to perform
addition and multiplication without keeping a big table.

Exercise 5.3.5 a) Corollary 5.3.3 also holds for the prime fields IFp. Find prim-
itive elements of IF5, IF7, IF11, IF13 and IF17.

b) State all primitive elements of IF7.

c) Let IF∗
16 = 〈g〉. State all primitive elements in terms of g.

d) Prove Corollary 5.3.3.
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5.4 Polynomials over finite fields

This section studies polynomials over finite fields. In Section 3.7 we introduced
many properties of polynomials over a field. We refer to that section for general
background and concentrate here on the case that the coefficients come from a
finite field.
We recall the definition of an irreducible polynomial (Definition 3.7.10). A poly-
nomial f(x) ∈ K [x] is irreducible if it cannot be written as a product of polyno-
mials of lower degree over the same field, i.e. u(x)|f(x) implies u is constant or
u(x) = f(x). Otherwise it is called reducible.

Example 5.4.1 Consider the following polynomials in IF2[x]: f1(x) = x, f2(x) =
x2 + 1, f3(x) = x2 + x+ 1, and f4(x) = x4 + x2 + 1.

a) Apparently f1 is irreducible.

b) A non-trivial factor of f2 must be linear, one sees that (x+ 1)|f2(x), actually
f2(x) = (x+ 1)2.

c) There are only two linear polynomials, x and x+1, over IF2. One easily checks
that none of them divides f3, so f3 is irreducible.

d) The last polynomial is not divisible by a linear factor. However, it is not
irreducible since f4(x) = (x2 + x + 1)2 = f 2

3 (x). which cannot be factored
further since f3 is irreducible.

For functions over the reals, the derivative gives information about the slope
of the tangent in a point. In the discrete setting of finite fields we lose this
interpretation but we can still define the derivative of a polynomial.

Definition 5.4.2 Let K be a field and f(x) =
∑n

i=0 fix
i ∈ K[x] be a polynomial.

The derivative f ′ of f is given by

f ′(x) =
n∑

i=1

i · fixi−1.

Note that if K has characteristic p then the derivative of all terms xmp vanishes.
One can show that for this derivative the usual rules hold.

Corollary 5.4.3 Let f, g ∈ K[x]. One has

(f + g)′ = f ′ + g′, (5.1)

(f · g)′ = f ′ · g + f · g′, (5.2)

(fa)′ = afa−1 · f ′. (5.3)

Exercise 5.4.4 a) Let f(x) = x17+3x15−2x12+x11−x10−2x8+x5+3x2+2 ∈
IF5[x]. Compute the derivative f ′ of f .
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b) Let f ∈ K[x] be a polynomial. Show that if α is a multiple root of f then
(x− α)| gcd(f, f ′).

c) Let f ∈ K[x] be a polynomial. Let L be an extension field of K so that f(x)
factors completely into linear factors, i.e., all roots of f are defined over L.
Show that gcd(f, f ′) ∈ K∗ if and only if f has no multiple roots.

5.5 Polynomial representation of finite fields

In this section we show how to construct finite fields with pn, n > 1, elements by
using an irreducible polynomial of degree n over IFp. The same considerations
can be used to construct an extension field of K with |K| = pm in which case the
polynomial must be irreducible over K.
We start by investigating relations between a finite field and a subfield of it.

Lemma 5.5.1 Let K,L be finite fields with K ⊂ L, |K| = q, |L| = qn.
Every element α ∈ L is a root of a uniquely defined monic polynomial mα ∈ K [x],
deg mα ≤ n. This polynomial mα satisfies that if α is a root of some polynomial
f ∈ K [x] then mα|f .

Proof. We start by considering L as a vector space over K. Since the dimension
dimK(L : K) is n, any n+ 1 or more elements are linearly dependent.
So the elements 1, α, α2, . . . , αn are linearly dependent and there exist coefficients
c0, . . . , cn ∈ K so that c0 + c1α + c2α

2 + · · ·+ cnα
n = 0.

We just constructed a polynomial f(x) =
∑n

i=0 cix
i ∈ K[x] of degree n such that

f(α) = 0. This proves the existence part of the lemma.
Now that we know that there is at least one polynomial of degree ≤ n over K
which has α as root and since we can make each polynomial monic as K is a field,
let mα be the monic polynomial of minimal degree so that mα (α) = 0. From the
first part we know deg(mα) ≤ deg(f) ≤ n.
We first note that mα must be irreducible because if it would split as mα = a · b
with deg(a), deg(b) > 1 would give 0 = mα(α) = a(α) · b(α) and because there
are no zero divisors either a(α) = 0 or b(α) = 0 which contradicts the minimality
of the degree of mα.
Let f(α) = 0, and let r(x), deg(r) < deg(mα) be the remainder of f by division by
mα, i.e. f(x) = q(x)mα(x) + r(x). Evaluating both sides at α gives the identity

0 = f(α) = q(α)mα(α) + r(α) = q(α) · 0 + r(α) = r(α),

so r(α) = 0. Again by the minimality of deg(mα) we obtain r(x) = 0 which
means mα|f . ✷

Definition 5.5.2 (Minimal polynomial)
Let K be a field, L be a finite extension field of K and α ∈ L. The polynomial
mα ∈ K[x] constructed in Lemma 5.5.1 is called the minimal polynomial of α
over K.
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The prime fields IFp are constructed as residue classes of the integers modulo a
prime p. We have seen that the ring of polynomials over a field shares many
similarities with the ring of integers and so we consider the polynomial ring
modulo an irreducible polynomial.

Theorem 5.5.3 Let K be a finite field and let L = K[x]/fK[x] be the residue
classes modulo a polynomial f ∈ K[x].
L is a field if and only if f is irreducible.

Proof. In Example 3.7.16 we considered the case K = IF2 and f(x) = xn + 1 in
detail and showed that IF2[x]/(x

n + 1)IF2 is a commutative ring with unity. The
same proof works for any field K and any polynomial f .
Let deg(f) = n. Like in the example we represent each residue
class in L by the polynomial of smallest degree in it L =
{a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 | ai ∈ K}. Given that L is a commuta-

tive ring with unity for any field K and any polynomial f it remains to show the
equivalence

L is a field ⇐⇒ f is irreducible.

Let f be irreducible and let 0 6= a(x) ∈ K[x] be a polynomial of degree deg(a) <
n. In K[x] we have gcd(a(x), f(x)) = 1 and Bézout’s identity 3.4.16 leads to a
representation

1 = a(x)u(x) + f(x)v(x), with deg(u) < n.

This implies (a(x))−1 ≡ u(x) mod f(x) and because of the degrees, a and u
are both representatives of classes in L and we obtain the identity of classes
(a(x))−1 = u(x).
To prove the other implication assume on the contrary that f splits as
f(x) = g(x) · h(x), with 1 ≤ deg(g), deg(h) < n. Because of the degrees, g
and h are representatives of their respective classes in L and they both do not
represent the class of 0. However, we have g ·h = f ≡ 0 mod f and thus g ·h = 0
in L which contradicts that fields do not have zero divisors. ✷

This theorem is the most important tool to construct finite fields of cardinality
pn with n > 1. All we need is to find is an irreducible polynomial of degree n
over IFp. Let us first consider some examples.

Example 5.5.4 Let K = IF2.

a) The polynomial f(x) = x is obviously irreducible but the residue class field
IF2[x]/xIF2[x] ∼= {a0 ∈ IF2} is isomorphic to the field IF2 itself.

b) Consider f(x) = x2 + 1. We know from Example 5.4.1 that f(x) = (x + 1)2

is not irreducible. Consider the addition and multiplication tables modulo f .
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+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x 1 x+ 1

x+ 1 0 x+ 1 x+ 1 0

Since (x+ 1) · (x+ 1) = 0 this is not a field but only a ring.

c) Let f(x) = x2 + x+ 1; f is irreducible. By the previous lemma, IF2[x]/f IF2[x]
is a field. Given that the number of elements in

L = IF2[x]/(x
2 + x+ 1)IF2[x] = {a0 + a1x|ai ∈ IF2, 0 ≤ i ≤ 1}

is 4 we have that L is a finite field with 4 elements. In Example 5.2.3 we
investigated what the field IF4 would look like. Note that the addition and
multiplication tables we presented there apply directly to L with a representing
the class of x and so we have now established that they define addition and
multiplication in IF4.

Exercise 5.5.5 a) Show that h(x) = (x3 + x+ 1) ∈ IF2[x] defines a field with 8
elements. Give addition and multiplication tables of IF8

∼= IF2[x]/hIF2[x].

b) Let IF4 be defined using the irreducible polynomial f(x) = x2+x+1. Show by
direct inspection that k(y) = (y3 + y + 1) has no roots over IF4.

5.6 Existence and uniqueness of finite fields

We have now obtained a way of constructing finite fields by using irreducible
polynomials over prime fields and mentioned that the same construction can also
be used for an arbitrary base field. This raises the need to question whether the
constructed fields are the same and whether we can always find an irreducible
polynomial of the desired degree. This section is rather technical in nature but
establishes a major result towards proving the existence and uniqueness of finite
fields of prime power order.
The following definition and lemma hold in the context of arbitrary fields.

Definition 5.6.1 (Splitting field)
Let K be a field and let f(x) ∈ K[x] be a polynomial. The splitting field of f is
the smallest field extension L of K so that f splits into linear factors in L[x].

We state the following lemma without proof. It is an important piece in the
construction of finite fields but its proof is rather technical.

Lemma 5.6.2 Let K be a field and let f(x) ∈ K[x] be a polynomial. The splitting
field of f exists and is unique up to isomorphism.

Example 5.6.3 a) The splitting field of f(x) = x+ 1 ∈ IF2[x] is IF2 itself since
f is linear.
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b) The splitting field of g(x) = x2 + x+ 1 is IF4 – by construction the class of x
in L = IF2[x]/gIF2[x] is a root of g. To see this consider g(y) = y2 + y + 1 as
polynomial in L[y] and note that we compute modulo x2 + x+ 1 in L

(y + x)(y + x+ 1) = y2 + (x+ x+ 1)y + x2 + x = y2 + y + 1 = g(y).

c) Put h(x) = (x3 + x + 1) ∈ IF2[x]. This polynomial is irreducible over IF2 and
it thus allows to define a field with 8 elements as IF8

∼= IF2[x]/hIF2[x]. By the
same considerations as above the splitting field of h is IF8.

d) Put j(x) = (x2 + x + 1)(x3 + x + 1) ∈ IF2[x]. Over IF2 the polynomial splits
but not into linear factors. As seen right before the first factor splits in IF4

while the second one splits only in IF8. We know from Lemma 5.2.2 that IF4

is not a subfield of IF8 as 2 ∤ 3 and so the splitting field of j must be IF26, the
smallest extension field of IF2 containing both IF22 and IF23.

We now provide a reducible polynomial which is very important for the existence
proof of finite fields.

Lemma 5.6.4 Let f(x) = xp
n−x ∈ IFp[x] for some integer n. The splitting field

of f is a finite field K with |K| = pn elements and f splits as

xp
n − x =

∏

a∈K

(x− a).

Proof. We use the result of Exercise 5.4.4 c that a polynomial f has no multiple
roots if and only if gcd(f, f ′) = 1 when made monic. Here f ′(x) = pnxp

n−1− 1 =
−1 since we are working in a field of characteristic p and thus gcd(f, f ′) = 1. Put
q = pn.
The splitting field K of f exists by Lemma 5.6.2 and it contains the set S = {a ∈
K|aq = a}. We just showed |S| = q = pn. We now show that S is a subfield of K
and by the minimality of the splitting field we obtain that S = K is the splitting
field of f .
The elements 0 and 1 are in S since they are roots of f .
Let a, b ∈ S. By Exercise 5.1.9 we have

(a− b)q = aq + (−b)q = aq − bq = a− b and thus (a− b) ∈ S,
where the second equality holds apparently in odd characteristic while in char-
acteristic 2 there is no difference between + and −. The third equality uses that
a, b ∈ S.
The respective considerations for the multiplicative group are even easier. Let
a, b ∈ S then

(a

b

)q

=
aq

bq
=
a

b
and thus

a

b
∈ S

and so indeed S is a subfield of K. ✷

We now have all the knowledge needed to prove that finite fields of any prime
power order q exist and that they are unique up to isomorphisms.
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Theorem 5.6.5 (Existence and uniqueness of finite fields)
For any prime p and any natural number n there exists a finite field with pn

elements.
Every field with pn elements is isomorphic to the splitting field of f(x) = xp

n − x
over IFp.

Proof. We start by noticing that for n = 1 the theorem is true as IFp
∼= ZZ/pZZ

exists and is unique up to isomorphism by Corollary 5.1.7.
Obviously the polynomial f(x) = xp

n − x ∈ IFp[x] can be stated for any prime p
and integer n. The existence and uniqueness of a field with pn elements follows
from the uniqueness of the splitting field of a polynomial, Lemma 5.6.2, and
Lemma 5.6.4 showing that the splitting field of f(x) is a finite field with pn

elements. ✷

It is also easy to give the complete list of subfields of a finite field IFq and the
relations between the subfields by using Lemma 5.2.2. This is best done in a
Hasse-diagram in which the largest field, in this case IFq, is situated in the top
row. The next row contains the direct subfields of IFq, each of then connected
with a line to IFq etc. The bottom level contains only the prime subfield IFq.

Example 5.6.6 Consider the finite field IF330. By Lemma 5.2.2 any sub-
field IF3m must satisfy m|30 and thus there are only the following subfields:
IF3, IF32 , IF33 , IF35 , IF36 , IF310 and IF315. This leads to the following Hasse-diagram:

IF330

IF36 IF310 IF315

IF32 IF33 IF35

IF3

This easily allows to read off that IF35 is a subfield of IF310 , IF315 and IF330 but not
of IF36 or any field on the same or a lower level.

Exercise 5.6.7 State all subfields of IF224 and their relations in a Hasse-diagram.

5.7 Construction of finite fields

We have obtained that for any prime p and any natural number n there exists a
finite field with pn elements. We have a description of this field as splitting field
of xp

n−x; we also learned how to define a field as the ring of polynomials modulo
an irreducible polynomial; and starting from an extension field we defined the
minimal polynomial of an element – which is an irreducible polynomial. This
section highlights the connections between these approaches.
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Definition 5.7.1 Let K be a field, let L be an extension field of K, and let θ ∈ L.
The smallest extension field of K containing θ is denoted by K(θ). It is called
the field obtained by adjoining θ to K.

Example 5.7.2 a) The first example does not deal with finite fields but shows
that we know the concept of adjoining elements to fields from other contexts.

IR(i) = {a+ b · i | a, b ∈ IR} ∼= C .

b) Let α be a root of j(x) = (x2+x+1)(x3+x+1) in IF26. Depending on whether
α2 + α + 1 = 0 or α3 + α + 1 = 0 we have IF2(α) ∼= IF4 or IF2(α) ∼= IF8.

We now highlight the connection between constructing fields by adjoining el-
ements from extension fields and by using the ring of polynomials modulo an
irreducible polynomial.

Lemma 5.7.3 Let θ ∈ L and let mθ(x) be the minimal polynomial of θ over K
and deg(mθ) = m. We have

1. K(θ) ∼= K[x]/mθK[x],

2. dimK(K(θ) : K) = m, a basis of K(θ) over K is given by
{1, θ, θ2, . . . , θm−1},

3. For every α ∈ K(θ) there exists a minimal polynomial mα(x) ∈ K[x], with
deg(mα)|m.

Proof.

1. The evaluation at θ map τ : K[x] → K(θ), f 7→ f(θ) is a ring homomor-
phism. The kernel of this map Ker(τ) consists of the elements mapped to
0 in K(θ)

Ker(τ) = {h(x) ∈ K[x] | h(θ) = 0} = (mθ(x)) ,

where (mθ(x)) denotes the ideal generated by mθ (that is all multiples of
mθ(x) in K[x]).

According to Theorem 3.3.12 the image of τ is isomorphic to
K[x]/(Ker(τ)) ∼= Im(τ). The set Im(τ) contains θ (as image of τ(x) = θ).
Therefore K(θ) = Im(τ).

2. From the first part we have that α ∈ K(θ) is in the image of τ and can thus
be represented as f(θ) for some f ∈ K[x]. Since all polynomials are reduced
modulo mθ it is enough to consider polynomials f with deg(f) < m. So α
equals a linear combination of 1, θ, . . . , θm−1 with coefficients from K and
so each element is a linear combination of 1, θ, . . . , θm−1.

To show that 1, θ, . . . , θm−1 form a basis we need to show that they are
linearly independent over K. Assume on the contrary that there would be
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coefficients ai ∈ K, not all ai = 0 for 0 ≤ i < m so that a0 + a1θ + · · · +
am−1θ

m−1 = 0. The polynomial h(x) =
∑m−1

i=0 aix
i would have θ as root and

strictly lower degree than m = deg(mθ) which contradicts the definition of
minimal polynomial.

3. According to Definition 5.5.2, α has a minimal polynomial over K. We
have the following inclusion of finite extension fields K ⊆ K(α) ⊆ K(θ).
According to Lemma 5.2.2 the degrees of the extension fields divide each
other leading to deg(mα)| deg(mθ) = m.

✷

If we use an irreducible polynomial f of degree n to define an extension field
there are n different roots of f over the splitting field which can be adjoined to
the ground field. The following corollary which follows from the previous lemma
shows that all choices are isomorphic.

Corollary 5.7.4 Let f(x) ∈ K[x] be irreducible and let L be the splitting field of
f over K. Let α and β be roots of f(x) over L.
We have K(α) ∼= K(β).

This shows that all m roots have the same effect on the splitting field. This is no
surprise since we work modulo f(x) and thus consider all m roots simultaneously.

Lemma 5.7.5 Let f(x) ∈ IFq[x] be irreducible and let α be a root of f(x) in some
extension field IFqm. If a polynomial h(x) ∈ IFq[x] also has α as root, h(α) = 0
then we have that f(x)|h(x).
Proof. According to Lemma 5.5.1 the minimal polynomial of α divides any
polynomial h(x) with h(α) = 0. Let LT (f) = a be the leading coefficient of f .
The polynomial a−1 · f is monic and irreducible with root α and thus equals the
minimal polynomial of α. ✷

Lemma 5.7.6 Let f(x) ∈ IFq[x] be irreducible over IFq of deg(f) = m. Then
f(x) divides xq

n − x if and only if m|n.
Proof. Let α = α1, α2, . . . , αm be the roots of f(x) in the splitting field L ∼= IFqm

of f over IFq.
If f(x) | xqn − x then αqn = α, and so L is a subfield of IFqn .
Since [L : IFq] = m and [IFqn : IFq] = n one must have m|n by Lemma 3.8.13.
If m|n then IFqm ⊆ IFqn and so α ∈ IFqn and satisfies αqn = α which implies
xq

n ≡ x mod (x−α). This holds not only for α but for all roots αi, 1 ≤ i ≤ m of
f . By the Chinese Remainder Theorem 3.5.13 it also holds modulo the product
f(x) =

∏m
i=1(x− αi) and thus f (x) |xqn − x. ✷

We already know that an irreducible polynomial f of degree m over IFq can be
used to construct IFqm . Since IFqm is the splitting field of xq

m − x we now know
that all roots of f are contained in IFqm .
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Corollary 5.7.7 Let f ∈ IFq[x] be irreducible of deg(f) = m. Then IFqm is the
splitting field of f .

The previous lemma is very useful as it states that every irreducible polynomial
over IFp of degree n is a factor of xp

n − x.
Even more is true:

Lemma 5.7.8 The polynomial f(x) = xq
n−x is product of all monic, irreducible

polynomials over IFq of degree dividing n.

Proof. This lemma holds as each irreducible polynomial of degree m with m|n
divides f by Lemma 5.7.6, the polynomials are co-prime, and every irreducible
polynomial of degreem|n constructs a subfield of IFqn and so its roots must satisfy
f . ✷
However, the degree of this polynomial grows very quickly so that it is not possible
to obtain irreducible polynomials by factoring it.
We know already that for any degreem and any finite field IFq there exists at least
one irreducible polynomial over IFq since the finite field IFqm exists and has di-
mension m over IFq. Now we can compute the number of irreducible polynomials
of a given degree.

Corollary 5.7.9 Let Nq(d) be the number of monic, irreducible polynomials over
IFq of degree d. Then

qn =
∑

d|n

dNq(d).

In particular for all d and q we have Nq(d) > 0.

Corollary 5.7.4 shows that all roots (over some extension field) of a fixed irre-
ducible polynomial give rise to the same field if adjoined to the ground field.
Since for each order there is only one field up to isomorphism the resulting field
is even independent of the choice of the polynomial.

Corollary 5.7.10 Let f, g ∈ IFq[x] be irreducible, of the same degree deg(f) =
deg(g). Then their splitting fields are isomorphic.

Exercise 5.7.11 a) Find all irreducible polynomials of degree 1 and 2 over IF3

and verify directly Lemma 5.7.8.

b) Verify directly Lemma 5.7.8 for n = 3 and q = 2.

5.8 Conjugates, trace and norm

This section investigates connections between the roots of an irreducible polyno-
mial and defines two important maps, the trace and the norm.

Lemma 5.8.1 Let f ∈ IFq[x] be irreducible of degree m. Then f has a root α in
IFqm and all roots of f in IFqm are different and given by

α, αq, αq2 , . . . , αqm−1 ∈ IFqm .

92



Finite Fields

Proof. By Corollary 5.7.7 f splits completely over IFqm and it has m roots. Let β
be some root of f , we now show that then also f(βq) = 0. Let f(x) =

∑m
i=0 aix

i.

f(βq) = a0 + a1β
q + a2(β

q)2 + . . .+ am(β
q)m, ai ∈ IFq ⇒ aqi = ai

= aq0 + aq1β
q + aq2(β

2)q + . . .+ aqm(β
m)q

=
(
a0 + a1β + a2β

2 + . . .+ amβ
m
)q

= (f(β))q = 0q = 0.

This shows that with α also αq is a root and thus also αq2 , . . . , αqm−1
are roots of

f(x).

If any two of these powers would coincide, e.g. αqi = αqj for some
0 ≤ i < j ≤ m − 1, then we would have αqm−j+i

= αqm = α and α would
satisfy xq

m−j+i − x. By Lemma 5.7.5 this means that f divides xq
m−j+i − x and

by Lemma 5.7.6 this implies thatm|(m−j+i) contradicting 0 ≤ i < j ≤ m−1. ✷

The roots are thus q-th powers of one-another.

Definition 5.8.2 (Conjugates)
Let IFqm be an extension field of IFq and let α ∈ IFqm.

The elements α, αq, αq2 , . . . , αqm−1
are called the conjugates of α.

We know the term “conjugates” from the complex numbers. Indeed there it refers
to the same concept:

Example 5.8.3 The field of complex numbers has degree [C : IR] = 2 over the
reals and we obtain C as C ∼= IR[x]/(x2 + 1)IR[x]. The roots of x2 + 1 are
i =

√
−1 and −i. For a0 + a1i ∈ C the conjugate is traditionally defined as

(a0 + a1i) = a0 − a1i. So the conjugate is obtained by changing the root of the
irreducible polynomial.

Example 5.8.4 Let [IFqm : IFq] = m and let f(x) ∈ IFq[x] be irreducible of

degree m and let the roots of f(x) be β, βq, . . . , βqm−1
. By Lemma 5.7.4 we have

IFqm
∼= IFq[x]/f IFq[x] ∼= IFq(β). Let α = a0 + a1β + a2β

2 + · · · + am−1β
m−1. The

conjugate αq of α is given by

αq = aq0 + aq1β
q + aq2β

2 + . . .+ aqm−1 (β
q)m−1 , ai ∈ IFq

= a0 + a1β
q + a2 (β

q)2 + . . .+ am−1 (β
q)m−1

and so also in the case of finite fields the conjugates are obtained by changing the
root in the representation.

We note that computing q-powers is a homomorphism of the field to itself. In
the context of extension fields we need a more detailed definition.

Definition 5.8.5 (Automorphism of IFqm over IFq)
An automorphism of IFqm over IFq is an isomorphism of IFqm that leaves every
element of IFq invariant.
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Note that it is not enough that the field IFq is kept invariant, each individual
element must remain fixed.

Lemma 5.8.6 The automorphisms of IFqm over IFq are exactly the maps

σ0, σ1, . . . , σm−1, where σi(α) = αqi for α ∈ IFqm and 0 ≤ i ≤ m− 1.

Proof. The maps σi are field homomorphisms by Exercise 5.1.9.
For any 0 ≤ i ≤ m − 1 one has that the only element α with σi(α) = αqi = 0 is
α = 0 and thus the maps are injective. Since they operate of finite sets of the
same cardinality they are also surjective and thus they are isomorphisms.
The elements of a ∈ IFq are exactly those elements in IFqm which satisfy aq = a
and thus each σi leaves any element of IFq fix.
On a finite set every isomorphism can be described as a polynomial. The
field IFq is defined as the set of roots of xq − x and so every automorphism
of IFqm over IFq must be a power of σ1. Since σm = σ0 these are all possibilities. ✷

Definition 5.8.7 (Frobenius automorphism)
The automorphism σ = σ1 is called the Frobenius automorphism. It operates by
raising each element to the q-th power.

Definition 5.8.8 (Trace)
Let α ∈ IFqm. The relative trace of α over IFq denoted by TrIFqm/IFq(α) is given by

TrIFqm/IFq(α) = α + αq + · · ·+ αqm−1

.

If IFq = IFp is a prime field then TrIFpm/IFp is called the absolute trace or just
trace. In this case the index of Tr is often skipped.

With the notation from above the trace TrIFqm/IFq(α) of α is the sum of all con-
jugates of α over IFqm . We now define the multiplicative analogue.

Definition 5.8.9 (Norm)
Let α ∈ IFqm. The relative norm of α over IFq denoted by NIFqm/IFq(α) is given by

NIFqm/IFq(α) = α · αq · . . . · αqm−1

.

If IFq = IFp is a prime field then NIFpm/IFp is called the absolute norm or just
norm. In this case the index of N is often skipped.

Lemma 5.8.10 The images of the relative trace map and of the relative norm
map are contained in IFq

TrIFqm/IFq(α) ∈ IFq, NIFqm/IFq(α) ∈ IFq,

for all α ∈ IFqm.
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Proof. Let mα(x) ∈ IFq[x] be the minimal polynomial of α over IFq and let
mα(x) =

∑r
i=0 aix

i for some r = [IFq(α) : IFq]. By Lemma 5.7.3 we have r|m and
mα defines an extension field IFqr of IFq. Lemma 5.8.1 we have

m−1∏

i=0

(

x− αqi
)

=
r−1∏

i=0

(

x− αqi
)

·
r−1∏

i=0

(

x− αqi+r
)

· . . . ·
r−1∏

i=0

(

x− αqi+r(mr −1)
)

=
r−1∏

i=0

(

x− αqi
)

· . . . ·
r−1∏

i=0

(

x− αqi
)

︸ ︷︷ ︸
m
r

times

= mα(x)
m
r

Since mα ∈ IFq[x] also its m
r
-th power has all coefficients in IFq. The coefficient

of the second highest term equals −(α + αq + · · · + αqm−1
) = −Tr(α) while the

constant term equals the norm.
By comparison we obtain

rTrIFqm/IFq(α) = −mam−1 ∈ IFq

and
NIFqm/IFq(α) = a

m
r
0 ∈ IFq.

✷

We note some properties of the trace.

Lemma 5.8.11 Let L be a finite extension of K with [L : K] = m and let
α, β ∈ L, c ∈ K. For the relative trace TrL/K we have:

1. TrL/K(α + β) = TrL/K(α) + TrL/K(β),

2. TrL/K(c · α) = c · TrL/K(α),
3. TrL/K(c) = m · c,
4. TrL/K (αq) = TrL/K(α).

Proof. Given below as homework. ✷

One also has the corresponding properties of the norm.

Lemma 5.8.12 Let L be a finite extension of K with [L : K] = m and let
α, β ∈ L, c ∈ K. For the relative norm NL/K we have:

1. NL/K(α · β) = NL/K(α) · NL/K(β),

2. Im(NL/K) = K and Im(NL/K |L∗) = K∗

3. NL/K(c) = cm,

4. NL/K (αq) = NL/K (α).
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Proof. Given below as homework. ✷

Exercise 5.8.13 a) Prove Lemma 5.8.11 by just using the definition.

b) Prove Lemma 5.8.12 by just using the definition.

5.9 Irreducible polynomials

As stated before it is too expensive to factor xq
m−x over IFq to find an irreducible

polynomial of degree m over IFq and to construct the extension field IFqm . A more
careful analysis of the numberNq(d) of irreducible polynomials of degree d over IFq

given in Corollary 5.7.9 gives the probability that a randomly chosen polynomial
of degree d is irreducible.

In this section we state a criterion to determine whether a given polynomial is
irreducible. There is a vast literature on factorization of polynomials over finite
fields and on constructing irreducible polynomials. We would like to refer the
interested reader to a few books covering this topic.

� H. Cohen, “A Course in Computational Algebraic Number Theory”,
Springer

� J. von zur Gathen and J. Gerhard, “Modern Computer Algebra”, Cam-
brigde University Press.

� M. Pohst and H. Zassenhaus, “Algorithmic Algebraic Number Theory”,
Cambridge University Press.

and the books by Lidl and Niederreiter and by Shoup mentioned in the introduc-
tion to this chapter.

We present here the Rabin test which allows to test whether a polynomial is
irreducible.

Lemma 5.9.1 (Rabin test)
The polynomial f(x) ∈ IFq[x] of degree deg(f) = m is irreducible if and only if

f(x)
∣
∣xq

m − x

and for all divisors d|m, d < m one has

gcd(f(x), xq
d − x) = 1.
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Proof. We first note that all conditions hold for an irreducible polynomial of
degree m. It remains to be shown that they are sufficient. Let f split into factors
f = f1 · · · fr over IFq, where r ≥ 1.
By Lemma 5.7.8 xq

m − x is the product of all irreducible polynomials of degree
dividing m. So if the first property holds we must have deg(fi)|m for 1 ≤ i ≤ r.
If r > 1 the degree deg(f1) equals one of the d in the second round of tests and

f1|xqd − x for this d. So f is irreducible only if also the second property holds.
Since any factor of f must lead to a non-trivial gcd for some d we also have that
this condition is sufficient. ✷

For efficiency it might be interesting to note that one can release the second
property to testing only that for all prime divisors ℓ|m one has

gcd(f, xq
m/ℓ − x) = 1.

For a random polynomial it is likely that the condition gcd(f, xq
d−x) = 1 fails for

some small d so that it is computationally more efficient to have an early abort
after it. If, however, the candidate polynomial is likely to be irreducible and thus
all checks are expected to be done anyway this observation saves running time.

Example 5.9.2 Find an irreducible polynomial of the form x3−a over IF7. This
can still be done by a naive approach since a polynomial of degree 3 is irreducible
if and only if it does not have a root. In this case if a 6= 0, 1,−1. So x3 − 2 is
irreducible.
Use of the Magma online calculator available at
http: // magma. maths. usyd. edu. au/ calc/ makes it easy to implement
the Rabin test and it even comes with a built-in in function IsIrreducible.

Irreducible polynomials with only two terms as considered in this example are
interesting for constructing finite fields. In low weight polynomials have special
names.

Definition 5.9.3 (Binomial, trinomial, pentanomial) A polynomial of the
form xn + a0 with two non-zero coefficients is called a binomial.
A polynomial of the form xn+amx

m+a0 with three non-zero coefficients is called
a trinomial.
A polynomial of the form xn+amx

m+alx
l+akx

k+a0 with five non-zero coefficients
is called a pentanomial.

We first note that over IF2 there cannot be an irreducible binomial as 0 or 1 would
be a root. It is a bit more surprising that there cannot be an irreducible binomial
of even degree over IFn

2 .
The following lemma considers irreducible binomials over arbitrary finite fields.

Lemma 5.9.4 Let n be prime. An irreducible binomial f(x) = xn + a0 of degree
n over IFq exists if and only if n|q − 1.
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Proof. If n ∤ q − 1 then the map τ : IFq → IFq; a 7→ an is a bijection by
Corollary 5.3.4 and thus every element a0 is an n-th power and any binomial of
degree n has a linear factor over IFq.

If, however, n|q−1 then τ has a non-trivial kernel and each element in the image
has n pre-images. Choose a0 6∈ Im(τ) and so f has no linear factor over IFq. Then
the last property of the Rabin test holds since n is prime.

For the first property note that n|q − 1 implies that there is some integer k with
q = 1+kn and thus qn−1 = (1+kn)n−1 = 1+nkn+

(
n
2

)
(kn)2+ · · · (kn)n−1 =

n2kℓ = n(q − 1)ℓ for some ℓ.To show that f(x) = xn + a0 divides xq
n − x note

xq
n−x = x(xq

n−1−1) = x(xn(q−1)ℓ−1) ≡ x(a
(q−1)l
0 −1) = x(1−1) = 0 mod xn+a0

using aq−1
0 = 1. ✷

5.10 Arithmetic in binary fields

In Section 5.5 we have seen that an extension field IFqn of IFq can be represented
using a polynomial basis. Let f(x) ∈ IFq[x] be an irreducible polynomial of degree
n. Then we have by Lemma 5.7.3 that

IFqn
∼= IFq[x]/f(x)IFq[x] =

{
n−1∑

i=0

aix
i + f(x)IFq[x]

∣
∣ai ∈ IFq

}

.

In this section we consider the special case q = 2 which is very important for
applications, particularly for hardware implementations. An advantage of such
binary fields is that additions are XORs and that in squarings no mixed terms need
to be considered as by Exercise 5.1.9 we have (a+ b)2 = a2 + b2.

For multiplications and squarings it is necessary to reduce the resulting polyno-
mial of degree ≥ n modulo the irreducible polynomial f(x) to obtain the unique
remainder modulo f of degree less than n.

Example 5.10.1 The polynomial f(x) = x10+x9+x8+x7+x6+x5+x4+x3+
x2+x+1 ∈ IF2[x] is irreducible. To compute the product (x9+x7+x4+x2+1) ·
(x8 + x6 + x5 + x3 + x2) in IF210 we first compute the product in IF2[x] and then
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reduce the result modulo f(x). The steps are as follows:

(x9 + x7 + x4 + x2 + 1) · (x8 + x6 + x5 + x3 + x2) =

x17 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

x7 · x10 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

(x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 +

+x8 + x7) + x14 + x13 + x12 + x11 +

+x10 + x4 + x3 + x2 =

x16 + x15 + x9 + x8 + x7 + x4 + x3 + x2 =

x6 · x10 + x15 + x9 + x8 + x7 + x4 + x3 + x2 =

x14 + x13 + x12 + x11 + x10 + x6 + x4 + x3 + x2 =

x4 · x10 + x13 + x12 + x11 + x10 + x6 + x4 + x3 + x2 =

x9 + x8 + x7 + x5 + x3 + x2.

Note, that g(x) = x10 + x3 + 1 is an irreducible polynomial of degree 10 over IF2.
Reducing modulo g has much easier iterations since x10 is replaced by only two
terms x3 + 1. Since g is sparse it also becomes useful to replace more than one
power simultaneously.

(x9 + x7 + x4 + x2 + 1) · (x8 + x6 + x5 + x3 + x2) =

x17 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

x7 · x10 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

(x10 + x7) + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

x14 + x13 + x12 + x11 + x7 + x4 + x3 + x2 =

(x4 + x3 + x2 + x) · x10 + x7 + x4 + x3 + x2 =

x6 + x5 + x4 + x.

We deduce from this example that it is useful to choose irreducible polynomials
with as few terms as possible.

Lemma 5.10.2 For all n,m ∈ IN, n > 1 the binomial xn + xm ∈ IF2[x] is not
irreducible.
More generally, there is no irreducible polynomial over IF2 with an even number
of nonzero terms.

Proof. If m > 0 then xn + xm is divisible by xm and thus not irreducible. If
m = 0 we see that 1 is a root of xn + 1.
Consider f(x) =

∑2m
i=1 x

ki , where ki < ki+1 for all 1 ≤ i ≤ 2m − 1. If k1 > 0 we
have that xk0 divides f(x) while otherwise 1 is a root of it since we are working
in characteristic 2. ✷

As the example showed, there are extension degrees n for which there exists
an irreducible trinomial. To construct IF2n for a given n, it is best to use an
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irreducible trinomial if one exists. Note that if an irreducible trinomial exists
there is one xn + xm + 1 for which m ≤ n/2.
By the lemma we know that there are no irreducible polynomials with 4 nonzero
coefficients, so if no suitable trinomial exists one should search for an irreducible
pentanomial. It is conjectured that for all binary fields for which there is no irre-
ducible trinomial one can find an irreducible pentanomial. Even though this is not
proven, all fields of cryptographic interest have been checked. So in applications
we can always find an irreducible trinomial or pentanomial.
For a table of irreducible polynomials consult Gadiel Seroussi’s paper “Table of
Low-Weight Binary Irreducible Polynomials”.

Remark 5.10.3 For more details on the implementation of binary fields the
reader is encouraged to check the literature for normal basis representations. A
normal basis of IF2n over IF2 is a basis of the form {θ, θ2, θ22 , θ23 , . . . , θ2n−1}. Note
that for most values α ∈ IF2n the conjugates of α do not form a basis, so normal
elements are special.
An advantage of normal bases is that they lead to very fast squarings:

If a =
n−1∑

i=0

aiθ
2i then a2 =

n−1∑

i=0

ai−1θ
2i ,

where the index i of ai is considered modulo n. This means that a squaring can
be implemented as a cyclic shift of the coordinates from (a0, a1, . . . , an−2, an−1)
to (an−1, a0, a1, . . . , an−2). Likewise, squareroots can be implemented by a cyclic
left-shift. On the downside, in software multiplications are usually less efficient
than in a polynomial basis. So it depends on the application and in particular on
the importance of squarings in it whether a normal basis or a polynomial basis
representation should be chosen. In hardware implementation the situation is yet
again different and normal bases can be the clear winner.

Exercise 5.10.4 a) State all irreducible polynomials of degree 3 and of degree 4
over IF2.

b) The polynomial f(x) = x97 + x6 + 1 is irreducible over IF2. We can use it to
construct IF297

∼= IF2[x]/f(x)IF2[x]. Compute (x86 + x25 + x13 + x4 + x2 + x+
1) · (x83 + x31 + x17 + x7 + x3) modulo f(x).

c) The polynomial g(x) = x89 + x6 + x5 + x3 + 1 is irreducible over IF2. We can
use it to construct IF289

∼= IF2[x]/g(x)IF2[x]. Compute (x86 + x25 + x13 + x4 +
x2 + x + 1) · (x83 + x31 + x17 + x7 + x3) modulo g(x). Compare the time you
needed for the multiplication in this exercise and in the previous one. Note
that the previous one deals with a larger finite field.

5.11 Arithmetic in prime fields

There exists a vast amount of literature on fast implementations of prime fields.
We do not go into the details here but comment that to speed up modular reduc-
tions it is useful to choose primes which are close to a power of 2, or even better

100



Finite Fields

close to a power of 2w, where w is the word size, i.e. p = (2w)k − c, where c ∈ IN
is small. This approach is analogous to choosing irreducible trinomials in binary
fields.

5.12 Arithmetic in optimal extension fields

Optimal extension fields (OEFs) are finite fields IFqn where the base field IFq and
the extension degree n are chosen such that arithmetic in IFq can be implemented
particularly fast. A common choice for the base field is IFq = IFp, a prime field,
such that p fits into the word size and is close to a power of two, i.e. p =
PreviousPrime(2w), where w is the word-size. The extension degree n is often
chosen to be prime, particularly in applications to elliptic curve cryptography –
we will not go into the details here but mention that Weil descent attacks on
elliptic curves may apply when the extension degree is not prime. As we have
seen in the section on binary fields, it is interesting to work with irreducible
polynomials with few nonzero coefficients. If q is odd we can hope for irreducible
binomials.

Lemma 5.12.1 Let n and p be primes such that p ≡ 1 mod n. The binomial
xn − a is irreducible over IFp if and only if a is not an nth power in IFp.

Proof. If a is an nth power in IFp, i.e. there exists a b ∈ IFp with bn = a, then
clearly xn − a is not irreducible since b is a root.
If a is not an nth power then there is no root of f(x) = xn − a over IFp. The
condition n ≡ 1 mod p means that the nth roots of unity are in IFp, i.e. there are
n elements ui ∈ IFp, 1 ≤ i ≤ n with uni = 1. To fix notation let u1 = 1. Let α be
a root of f(x) over some extension field IFpm . The multiples uiα for 2 ≤ i ≤ n
are distinct from α, are defined over the same extension field IFpm and are also
roots of f(x) because

(uiα)
n = uni α

n = αn = a.

Since there are n of them they are exactly the roots of f(x) and so they
are the conjugates of α. This means that α is defined over a field of exten-
sion degree no less than n, and so α is defined exactly over IFpn . We have
IFpn
∼= IFp(α) ∼= IFp[x]/(x

n − a)IFp. ✷

Following this lemma, optimal extension fields are finite fields IFpn for which p is
a prime closely related to the word-size, n satisfies n ≡ 1 mod p and the extension
field is constructed with an irreducible binomial f(x) = xn − a.
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Chapter 6

Elliptic Curves

In public key cryptography elliptic curves over finite fields are of ever-growing
importance. Now that we know the theoretical background of finite fields and
algebra we are ready to define them and show how to compute efficiently on them.
In this chapter we consider curves given by an equation of the form

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6, (6.1)

where the ai are elements of a field K and where we have some additional re-
quirements on the coefficients. For a pictorial description we first consider the
case K = IR. This is not used in cryptography but has the advantage that we can
easily sketch the curve and define a group law on the set of points. In the second
section we give the mathematical background to curves over arbitrary fields, then
we specialize to finite fields. If the group of points is used in a cryptosystem, the
group operation need to be as fast as possible. We give optimized formulae for
prime fields IFp with p > 3, binary fields IF2n and briefly comment on optimal
extension fields (OEFs).

It is hard to find suitable text books. For the reader interested in mathematics the
books by Silverman contain a lot of interesting material. An easier introduction is
provided in Silverman and Tate. All these books are not specific to cryptographic
applications. Koblitz – one of the proposers of elliptic curve cryptography – wrote
two textbooks which contain material on elliptic curves. The Certicom tutorial
does not go beyond the material covered in this chapter. The java applets for
actively playing with an elliptic curve are worth a visit to that page. Recently,
4 books on elliptic (and more general hyperelliptic) curve cryptography have
been published. They all contain the material covered here and are strongly
recommended for further reading; however, none of them is a text book.

� R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, F. Ver-
cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography,
CRC Press.

� I. F. Blake, G. Seroussi, N. P. Smart, Elliptic Curves in Cryptography,
Cambridge University Press.
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� I. F. Blake, G. Seroussi, N. P. Smart, Advances in Elliptic Curve Cryptog-
raphy, Cambridge University Press

� Certicom, Online Elliptic Curve Cryptography Tutorial, at
https://www.certicom.com/content/certicom/en/ecc-tutorial.html

� D. Hankerson, A. J. Menezes, S. A. Vanstone, Guide to Elliptic Curve
Cryptography, Springer.

� N. Koblitz, A Course in Number Theory and Cryptography, Springer.

� N. Koblitz, Algebraic Aspects of Cryptography, Springer.

� J. H. Silverman, The Arithmetic of Elliptic Curves, Springer.

� J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,
Springer.

� J. H. Silverman, J. Tate, Rational Points on Elliptic Curves, Springer.

6.1 Considerations over the real numbers

This section is meant to provide an intuitive understanding of elliptic curves. All
definitions are repeated in the next section in more generality.

Definition 6.1.1 (Elliptic curve over the reals) An elliptic curve over the
real numbers IR can be defined by an equation of the form

y2 = x3 + a2x
2 + a4x+ a6, where a2, a4, a6 ∈ IR. (6.2)

Vice versa, if x3 + a2x
2 + a4x + a6 is square-free, then (6.2) defines an elliptic

curve.

Note that the above means that equation (6.2) does not define an elliptic curve,
if x3 + a2x

2 + a4x+ a6 has a repeated root.
As a shorthand we write f(x) = x3 + a2x

2 + a4x+ a6. We consider real solutions
to equations of the form (6.2), i.e. points P = (xP , yP ), with xP , yP ∈ IR, which
satisfy the curve equation. To sketch the set of solutions in IR2, we first observe
that there are either 1 or 3 points with y-coordinate 0, i.e. points on the x-axis,
depending on whether f(x) has 1 or 3 real roots. If f(b) = 0 then (b, 0) is a point
on the curve since indeed 02 = f(b) = 0.
The curve equation is symmetric with respect to the x-axis. If P = (xP , yP )
satisfies the curve equation then so does the coordinate tuple (xP ,−yP ).
Let f(x) split as f(x) = (x − b1)(x − b2)(x − b3) with b1 < b2 < b3. In IR
every positive number has two squareroots while negative numbers do have no
squareroots. If xP < b1 then f(xP ) < 0 since all three factors are negative.
This means that there are no points with x-coordinates smaller than b1. For
b1 < xP < b2 we have f(xP ) > 0 and thus there are two points with x-coordinate
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xP . Between b2 and b3 there are no points while for xP > b3 we obtain f(xP ) > 0
and thus there exist points for all values larger than the largest root of f .

The following two pictures correspond to the cases of x3+a2x
2+a4x+a6 having

1 or 3 real roots, in particular the equations y2 = (x + 1)x(x − 1) and y2 =
(x+ 1)(x2 + 1) were drawn.

x

y

x

y

It is possible to define a group law on the points of an elliptic curve and describe
the rules in a very pictorial way.

Let {P = (xP , yP ) | xP , yP ∈ IR with y2P = x3P + a2x
2
P + a4xP + a6} be the set of

real points on the curve. To define a group law we need to include one further
point, P∞. In the picture it should be thought of as lying in the direction of
the y-axis infinitely far out so that every line through the y-axis intersects it.
Readers familiar with non-Euclidean geometry will recognize this as the point at
infinity in which all lines parallel to the y-axis intersect. Let G be the union of
the affine points (given by 2 coordinates) and the point at infinity. We define the
group operation ⊕ on points P,Q ∈ G by the following procedures for adding
two different points P,Q 6= P∞ and for doubling one point P 6= P∞. We will deal
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with the special cases after the general description.

•P

•Q

•R = inv⊕(P ⊕Q)

•P ⊕Q

x

y

•P
•
R = inv⊕([2]P )

• [2]P

x

y

1. To add the points P and Q draw the line connecting them. This line is
intersecting the curve in exactly one more point R.

2. Draw a line parallel to the y-axis through R.

3. The other point of intersection with the curve is P ⊕Q.
4. To double the point P draw the tangent line to the curve at the point P in

place of the connecting line and proceed as above.

The following picture shows the same group law for the other form of curve where
there is only one real root of x3 + a2x

2 + a4x+ a6.

•P

•Q

•R = inv⊕(P ⊕Q)

•P ⊕Q

x

y

•P

•
R = inv⊕([2]P )

• [2]P

x

y

Now we go into the details of this operation and handle special cases. We first
notice that the procedure is totally symmetric, so the roles of P and Q can be
interchanged, i.e. P ⊕Q = Q⊕P for all P,Q ∈ G, and we have an abelian group
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The procedure for adding two points fails if we have P = (xP , yP ) and Q =
(xP ,−yP ) since their connecting line is vertical and there is no visible point in
which this line would intersect the curve. Remember that the point at infinity
P∞ should be seen as way out on the y-axis and so it is the third point. Since all
vertical lines go through P∞ the vertical line through it, requested by the adding
operation, is not an ordinary line. We define that the resulting point is P∞, i.e.
(xP , yP )⊕ (xP ,−yP ) = P∞.
The addition P ⊕ P∞ is similarly not covered by the pictorial description. Like
before, the connecting line is the vertical line trough P . The third point of
intersection is the point (xP ,−yP ) which has the same x-coordinate as P and
negative y-value. The last step of mirroring the intermediate result on the x-axis
leads to P as the resulting point. So, for any P ∈ G\{P∞} we have

P ⊕ P∞ = P and likewise P∞ ⊕ P = P.

Finally, we define P∞ ⊕ P∞ = P∞, so P∞ operates as neutral element.
Since we noticed in the last paragraph that (xP , yP )⊕ (xP ,−yP ) = P∞, we have
that inv⊕(xP , yP ) = (xP ,−yP ). We include inv⊕(P∞) = P∞ in the descriptions.
If P has a vertical tangent – in this example if P is one of (−1, 0), (0, 0) and (1, 0)
– then P = inv⊕(P ) and so [2]P = P∞. So the points with vertical tangent have
order ord(P ) = 2.
We now have defined a group operation on all elements of G and if the statement
holds true, that there always is a third point on the line, then G is closed under
the operation ⊕. In the next section we will introduce formulae to compute the
coordinates of P ⊕Q given the coordinates of P and Q. The computations make
clear that indeed there is always exactly one more point of intersection. Note,
that we count the point twice if the line is tangent to it. If the point is a point
of inflection (the curvature of the curve changes sign, so the tangent crosses the
curve) then we count the point even three times.
We have identified P∞ as the neutral element and know that inv⊕(xP , yP ) =
(xP ,−yP ) and P⊕Q = Q⊕P . To summarize, we have shown all group properties
except for associativity. Proving it is cumbersome with the methods we have at
hand. Clearly, one can take the formulae developed in the next section and show
that P ⊕ (Q ⊕ R) = (P ⊕ Q) ⊕ R for any P,Q,R ∈ G but going through all
possible cases takes a lot of time and is not instructional. We therefore skip the
proof and refer to the literature, in particular to the “Handbook of Elliptic and
Hyperelliptic Curve Cryptography”.

Exercise 6.1.2 a) Sketch the curve given by E1 : y
2 = x3− 3x2− x+3 over the

reals. Does E1 define an elliptic curve?

b) Sketch the curve given by E2 : y2 = x3 over the reals. Does E2 define an
elliptic curve?

c) Show that the points P = (0,
√
3) and Q = (1, 0) are on E1. Draw the compu-

tation of [2]P and P ⊕Q.
d) State the coordinates of inv⊕(P ) and inv⊕(Q). Find the coordinates of at least

one more point which is not equal to its inverse or to inv⊕(P ).
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6.2 Formulae for group operation over the reals

To enable a computer to perform the group operation we need to translate this
pictorial description into operations involving the curve coefficients a2, a4, and a6
and the coordinates of the two points P and Q. Let P = (xP , yP ), Q = (xQ, yQ),
and P ⊕ Q = S = (xS, yS). We first derive the formulae for addition of two
general points P and Q 6= P, P∞, inv⊕(P ) and then consider doubling.

Addition The line connecting P and Q is of the form y = λx + µ, where λ is
the slope and µ is the intercept. Inserting the coordinates we obtain

λ =
yQ − yP
xQ − xP

for the slope. Since P is a point on the line, i.e. yP = λxP + µ, we get

µ = yP − λxP = yP −
yQ − yP
xQ − xP

xP .

The points P,Q, and R are the points in which the line intersects the curve. This
means that their coordinates satisfy both, the curve equation and the equation
of the line. To find the coordinates of R we equate the expressions for y2 and
obtain

(λx+ µ)2 = x3 + a2x
2 + a4x+ a6.

We transform this equation to obtain 0 on the left-hand side. Recall, that the
equation was constructed so that xP , xQ and xR are the roots of the resulting
polynomial. By Lemma 3.7.8 this means that the polynomial is divisible by
(x− xP ) , (x− xQ), and (x− xR). Since the polynomial is of degree 3 it must be
equal to (x− xP ) (x− xQ) (x− xR) so that we obtain

0 = x3 + (a2 − λ2)x2 + (a4 − 2λµ) x+ a6 − µ2

= (x− xP ) (x− xQ) (x− xR)
= x3 − (xP + xQ + xR) x

2 + (xPxQ + xPxR + xQxR)x− xPxQxR.

By equating the coefficients of x2 we obtain xR = λ2−a2−xP−xQ. By symmetry
we get xS = xR. and from the line yS = −(λxS + µ) = λ (xP − xS) − yP , where
we already took care of the sign change from the last mirroring operation.

Doubling As we have seen before the formulas for doubling differ only in the
way the line was obtained. We recall from “Mathematics for Engineers” courses
the rules for implicit differentiation. Let F (x, y) be a function in two variables x
and y. The equality F (x, y) = 0 implicitly defines y as a function of x so that lo-
cally one can write y = g(x). If the partial derivative with respect to y is non-zero
the derivative of g is given by −Fx(x, y)/Fy(x, y), where Fx(x, y) = ∂F (x, y)/∂x
denotes the partial derivative with respect to x and Fy(x, y) = ∂F (x, y)/∂y the
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one with respect to y. Here we have F (x, y) = y2 − (x3 + a2x
2 + a4x + a6) and

thus Fx(x, y) = −(3x2 + 2a2x+ a4) and Fy(x, y) = 2y leading to

λ =
3x2 + 2a2x+ a4

2y
.

A different approach is to locally solve the equation for y which gives

y(x) = ±
√

x3 + a2x2 + a4x+ a6

y′(x) = ±
(
3x2 + 2a2x+ a4

) 1

2
√
x3 + a2x2 + a4x+ a6

=
3x2 + 2a2x+ a4

2y
,

where we kept the same sign for the replacement of y in the last step. The
definition of µ in terms of λ and the point P remains the same as in addition.

Remark 6.2.1 Let E be a curve given by y2 = x3+a2x
2+a4x+a6 with a2, a4, a6 ∈

IR and let P,Q 6= P∞ be points on the curve. The addition of P and Q works as
follows:

1. Compute the slope

λ =

{
yQ−yP
xQ−xP

Q 6= P, inv⊕(P ); P,Q 6= P∞.
3x2

P+2a2xP+a4
2yP

P = Q,P 6= inv⊕(P ); P 6= P∞.

2. Put xS = λ2 − a2 − xP − xQ.

3. Put yS = λ (xP − xS)− yP .

4. We have P ⊕Q = S.

Starting from these formulae one can actually prove that the chord-and-tangent
method leads to a group. The longest part of the proof is to show associativity.

Exercise 6.2.2 a) The points P = (0,
√
3) and Q = (1, 0) are on the elliptic

curve given by E1 : y
2 = x3 − 3x2 − x + 3. Compute the coordinates of [2]P ,

[3]P , and P ⊕Q.

b) Let the curve E3 be defined by E3 : y
2 = x3+2x2−x− 2. Check that E3 is an

elliptic curve. Find all points of order 2, i.e. all points P so that [2]P = P∞.
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6.3 Elliptic curves

The last section helped to get an idea of elliptic curves. We now consider a more
general curve equation and also explain where the point at infinity comes from.
We start by explaining where the condition on f in (6.2) comes from. In the
doubling formula it was important that we were able to draw a unique tangent
at every point of the curve. Looking ahead a few lines we see two examples of
curves with points in which tangents are not uniquely defined. Our definition of
an elliptic curve must avoid such points if we want to use the same procedure for
doubling. We first give a semi-formal definition and then state a mathematical
criterion which could just as well be taken as the definition.

Definition 6.3.1 (Singularities)
Let C be a curve over a field K. A point P ∈ C is singular if the tangent to the
curve at that point is not defined.
A curve is called singular if it contains at least one singular point. If there is no
singular point over K and any of its extension fields then the curve is nonsingular.

The following example shows two different types of singularities.

Example 6.3.2 The elliptic curves we considered in the last two sections were
symmetric to the x-axis. We stick to this shape for the moment and draw two
possible cases of singularities, i.e. curves with points in which the tangent at that
point is not defined. The first picture shows a node, characterized by having two
candidate tangents at that point. The second picture shows a cusp. The tangents
at points next to the singularity have opposite slopes.

x

y

x

y

On the left-hand side we draw the graph of y2 = (x− 1)2 x which has a node, the
right curve is y2 = x3 having a cusp.
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There is a further extreme case which we obtain by changing the curve coefficients,
namely a double root of f which is the smallest root. In that case, the “circular”
part of the curve becomes a single point. This is impossible to draw and we
highly recommend playing with the java applet on the Certicom page (under “2.3
Experiment” on their page).

The following lemma is very useful to detect singularities. We state it without
proof. As a motivation remember that the implicit differentiation used to find
the slope of the tangent requires the partial derivatives to exist and at least one
of them to be non-zero.

Lemma 6.3.3 (Jacobi criterion) Let C be a curve over a field K given by
an equation F (x, y) = 0. The curve is singular at a point P = (xP , yP ) with
F (xP , yP ) = 0 if and only if it also satisfies both partial derivative equations
Fx(xP , yP ) = 0 and Fy(xP , yP ) = 0.

Example 6.3.4 Consider the curves given in the previous example. We now
show that their singularities are indeed detected by the Jacobi criterion. We first
consider y2 = (x− 1)2 x. From the picture we see that the possible singularity is
in P = (1, 0) which indeed satisfies the curve equation. The partial derivatives of
F (x, y) = y2 − (x− 1)2 x are Fx(x, y) = − (2(x− 1)x+ (x− 1)2) and Fy(x, y) =
2y. Inserting P gives Fx(1, 0) = 0 and Fy(1, 0) = 0. So P is a singular point
according to the Jacobi criterion and the curve is singular, since it contains one
singular point.
For the second curve the equation is even simpler, namely F (x, y) = y2−x3, and
the point (0, 0) is on the curve and satisfies both partial derivatives Fx(x, y) =
−3x2 and Fy(x, y) = 2y.

Example 6.3.5 In the previous section we considered curves of the form E :
y2 = f(x) over the real numbers and required that f(x) has only single roots. We
now show that this is equivalent to having a nonsingular curve. Namely, consider
the partial derivative equations

Fx(x, y) = f ′(x),

Fy(x, y) = 2y.

A singular point S = (xS, yS) must satisfy both these equations and the curve
equation, so in particular it must have yS = 0. Inserting this into the curve
equation we obtain 0 = f(xS) and so xS is a root of f(x). From the first partial
derivative we see that also f ′(xS) = 0. By Exercise 5.4.4c we know that this
means that xS is a multiple root of f(x). This can be rephrased by saying that
there are singularities on E if and only if f(x) has multiple roots.

We now have all the necessary vocabulary to define elliptic curves.
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6.3 Elliptic curves

Definition 6.3.6 (Elliptic Curve)
An elliptic curve over a field K is a nonsingular curve defined by an equation of
the form

E : y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6,

where ai ∈ K for 1 ≤ i ≤ 6 and every nonsingular curve defined by such an
equation is an elliptic curve. We put h(x) = a1x + a3 and f(x) = x3 + a2x

2 +
a4x+ a6.
The set of points defined over K is given by

E(K) =
{
(xP , yP ) ∈ K2

∣
∣ y2P + (a1xP + a3)yP = x3P + a2x

2
P + a4xP + a6

}
∪{P∞}.

It is called the set of K-rational points of E.
Let L be an extension field of K. The set E(L) of L-rational points is given by

E(L) =
{
(xP , yP ) ∈ L2

∣
∣ y2P + (a1xP + a3)yP = x3P + a2x

2
P + a4xP + a6

}
∪{P∞}.

The set of K-rational points is a subset of the set of L-rational points.

This definition gives curves of a more general shape than those considered in the
previous sections.

Example 6.3.7 In general we cannot assume that a1 = a3 = 0. The following
shows addition on the curve y2 +(−0.75x− 1)y = x3 +1.5x2− 5x− 4.5 following
the same chord-and-tangent rule as before.

•P

•Q

•
R = inv⊕(P ⊕Q)

•P ⊕Q

x

y

The point P∞ is the neutral element but now the opposite of a point is no longer
obtained by changing the sign of y. The picture shows that there are still two
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points which have the same x-coordinate. If P = (xP , yP ) is on the curve then
the other point with the same x-coordinate is (xP ,−yP − a1xP − a3) since

(−yP−a1xP−a3)2+(a1xP+a3)(−yP−a1xP−a3) = y2P+(a1xP+a3)yP = x3P+a2x
2
P+a4xP+a6,

where the last equality follows from P ∈ E(K). So we have inv⊕(P ) = (xP ,−yP−
a1xP − a3).

To obtain formulae for the group operations we follow the same road as in the
last section. Note, that now K is a general field which might be of characteristic
6= 0. This might imply that some of the expressions that we state in the sequel
contain zero expressions, like 2y in characteristic 2. Here we aim at finding the
most general formulae; in later sections we specify the field of definition to obtain
more efficient formulae for the group operation. Let again P ⊕Q = S.

Addition Like in the special case, the line connecting P and Q has slope

λ =
yQ − yP
xQ − xP

and intercept

µ = yP − λxP = yP −
yQ − yP
xQ − xP

xP .

We substitute y by λx+ µ in the general curve equation and obtain:

(λx+ µ)2 + (a1x+ a3) (λx+ µ) = x3 + a2x
2 + a4x+ a6.

Like before this is a polynomial of degree 3 in x and we know 3 roots, namely
xP , xQ and xR. We transform this equation to obtain 0 on the left-hand side and
obtain

0 = x3 + (a2 − λ2 − a1λ)x2 + (a4 − 2λµ− a1µ− a3λ) x+ a6 − µ2 − a3µ
= (x− xP ) (x− xQ) (x− xR)
= x3 − (xP + xQ + xR) x

2 + (xPxQ + xPxR + xQxR)x+ xPxQxR.

By equating the coefficients of x2 we obtain xR = λ2 − a2 + a1λ− xP − xQ = xS
and from the line yiS = −(λxS + µ) = λ (xP − xS) − yP − a1xS − a3, where we
already took care of the mirroring operation.

Doubling The formulae for doubling depend more on the curve coefficients than
those for addition. The slope of the tangent at a point P = (xP , yP ) is given by

λ =
3x2 + 2a2x+ a4 − a1y

2y + a1x+ a3
.

The use and definition of µ is like in the case of addition.

We state the following theorem without proof. Most parts have been motivated
in the past paragraphs.
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Theorem 6.3.8 Let E be an elliptic curve over a field K given by y2 + (a1x +
a3)y = x3 + a2x

2 + a4x + a6 with a1, a2, a3, a4, a6 ∈ K. The set of K-rational
points of E forms a group under the operation ⊕ given by:

P ⊕ P∞ = P∞ ⊕ P
inv⊕(xP , yP ) = (xP ,−yP − a1xP − a3)

(xP , yP )⊕ (xQ, yQ) = (xS, yS)

= (λ2 − a2 + a1λ− xP − xQ, λ (xP − xS)− yP − a1xS − a3),

where for (xP , yP ) 6= inv⊕(xQ, yQ) we have

λ =

{
yQ−yP
xQ−xP

(xP , yP ) 6= (xQ, yQ)
3x2

P+2a2xP+a4−a1yP
2yP+a1xP+a3

(xP , yP ) = (xQ, yQ)
.

Exercise 6.3.9 a) Let K = IF2n for some integer n. Is E1 : y
2 = x3 + x+ 1 an

elliptic curve over K? For which a2, a4, a6 ∈ K is E2 : y
2 = x3+a2x

2+a4x+a6
an elliptic curve?

b) Let K = IF2n for some integer n. For which a2, a3, a4, a6 ∈ K is E3 : y
2+a3y =

x3 + a2x
2 + a4x+ a6 an elliptic curve?

c) Let E4 : y2 + 3xy + y = x3 + 4x + 4 be defined over IF5. Verify that E4 is
an elliptic curve and that P = (4, 1) and Q = (2, 3) are points of the curve.
Compute [2]P , [2]Q, and P ⊕Q.

6.4 Elliptic curves over finite fields

In this section we focus on elliptic curves over finite fields IFq, q = pn. In the
exercises in the last section we already worked over finite fields using the general
formulae. Here we provide some graphs of elliptic curves over finite fields and
study the number of IFq-rational points.

Consider the curve E : y2 − 5xy = x3 − 7 defined over IF13. We first note that E
is an elliptic curve since there is no point over IF13 or any of its extension fields
satisfying both partial derivatives Fx(x, y) = 3x2 + 5y, Fy(x, y) = 2y − 5x and
the curve equation since (0, 0) and (11, 8) are the only solutions to the system of
partial derivatives but they both are not a points on the curve.

The graph of this set of points looks as follows
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where each of the red dots is a coordinate tuple in IF2
13 starting from (0, 0) in

the lower left corner. Note, that like before points usually occur in pairs having
the same x-coordinate, however the symmetry is harder to see since only discrete
values exist. In addition to the depicted points we have P∞ which – as usual –
we think of as lying far out on the y-axis.

A line in IF13 still has a noticeable similarity with what we usually think of as a
line. The following picture shows on the left the line y = 7x+9 and on the right
the intersection of the curve with that line leading to P ⊕Q = R.
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To depict binary fields IF2n we choose the polynomial basis {1, ξ, ξ2, . . . , ξn−1} and
encode the field element

∑n−1
i=0 ciξ

i by the integer
∑n−1

i=0 ci2
i between 0 and 2n−1.

The following picture shows on the left the elliptic curve y2 + xy = x3 + 1 over
IF16
∼= IF2[ξ]/(ξ

4+ξ+1)IF2[ξ] and on the right an addition on this curve using the
line y = ξx+1. Note how for x-values “less” than ξ3 the line is nicely noticeable
while for “larger” values the reduction modulo ξ4 − ξ − 1 is very noticeable.
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Since for both of the coordinates there are only q possible values the set of IFq-
rational points of an elliptic curve is finite. In a finite field of odd characteristic
half of the elements are squares and as a rule of thumb one can expect that about
half of the x-coordinates lead to quadratic expressions in y which have roots.
Thus about q/2 values lead to two points each and there is also P∞. So we can
expect to find approximately q points on an elliptic curve over IFq. For fields of
even characteristic similar considerations hold. Note that by Exercise 6.3.9.a any
elliptic curve over a binary field must have h(x) 6= 0 and so similar considerations
hold. Hasse’s theorem provides a more accurate statement which we are not able
to prove in this course.

Theorem 6.4.1 (Hasse’s theorem) Let E be an elliptic curve over a finite
field IFq. There exists an integer t so that for the number of IFq-rational points
we have

|E(IFq)| = q + 1− t, where |t| ≤ 2
√
q.

Example 6.4.2 Consider E : y2 − 5xy = x3 − 7 over IF13. We can see from the
picture at the beginning of this section that

E(IF13) = {(1, 2), (1, 3), (2, 5), (4, 9), (4, 11), (9, 7), (9, 12), (11, 1), (11, 2), P∞}.
So we have |E(IF13)| = 10 = 13 + 1− t and t = 4 is indeed ≤ 2

√
13.

Example 6.4.3 Consider E : y2 + xy = x3 + 1 over IF2. By trying out the
possible values 0, 1 for the x-coordinate we see

E(IF2) = {(0, 1), (1, 0), (1, 1), P∞}.
So we have |E(IF2)| = 4 = 2 + 1 − t and t = −1. The absolute value of t is
≤ 2
√
2.

At the beginning of this section we considered the same curve over IF24. We count
|E(IF24)| = 16 on the picture taking into account the point at infinity. In this case
t4 = 1, where the index 4 refers to the extension of degree 4 of IF2. Later we will
obtain a relation between the number of points on the curve over the ground field
and over extension fields.
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Let E be defined over IFq and let m ∈ IN. The set of IFqm-rational points E(IFqm)
contains E(IFq) as a subset. In Chapter 5 we introduced the Frobenius automor-
phism σ of IFqm over IFq. By Definition 5.8.7 it operates by raising every element
to the q-th power. We extend σ to E(IFqm) by

σ(P ) = σ(xP , yP ) = (xqP , y
q
P )

and note that P ∈ E(IFqm) implies that σ(P ) ∈ E(IFqm). To see this we notice
that the curve coefficients ai are defined over IFq and thus σ(ai) = ai so that by
Exercise 5.1.9 we have the system of equivalences

σ(yP )
2 + (a1σ(xP ) + a3)σ(yP ) = σ(xP )

3 + a2σ(xP )
2 + a4σ(xP ) + a6

σ(y2P ) + (σ(a1xP ) + σ(a3)) σ(yP ) = σ(x3P ) + σ(a2x
2
P ) + σ(a4xP ) + σ(a6)

σ
(
y2P + (a1xP + a3)yP

)
= σ

(
x3P + a2x

2
P + a4xP + a6

)

σ
(
y2P + (a1xP + a3)yP −

(
x3P + a2x

2
P + a4xP + a6

))
= 0,

which shows that σ(P ) is in E(IFqm) if and only if P is.
Similarly σ2(P ), σ3(P ), . . . are on the curve. Note that since the coordinates xP
and yP are in IFqm and xq

m

P = xP we have σm(P ) = P .

Example 6.4.4 Consider E : y2 + xy = x3 + 1 over IF24. The point P =
(ξ2 + ξ, ξ2 + ξ) is in E(IF24) and so is the point

σ(P ) =
(
σ(ξ2 + ξ), σ(ξ2 + ξ)

)
= (ξ2 + ξ + 1, ξ2 + ξ + 1)

as can be checked directly or seen from the picture.

For a fixed field IFqm one can invert σ by computing the (qm − 1)/q-th power.
However, there is no such polynomial map which works for all extension fields.
Therefore σ is seen as an endomorphism of E and not as an automorphism. It is
called the Frobenius endomorphism.

Definition 6.4.5 (Frobenius endomorphism) Let E be an elliptic curve over
a finite field IFq. The Frobenius endomorphism σ of E operates on E(IFqm) for
any m ∈ IN via σ(xP , yP ) = (xqP , y

q
P ).

In the section on efficient arithmetic on elliptic cures over binary fields we will
make use of the following dependence which we cannot prove in this course.

Theorem 6.4.6 Let E be an elliptic curve over a finite field IFq. For any exten-
sion field IFqm of IFq and for every IFqm-rational point P we have for the Frobenius
endomorphism σ that

σ2(P )⊕ [−t]σ(P )⊕ [q]P = P∞.

The polynomial
χ(T ) = T 2 − tT + q (6.3)

is the characteristic polynomial of the Frobenius endomorphism.
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Example 6.4.7 Consider again E : y2 + xy = x3 +1 over IF24 and in particular
P = (ξ2 + ξ, ξ2 + ξ) ∈ E(IF24). We have σ(P ) = (ξ2 + ξ + 1, ξ2 + ξ + 1)
and so [−t]σ(P ) = [+1]σ(P ) = (ξ2 + ξ + 1, ξ2 + ξ + 1). Note that we used
the t from the ground field, not t4 from the extension field. We have σ2(P ) =
σ(ξ2 + ξ + 1, ξ2 + ξ + 1) = (ξ2 + ξ, ξ2 + ξ) = P . To check the statement of the
theorem we need to compute

P ⊕ (ξ2 + ξ + 1, ξ2 + ξ + 1)⊕ [2]P = (ξ2 + ξ + 1, ξ2 + ξ + 1)⊕ [3]P

and check whether this gives the point at infinity. This is equivalent to checking
whether [3]P = inv⊕(ξ

2 + ξ + 1, ξ2 + ξ + 1) = (ξ2 + ξ + 1, 0).
Put R = [2]P . We have

λ =
x2P + yP
xP

=
(ξ2 + ξ + 1) + (ξ2 + ξ)

ξ2 + ξ
=

1

ξ2 + ξ
= ξ2 + ξ + 1.

So xR = λ2+λ = (ξ2+ ξ+1)2+ ξ2+ ξ+1 = 1 and yR = λ(xP +xR)+ yP +xR =
(ξ2+ξ+1) ((ξ2 + ξ) + 1)+(ξ2+ξ)+1 = (ξ2+ξ)+(ξ2+ξ+1) = 1, i.e. R = (1, 1).
Put S = R⊕ P = [3]P . We have

λ =
(ξ2 + ξ) + 1

(ξ2 + ξ) + 1
= 1

and thus xS = λ2 + λ + xP + xR = 1 + 1 + ξ2 + ξ + 1 = ξ2 + ξ + 1 and
yS = λ(xP +xS)+yP +xS = 1 ((ξ2 + ξ) + (ξ2 + ξ + 1))+(ξ2+ξ)+(ξ2+ξ+1) = 0.
So indeed [3]P = (ξ2 + ξ + 1, 0).

Theorem 6.4.6 shows that the Frobenius endomorphism satisfies a quadratic poly-
nomial. One can show that every endomorphism on an elliptic curve satisfies a
quadratic polynomial, so the characteristic polynomial of a curve endomorphism
has degree 2.

Definition 6.4.8 (Trace of the Frobenius)
Let E be an elliptic curve over a finite field IFq with |E(IFq)| = q + 1 − t. The
integer t is called the trace of the Frobenius endomorphism.

For large finite fields one cannot determine the number of points by trying all
possible coordinate tuples. If the curve is defined over a small finite field and then
considered over an extension field the following relation between the numbers of
points is helpful. Again we refer to the literature for a proof.

Lemma 6.4.9 Let E be an elliptic curve defined over the finite field IFq and let
the characteristic polynomial of the Frobenius endomorphism on E be χ(T ) =
T 2 − tT + q.
The two complex roots τ1 and τ2 of χ(T ) satisfy τ1 = τ2 and τ1τ2 = q. For the
number of points over an extension field IFqm we have

|E (IFqm)| = (1− τm1 ) (1− τm2 ) .
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Example 6.4.10 For E : y2 + xy = x3 + 1 we found that χ(T ) = T 2 + T + 2.
The complex roots are τ1 = (−1+

√
−7)/2 and τ2 = (−1−

√
−7)/2. Over IF22 we

thus expect to find
(
1− ((−1 +

√
−7)/2)2

) (
1− ((−1−

√
−7)/2)2

)
points. We

simplify the expression to
(
1− ((−1 +

√
−7)/2)2

) (
1− ((−1−

√
−7)/2)2

)

= 1− ((−1 +
√
−7)/2)2 − ((−1−

√
−7)/2)2 + ((−1 +

√
−7)/2)2((−1−

√
−7)/2)2

= 1− 2(1− 7)/4 + ((−1 +
√
−7)(−1−

√
−7))2/16

= 1 + 3 + 64/16 = 8

and thus |E(IF22)| = 8.
Likewise, we compute |E(IF24)| =

(
1− ((−1 +

√
−7)/2)4

) (
1− ((−1−

√
−7)/2)4

)
=

1− ((−1+
√
−7)/2)4− ((−1−

√
−7)/2)4 +((−1+

√
−7)/2)4((−1−

√
−7)/2)4 =

1− 2(1− 42 + 49)/16 + 16 = 1− 1 + 16 = 16 which coincides with what we had
obtained by direct computation.

The following example is again a curve over a field of characteristic 2 but this
time the curve is not defined over the field IF2.

Example 6.4.11 Represent IF4 with a polynomial basis IF4 = {0, 1, α, α + 1} ∼=
IF2[x]/(x

2+x+1)IF2[x] and consider the curve E : y2+y = x3+αx+1. We first
check whether E is nonsingular, i.e. an elliptic curve. The partial derivative with
respect to y is 1 which is always nonzero, so there cannot be a singular point.
We find all points of E over IF4 by trying all possible values for the x-coordinate.

E(IF4) = {(0, α), (0, α + 1), (α + 1, α), (α + 1, α + 1), P∞}.
Thus |E(IF4)| = 5, and 5 = 4 + 1− t = 5− t leads to t = 0.
The characteristic polynomial of the Frobenius endomorphism σ is thus given by
χ(T ) = T 2 + 4 = (T − 2i)(T − (−2i)), i.e. τ1 = 2i.
For the number of points on extension fields of IF4 we obtain

|E(IF4m)| = (1− (2i)m)(1− (−2i)m).
Since χ has a particularly simple form we can even obtain closed formulae for the
number of points. To do so we need to distinguish between even and odd values
of m.
Let first m be even, i.e. m = 2m′ for some integer m′. We obtain

|E(IF4m)| = (1− (2i)m)(1− (−2i)m) = (1− (−4)m′

)(1− (−4)m′

) = (1− (−4)m′

)2.

For odd m = 2m′ + 1 we have

|E(IF4m)| = (1− (2i)(−4)m′

)(1− (−2i)(−4)m′

) = 1 + 4 · 42m′

= 1 + 4m.

Remark 6.4.12 We would like to stress that the curves studied in the last exam-
ple and some of the exercises were chosen because they lead to nice formulas for
the number of points. They are not useful for cryptographic applications if one
wants to construct a discrete logarithm system. The interested reader is advised
to consult the web or books for “supersingular curves” and “pairings”.
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We are not able to cover point counting for curves defined over large fields in this
manuscript. The books recommended in the introduction of this chapter consider
Schoof’s algorithm for curves defined over fields of large characteristic and p-adic
point counting methods like Satoh’s algorithm in small characteristic.

Exercise 6.4.13 a) Let E4 : y2 + 3xy + y = x3 + 4x + 4 be defined over IF5.
State E(IF5) by trying all values for the x-coordinate; make sure not to forget
the point at infinity. Determine the characteristic polynomial of the Frobenius
endomorphism and use it to compute the number of points in E(IF25).

b) Let E : y2 + y = x3 + 1 be defined over IF2. Compute
|E(IF2)|, |E(IF22)|, |E(IF23)|, and |E(IF2n)|.

c) Compute all extension degrees n between 160 and 240 so that |Ea(IF2n)| is
almost prime where

Ea : y
2 + xy = x3 + ax2 + 1, a ∈ IF2.

Note: this exercise should be solved with the help of a computer.

6.5 Arithmetic on elliptic curves over fields of large

characteristic

To obtain the most efficient arithmetic one needs to specify whether the charac-
teristic is even or odd. We consider odd characteristic fields in the following and
concentrate on elliptic curves defined over fields IFq of characteristic > 3.
We start by obtaining a simpler curve equation. This is done through isomorphic
transformations.

Definition 6.5.1 Let C and C ′ be two elliptic curves over a field K. The curves
C and C ′ are isomorphic if there exists an invertible map given by polynomials
that maps the points of C to the points of C ′.

Particularly we consider isomorphic transformations that do not change the shape
of the equation, i.e. the highest powers x3 and y2 are maintained and the highest
power of a mixed term is xy. This means that we can only replace x by ax + b
and y by cy+ dx+ e. Obviously these maps are invertible provided that a, c 6= 0.
The shape of the curve is unchanged if a3 = c2, i.e. a = m2, c = m3 for some m
since then both sides can be made monic.

Lemma 6.5.2 Let E be an elliptic curve over a finite field of odd characteristic
given by a Weierstrass equation E : y2 + (a1x + a3)y = x3 + a2x

2 + a4x + a6.
There exists an isomorphic transformation which leads to an isomorphic curve of
the form

E ′ : y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
,
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where b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 = a23 + 4a6.
If the characteristic of IFq is larger than 3 there is an isomorphic curve of the
shape

E : y2 = x3 − c4
48
x− c6

864
,

where c4 and c6 are expressed in terms of b2, b4, b6 as

c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6.

Proof. Choosing m = 1, b = 0, d = −a1/2, and e = −a3/2 in the first transfor-
mation we obtain (in the new coordinates)

(y2−a1xy−a3y+a21x2/4+a1a3x/2+a23/4)+(a1xy+a3y−a21x2/2−a1a3x−a23/2) = x3+a2x
2+a4x+a6.

Sorting according to the desired shape leads to

y2 = x3 + (a2 + a21/4)x
2 + (a4 + a1a3/2)x+ a6 + a23/4.

If the characteristic is not 3 then b2/12 exists and we can additionally change x
to x− b2/12. Taking care of the powers of 2 and 3 we obtain the claim. ✷

In Remark 6.2.1 we derived the formulae for addition and doubling in the slightly
more general case b2 6= 0. Now, that we know that we can always work with
f(x) = x3 − c4

48
x − c6

864
as right hand side we give a short criterion for the curve

to be nonsingular and briefly reconsider the arithmetic. For ease of notation we
rename the coefficients and study curves of the form

E : y2 = x3 + ax+ b, a, b ∈ IFq. (6.4)

For this shape of curve we can compute gcd(f, f ′) for f = x3 + ax + b in terms
of a and b and derive an easier criterion for singularity. Remember that by
Exercise 5.4.4c we have that gcd(f, f ′) ∈ IF∗

q if and only if f has only simple
roots, i.e. if and only if the curve is nonsingular.

f = x3 + ax+ b = x/3(3x2 + a) + 2ax/3 + b

f ′ = 3x2 + a = (9x/(2a)− 27b/(4a2))(2ax/3 + b) + a+ 27b2/(4a2)

The gcd is trivial if a+ 27b2/(4a2) 6= 0, in other words if

∆ = 4a3 + 27b2 6= 0. (6.5)

The expression ∆ in (6.5) is called the discriminant.

Remark 6.5.3 (Affine coordinates)
The representation of points as a tuple P = (xP , yP ) is called affine coordi-
nates. For a curve in form (6.4) the formulae for addition P ⊕ Q = R of
P 6= inv⊕(Q), P∞ are given by

xR = λ2 − xP − xQ, yR = λ(xP − xR)− yP , where λ =

{
yP−yQ
xP−xQ

3x2
P+a

2yP

for
P 6= Q
P = Q
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6.5 Arithmetic on elliptic curves over fields of large characteristic

and we have inv⊕(xP , yP ) = (xP ,−yP ).
This means that an addition takes 1I (inversion), 2M (multiplication), 1S (squar-
ing) while a doubling needs 1I, 2M, 2S. Note that a division A/B is computed by
first inverting B and then multiplying the result by A, so one division is counted
as I +Mo.

For most platforms inversions are much more expensive than multiplications and
thus inversion-free coordinate systems are interesting. They are best understood
when thinking of arithmetic in the rationals. When adding two fractions a/b and
c/d one first needs to write them as equivalent fractions with equal denominators.
If no further information on joint factors of b and d is available it is easiest to
compute the sum as

a

b
+
c

d
=
ad+ bc

bd
.

Even if one knows that all fractions are actually integers there is no need to
reduce the fractions during the computations, the result will be the same.
In projective coordinates one avoids inversions at the expense of an extra co-
ordinate Z which holds the “denominator”. Whenever an inversion occurs in
the computation, Z is multiplied with this value and all values are adjusted so
that they have the same denominator. A point is now represented by a triple
P = (XP : YP : ZP ), where this representation corresponds to the affine point
P = (XP/ZP , YP/ZP ). The colons indicate that the representation in projec-
tive coordinates is not unique. Obviously, the same affine point is obtained from
(kXP : kYP : kZP ), where k ∈ IFq is some field element, since the contribution of
k simply cancels out.
Projective coordinates are actually the proper way of defining elliptic curves and
with them the point at infinity can be easily explained; it is given by the triple
(0 : 1 : 0). Note, that there is no affine point corresponding to this since we
would divide by 0. For more details consult any of the books listed at the end of
the introduction.

Remark 6.5.4 (Projective coordinates)
Let P = (XP : YP : ZP ), Q = (XQ : YQ : ZQ) so that P 6= Q, inv⊕(Q), P∞. The
formulae for addition P ⊕Q = R are as follows:
Addition:

A = YQZP − YPZQ; B = XQZP −XPZQ; C = A2ZPZQ − B3 − 2B2XPZQ;
XR = BC; YR = A(B2XPZQ − C)−B3YPZQ; ZR = B3ZPZQ.

Doubling:

A = aZ2
P + 3X2

P ; B = YPZP ; C = XPYPB; D = A2 − 8C;
XR = 2BD; YR = A(4C −D)− 8Y 2

PB
2; ZR = 8B3.

One addition needs 12M, 2S while a doubling needs 7M, 5S.
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It is very obvious that the number of extra multiplications needed to avoid the
inversion is much larger for additions than for doublings. This is easily explained
by the observation that denominators ZP and ZQ of the input point are totally
unrelated and so a lot of multiplications are needed to adjust the values to have
the same denominator.
In applications we often have the situation that we are starting with a point in
affine coordinates and just want to avoid inversions during the scalar multipli-
cation. Unless a windowing method is used (cf. Chapter 4) all additions are
between the intermediate point and the base point. If the input points are in
different coordinate systems or the output is in a different system one speaks
of mixed coordinates. Addition in mixed coordinates is likely to be faster than
projective addition.
Consider the special case of addition where one input point Q is given in affine
coordinates – usually the base point P in a scalar multiplication – while the other
is in projective coordinates and the result is supposed to be in projective coor-
dinates, too. The obvious savings are that all multiplications by ZQ disappear,
since the affine coordinates of Q = (xQ, yQ) translate to the projective point
(xQ : yQ : 1). The operation count for such additions is 9M and 2S.
When inspecting the formulae and their connection to the affine group operations
one notices that some multiplications are used because the denominator of x con-
tains the denominator of λ as a square while y needs the third power and so ad-
justments are needed. Jacobian coordinates take this into account by having the
coordinate triple (XP : YP : ZP ) represent the affine point P = (XP/Z

2
P , YP/Z

3
P ).

This system has faster doublings than projective coordinates while additions are
more expensive. Note, that sometimes the notations are confused and Jacobian
coordinates are incorrectly referred to as projective coordinates.

Remark 6.5.5 (Jacobian coordinates)
Let P = (XP : YP : ZP ), Q = (XQ : YQ : ZQ) so that P 6= Q, inv⊕(Q), P∞. The
formulae for addition P ⊕Q = S are as follows:
Addition:

A = XPZ
2
Q; B = XQZ

2
P ; C = YPZ

3
Q; D = YQZ

3
P ; E = B − A; F = D − C

XS = −E3 − 2AE2 + F 2; YS = −CE3 + F (AE2 −XS); ZS = ZPZQE.

Doubling:

A = 4XPY
2
P ; B = 3X2

P + a4Z
4
P

XS = −2A+ B2; YS = −8Y 4
P + B(A−XS); ZS = 2YPZP .

We have inv⊕((XP : YP : ZP )) = (XP : −YP : ZP ). One addition needs 12M, 4S
while a doubling needs 4M, 6S. If one of the input points is in affine coordinates
only 8M and 3S are needed for an addition.

The elliptic curves chosen in the NIST standard all have a4 = −3. This has algo-
rithmic advantages. In the doubling operation one can compute B = 3X2

P +a4Z
4
P

as B = 3(XP −Z2
P )(XP +Z2

P ) and the total operation count for a doubling ends
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up as 4M and 4S.

There are more coordinate systems, e.g. Chudnovsky Jacobian coordinates, and
the reader is advised to consult the literature before implementing a system.
For a close to exhaustive overview of all coordinate systems and the formulae
we refer to Chapter 11 of the “Handbook of Elliptic and Hyperelliptic Curve
Cryptography”.

Remark 6.5.6 We like to remark that the coordinate system should be chosen
with the finite field in mind. Optimal extension fields are attractive since the
prime field size can be chosen to fit into one word. On top of the optimizations
discussed in Section 5.12 one can use semi-projective coordinates. Let q = pn

and consider an elliptic curve over IFq. Use projective (or Jacobian) coordinates
and keep the “denominator” Z in IFp. This implies that the adjustments due to
multiplications with the denominator are much cheaper than usual multiplications.

Remark 6.5.7 (Montgomery coordinates)
Another interesting coordinate system is Montgomery coordinates. A curve is in
Montgomery form if it is written as

By2 = x3 + Ax2 + x.

To define efficient formulae for scalar multiplication on a curve in Montgomery
form we start by putting x1 = x(P ), the x-coordinate of P , and z1 = 1. Define
sequences (x1, x2, . . .) and (z1, z2, . . .) recursively by the equations

x2n = (xn − zn)2(xn + zn)
2,

z2n =
(
(xn + zn)

2 − (xn − zn)2
) (

(xn + zn)
2 +

A− 2

4
((xn + zn)

2 − (xn − zn)2)
)

,

x2n+1 = ((xn − zn)(xn+1 + zn+1) + (xn + zn)(xn+1 − zn+1))
2 z1,

z2n+1 = ((xn − zn)(xn+1 + zn+1)− (xn + zn)(xn+1 − zn+1))
2 x1.

The value xn/zn is the x-coordinate of [n]P .
Clearly, it would be very slow – complexity O(n) rather than O(log n) – if we
needed to compute the whole sequence just to obtain some individual scalar multi-
ple [n]P . Inspecting the formulae above we notice that to compute the x-coordinate
of [2n]P the knowledge of xn and zn is sufficient. To compute the x-coordinate of
[2n+1]P we need to know xn, x1, zn, and z1. This is a nice application of Mont-
gomery’s ladder considered in Chapter 4. Note, that the y-coordinates do not
appear in the formulae. This is one of the reasons why Montgomery coordinates
are fastest for curves where they can be applied.
However, not every elliptic curve is isomorphic to one in Montgomery form. One
requirement is that the group order must be divisible by 4.

Exercise 6.5.8 a) Check whether

E1 : y
2 = x3 − 3x+ 2 and E2 : y

2 = x3 + x+ 3

are elliptic curves over IF17.
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b) Compute the 31st multiple of (1, 7) on the elliptic curve y2 = x3 − 3x over
IF17. Use the result to compute the order of (1, 7)?

c) Let E be an elliptic curve over IF13 given by E : y2 = x3 + 6x2 + x and put
P = (11, 12). Compute [7]P in affine coordinates.
Compute the x-coordinate of [7]P using Montgomery coordinates.
Check your result with the previous part of the exercise.

d) Let E be an elliptic curve over IF11 given by E : y2 = x3 − 3x + 4 and put
P = (0, 2). Compute [6]P in projective coordinates coordinates.
Compute [6]P in Jacobian coordinates.
Check your result with the previous part of the exercise.

6.6 Arithmetic on elliptic curves over fields of charac-

teristic two

In this section we deal with elliptic curves defined over fields IF2n . Like in the
previous section we start by introducing isomorphic transformations to simplify
defining the equation of the curve and make the arithmetic faster.
Let E be an elliptic curve in Weierstrass form by E : y2 + (a1x + a3)y = x3 +
a2x

2 + a4x + a6 defined over IF2n . The values of a1 and a3 determine which
transformations can be applied.
We consider three cases; a1 = a3 = 0, a1 = 0, a3 6= 0, and a1 6= 0.
Case a1 = a3 = 0. We show that E is singular, thus it is not an elliptic curve.
The partial derivatives are x2 + a4 and 0 since we are working in characteristic
2. Let b be a root of x2 + a4 which must exist in some extension field of IF2n .
Compute c =

√
b3 + a2b2 + a4b+ a6 which is defined in some extension field of

IF2n . The point (b, c) is a singular point of E and so E is singular.
Case a1 = 0, a3 6= 0. One can show that every curve is isomorphic to one of the
form

y2 + a3y = x3 + a4x+ a6.

Proving the details is left to the reader as Exercise 6.6.5.a.
We remark that curves of this shape are supersingular. This means that they
are good choices for pairing based cryptography but are weak under the MOV
attack which uses the existence of pairings. Please consult the literature about
this case.
Case a1 6= 0. Replacing x by a21x+a3/a1 and y by a31y+a

2
3/a

3
1+a4/a1 we obtain

on the left-hand side

a61y
2 +

a43
a61

+
a24
a21

+ a31x

(

a31y +
a23
a31

+
a4
a1

)

and on the right-hand side

a61x
3 +

(

a41a2 +
a41a3
a1

)

x2 +

(

a21a4 +
a21a

2
3

a21

)

x+ a6 +
a33
a31

+
a2a

2
3

a21
+
a3a4
a1

.
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After dividing by a61 and rearranging this becomes

y2 + xy = x3 +

(
a1a2 + a3

a31

)

x2 +
a41a2a

2
3 + a31a

3
3 + a51a3a4 + a41a

2
4 + a61a6 + a43

a121
.

So every binary curve with a1 6= 0 can be transformed to have the form

E : y2 + xy = x3 + ã2x
2 + ã6. (6.6)

Finally, we check when a curve given by (6.6) is nonsingular. The partial
derivative with respect to y is x, so a singular point must have x-coordinate 0.
The partial derivative with respect to x is given by y + x2. Inserting 0 for x
shows that y must also be 0. So, if (0, 0) is a point on E then that point is a
singularity and thus E is singular. The point is on E if and only if ã6 = 0. So
a curve given by (6.6) is an elliptic curve for all choices of ã2 ∈ IF2n and ã6 ∈ IF∗

2n .

We summarize these results in a lemma.

Lemma 6.6.1 Let E be an elliptic curve over a field IF2n of characteristic two
and let a1, a2, a3, a4, and a6 be the coefficient of its Weierstrass equation. Through
isomorphic transformations E can be transformed to one of the following two
forms.
If a1 = 0, a3 6= 0 the curve is supersingular and can be transformed to

y2 + a3y = x3 + a4x+ a6.

If a1 6= 0 the curve is isomorphic to

y2 + xy = x3 + a2x
2 + a6, (6.7)

where a6 6= 0. Curves of this form are not supersingular.

In this book we concentrate on providing the basis for implementing efficient
discrete logarithm systems. Therefore, we concentrate on the non-supersingular
case for describing the curve arithmetic.

Remark 6.6.2 (Affine coordinates) The representation of points as a tuple
P = (xP , yP ) is called affine coordinates. For a curve in form (6.7) the formulae
for addition P ⊕Q = S of P 6= inv⊕(Q), P∞ are given by

xS = λ2 + λ+ xP + xQ + a2, yS = λ(xP + xS) + xS + yP ,

where

λ =

{
yP+yQ
xP+xQ

xP + yP
xP

for
P 6= Q
P = Q

and we have inv⊕(xP , yP ) = (xP , xP + yP ).
This means that an addition and a doubling cost 1I, 2M , and 1S each.
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Like in the case of odd characteristic one can define several inversion-free coordi-
nate systems for elliptic curves over binary fields. We state the formulae without
proof. The reader is advised to consult the literature for more details.

Remark 6.6.3 (Projective coordinates)
Let P = (XP : YP : ZP ), Q = (XQ : YQ : ZQ) so that P 6= Q, inv⊕(Q), P∞. The
formulae for addition P ⊕Q = S are as follows:
Addition:

A = YPZQ + ZPYQ; B = XPZQ + ZPXQ; C = B2;
D = ZPZQ; E = (A2 + AB + a2C)D + BC;
XS = BE; YS = C(AXP + YPB)ZQ + (A+B)E; ZS = B3D.

Doubling:
A = X2

P ; B = A+ YPZP ; C = XPZP ;
D = C2; E = (B2 + BC + a2D);
XS = CE; YS = (B + C)E + A2C; ZS = CD.

We have inv⊕(XP : YP : ZP ) = (XP : XP + YP : ZP ). One addition needs 16M,
2S while a doubling needs 8M, 4S. If one of the input points to the addition is in
affine coordinates only 12M and 2S are needed. So, also here mixed coordinates
are faster.
Note that multiplications by a2 are counted; if a2 is chosen so that multiplications
by it are cheap then 1M is saved in doubling.

Like in the case of odd characteristic the correspondence between Jacobian co-
ordinates and affine coordinates is that (XP : YP : ZP ) represent the affine point
P = (XP/Z

2
P , YP/Z

3
P ).

Remark 6.6.4 (Jacobian coordinates)
Let P = (XP : YP : ZP ), Q = (XQ : YQ : ZQ) so that P 6= Q, inv⊕(Q), P∞. The
formulae for addition P ⊕Q = S are as follows:
Addition:

A = XPZ
2
Q; B = XQZ

2
P ; C = YPZ

3
Q; D = YQZ

3
P ; E = A+B;

F = C +D; G = EZP ; H = FXQ +GYQ; ZS = GZQ; I = F + ZS;
XS = a2Z

2
S + FI + E3; YS = IXS +G2H.

Doubling:

A = X2
P ; B = A2; C = Z2

P ;
XS = B + a6C

4; ZS = XPC; YS = BZS + (A+ YPZP + ZS)XS.

We have inv⊕(XP : YP : ZP ) = (XP : XPZP+YP : ZP ). One addition needs 16M,
3S while a doubling needs 5M, 5S. If one of the input points to the addition is in
affine coordinates only 11M and 3S are needed. So also here mixed coordinates
are faster.
Note that multiplications by a2 are counted; if a2 is chosen so that multiplications
by it are cheap then 1M is saved in addition.

127



6.6 Arithmetic on elliptic curves over fields of characteristic two

It was noted that in the case of even characteristic, the powers of Z used in Ja-
cobian coordinates are not optimally fitting. Lopez and Dahab suggested a new
system in which (XP : YP : ZP ) represent the affine point P = (XP/ZP , YP/Z

2
P ).

Since the optimal formulae for these coordinates depend a lot on the curve co-
efficients a2 and a6 we omit the formulae here. The “Handbook” gives a long
discussion.
Koblitz suggested to use special binary curves for particularly fast arithmetic.
His proposal is included in the NIST standard. The curves are considered over
IF2n for some integer n ≥ 160 but all coefficients are in IF2. In Exercise 6.4.13.c
we found all such curves of cryptographic interest. In fact all non-supersingular
elliptic curves over IF2 are isomorphic to one of the Ea and the range of n is
what is currently considered to be secure.

The main reason that Koblitz curves are interesting is that the Frobenius endo-
morphism operates by squaring each coordinate which is very cheap in a binary
field. We have already seen that for P ∈ E(IF2n) also σ(P ) ∈ E(IF2n). Applying
this argument repeatedly one sees that σi(P ) ∈ E(IF2n) for any positive integer
i. Furthermore, there exists an integer s so that σ(P ) = [s]P and the integer is
unique modulo the order of P .
Koblitz showed that for each integer k one can find a sequence of coefficients
ki ∈ {0, 1} so that [k]P =

∑n−1
i=0 [ki]σ

i(P ), where the summation refers to the
group operation ⊕. This was improved by several authors culminating in a paper
by Solinas in which he provides an analogue of the NAF expansion of integers. So,
he chooses the coefficients ki in the larger set {−1, 0, 1} and additionally requires
that kiki+1 = 0, i.e. there are no two adjacent nonzero coefficients. The key idea
is to use the characteristic polynomial of the Frobenius endomorphism (6.3) and
read it as

[2]P = inv⊕
(
σ2(P )⊕ [−t]σ(P )

)
.

This is an example of representing a scalar multiplication by a sum of σi(P ). In
this case there is no cost reduction due to this approach. In general this leads
to huge savings since the expansions are similar to binary NAF expansions and
applying the Frobenius endomorphism is much cheaper than a doubling. We do
not go into the details on how to compute the expansions; the interested reader
should consult the literature and the NIST standard.

Exercise 6.6.5 a) Show that an elliptic curve of the form E : y2 + a3y = x3 +
a2x

2 + a4x+ a6, a3 ∈ IF∗
2n , a2, a4, a6 ∈ IF2n is nonsingular.

Show that E is isomorphic to a curve of the form y2 + ā3y = x3 + ā4x+ ā6.
We remark that curves of this form are supersingular.

b) We consider the elliptic curve y2 + xy = x3 + x2 + 1 over IF24
∼= IF2[w]/(w

4 +
w+1)IF2[w]. Show that P = (w2+w+1, 1) is on the curve and compute [5]P .
Use the computations to find the order of P .

Compute σ5(P )⊕ σ2(P )⊕ P . Which multiple of P is this?

128



Chapter 7

Primes

Prime numbers play an important role in cryptography – as factors of RSA num-
bers as well as basis for finite fields. So far we have ignored the question how to
find primes and how to prove that an integer is actually prime.

Showing that a number n is composite can be easy – one can just provide a
nontrivial factor 1 < m < n and verify that n ≡ 0 mod m. Showing that a
candidate number is prime turns out to be much harder. In this chapter we
present some primality tests which more or less efficiently and reliable solve this
problem. Note, that these tests do only provide a “yes or no” type of answer and
not an actual factor in the composite case.

We consider practical tests with a “good” running time. We only comment on
elliptic curve primality testing and proving since we have not provided enough
background knowledge to explain them. From a theoretical point of view the
paper “Primes is in P” giving a polynomial time deterministic algorithm for
proving primality was a breakthrough. Readers are highly recommended to read
that paper and subsequent improvements. In practice, however, probabilistic
tests are used as they provide better performance.

These tests are probabilistic in the sense that they detect composites (or primes,
depending on the test) with a certain probability. The first interesting test we
present is based on Fermat’s little theorem. If a number is prime then it will
always pass the test. A composite number passes the test with probability at
most 1/2. If the test outputs “composite” we know for sure that the number
is composite. Otherwise we can run the test again to increase the probability
of false positives. For this particular test there is another class of numbers that
always passes the test, so we have to exclude them as well.
If one wants to be sure that a given number is prime and cannot rely on the
statement, that it is very likely to be prime, then one needs to use a different
type of test. Namely one that detects primes with a certain probability, so that
the answer “prime” is true for sure when given.

In practice, both types of tests are used to find primes. One first identifies a
candidate prime with a (repeated) test of the first type and then proves with a
test of the second type, that the number is actually prime.

Primality and compositeness tests and proves are considered in number theory
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7.1 Naive tests

and are covered by many books on algorithmic number theory. We give a short
list of some publications that are also interesting for the other chapters.

� R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, F. Ver-
cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography,
CRC Press.

� J. Buchmann, Introduction to Cryptography, Springer.

� H. Cohen, A Course in Computational Algebraic Number Theory, Springer.

� R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective,
Springer.

� N. Koblitz, A Course in Number Theory and Cryptography, Springer.

7.1 Naive tests

In this and the following section we deal with an integer n and want to determine
whether it is (likely to be) prime or not. Since divisibility by 2 is easy to detect
we assume n to be odd.
Naively we can perform a trial division n mod a for each number a up to

√
a. If

n factors as n = km then at least one of k,m must be ≤ √n.

Algorithm 7.1.1 (Naive test)
IN: Odd n ∈ IN.
OUT: Answer to “Is n prime?” and if not a divisor of n.

1. a←3, bool←0

2. while bool = 0 do

(a) if n mod a = 0

i. bool = 1

ii. return “no”, a

(b) else if a <
√
n

i. a←a+ 2

(c) else

i. bool = 1

ii. return “yes”

Clearly, this test works and will deterministically find a factor of n if it is com-
posite. However, the running time is O(

√
n) modular reductions. One drawback

of this very naive method is that the algorithm tries all numbers a and not only
the possible prime divisors. If a number is not divisible by 3 then it certainly will
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not be divisible by 9 so that test as well as all further tests involving multiples
of 3 should be skipped.
The Sieve of Eratosthenes works this way and allows to find all prime numbers
below n and also factors of n. Since we are interested in finding out whether a
single given integer is prime, we skip the details and move on to more efficient
tests which do no longer provide the factors of n.

7.2 Tests proving compositeness

This section considers tests which are always passed by prime numbers while
composite numbers have a non-negligible chance of being detected in which case
the test proves that the number is composite.
In Corollary 3.3.7 we stated Fermat’s little theorem. Let n be the integer we want
to test. The theorem says that for all a ∈ (ZZ/nZZ)× one has aϕ(n) ≡ 1 mod n. If
n is prime then gcd(a, n) = 1 for all 1 < a < n and ϕ(n) = n− 1. Therefore

ap−1 ≡ 1 mod n

for all 1 < a < n if n is prime. If this fails for some a then we know for sure that
n is not prime. Repeated application of this Fermat test with random choices of
a turns the test into an algorithm for compositeness proving. We first analyze
whether there are other numbers than prime numbers that always pass the test.
For that we first need to introduce some terminology.

Definition 7.2.1 (Pseudo-prime)
Let n be a composite integer and let a ∈ ZZ with 1 < a < n and gcd(a, n) = 1.
Then n is called a pseudo-prime to the basis a if an−1 ≡ 1 mod n, i.e. if it passes
the Fermat test using a.

Are there composite numbers that are pseudo-primes for all bases? If we would
run through all 1 < a < n deterministically then we would clearly find a factor
due to the gcd computation. However, we hope that random choices of a identify
composite numbers quickly.

Lemma 7.2.2 Let n be a composite integer and let a ∈ ZZ with gcd(a, n) = 1.

1. Let ord(a) denote the multiplicative order of a modulo n. The integer n is
pseudo-prime to the basis a if and only if ord(a)|n− 1.

2. If n is pseudo-prime to the bases a1 and a2 then it is also pseudo-prime to
the bases a1a2 mod n and a1 · a−1

2 mod n.

3. If there exists an 1 < a < n with gcd(a, n) = 1 and an−1 6≡ 1 mod n, then
this holds for at least half of all possible bases.
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7.2 Tests proving compositeness

Proof. If ord(a)|n− 1, i.e. n− 1 = ord(a)n′ then

an−1 =
(
aord(a)

)n′

≡ 1 mod n.

To prove the other inclusion we assume on the contrary that an−1 ≡ 1 mod n and
n− 1 = ord(a)n′ + r for some 0 < r < ord(a). Then

1 ≡ an−1 = aord(a)n
′+r =

(
aord(a)

)n′

ar = ar,

which gives a contradiction to the minimality of ord(a).
Let a1 and a2 be such that an−1

1 ≡ 1 mod n and an−1
2 ≡ 1 mod n. We have

(a1a2)
n−1 = an−1

1 an−1
2 ≡ 1 · 1 ≡ 1 mod n.

Likewise
(a1a

−1
2 )n−1 ≡ 1 · 1−1 ≡ 1 mod n.

To prove the third statement let A = {a1, . . . , ak} be the set of all bases for
which n is pseudo-prime. Let 1 < a < n with gcd(a, n) = 1 be such that
an−1 6≡ 1 mod n. Then n is not pseudo-prime to the all bases aai for 1 ≤ i ≤ k
because

(aai)
n−1 ≡ an−1an−1

i ≡ an−1 6≡ 1 mod n,

where we used that n is a pseudo-prime to the basis ai. This means that every
ai ∈ A gives rise to at least one aai which detects compositeness and so at least
half of all bases detect. ✷

This results gives an estimate on the probability that a composite number is
detected

Remark 7.2.3 If there is at least one basis that detects compositeness of n then
the third result implies that after trying k bases a composite number is detected
with probability at least 1− 1

2k
.

Unfortunately it turns out that there are composite numbers that pass the Fermat
test for all bases, the smallest number being 561. The reader is encouraged to
try a few bases.

Definition 7.2.4 (Carmichael number)
If n is a composite integer that is pseudo-prime to all bases then n is called a
Carmichael number.

From the first part of Lemma 7.2.2 we see that for each prime factor p of a
Carmichael number n we must have that the order of a modulo p divides n− 1.
By Lemma 5.3.1 elements of order p− 1 exist and thus for each factor p it must
hold that p− 1|n− 1.
This holds true in the example n = 561 = 3 ·11 ·17 since 2, 10, and 16 divide 560.
The only way to detect compositeness of a Carmichael is by selecting an a such
that gcd(a, n) 6= 1 in which case even a factor is found.
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Algorithm 7.2.5 (Fermat’s compositeness test)
IN: Odd n ∈ IN, k ∈ IN
OUT: “n is composite” or “n is prime with probability at least 1 − 1

2k
or a

Carmichael number”

1. for i = 1 to k

(a) choose a ∈ ZZ randomly with 1 < a < n

(b) if gcd(a, n) 6= 1 return “n is composite”

(c) else if an−1 6≡ 1 mod n return “n is composite”

2. return “n is prime with probability at least 1− 1
2k

or a Carmichael number”

Example 7.2.6 We now use this algorithm to test n = 711 for compositeness.
We have gcd(2, 711) = 1, so a = 2 is an allowed basis. We compute

2710 ≡ 256 mod 711,

which is not equal to 1. Hence, 711 is composite and we only needed one round.
As a second example we consider n = 341 and also choose the basis a = 2. We
have

2340 ≡ 1 mod 341.

But
3340 ≡ 56 mod 341,

showing that n is not prime. So n is a pseudo-prime to the base 2.
Finally, we choose n = 561. We have

2560 ≡ 1 mod 561, 5560 ≡ 1 mod 561, 7560 ≡ 1 mod 561, . . .

However, 3 | n and so n is not prime. It is pseudo-prime to the bases 2, 5, and
7. Actually as mentioned earlier, 561 is the smallest Carmichael number and so
n is pseudo-prime to all bases a with gcd(a, n) = 1.

We would like to have a compositeness test that does detect all composite numbers
and for which there is no family of numbers for which it fails. To state such a
test we first need some more definitions.

Definition 7.2.7 (Quadratic residue)
Let n be an integer and let 0 ≤ a < n. Then a is a quadratic residue modulo n
if there exists an integer 0 ≤ b < n with a ≡ b2 mod n.
Otherwise a is a quadratic non-residue modulo n.

Definition 7.2.8 (Legendre symbol)

Let p > 2 be a prime and a ∈ Z. The Legendre symbol
(

a
p

)

of a modulo p
(

a
p

)

is defined as

(
a

p

)

=







0, if p|a
1, if a is quadratic residue modulo p
−1, if a is quadratic non-residue modulo p
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We have seen in Lemma 5.3.1 that the multiplicative group of a finite field is
cyclic, so there exists a 1 < g < p so that IF∗

p = 〈g〉. Since every even power g2m

of g is a square while every odd power g2m+1 is not we have that there are as
many squares as non-squares in IF∗

p. So if we restrict a to 1 ≤ a < p then the
Legendre symbol modulo p assumes the value 1 as often as the value −1.

Lemma 7.2.9 Let p be an odd prime and a ∈ ZZ. We have
(
a

p

)

≡ a
p−1
2 mod p.

Proof. If p|a then both sides equal 0.
From Fermat’s little theorem 3.3.7 we have for any b with gcd(b, n) = 1 that
bp−1 ≡ 1 mod p.
If a is a quadratic residue modulo p then there exists an integer b with a ≡
b2 mod p and so

a
p−1
2 ≡

(
b2
) p−1

2 = bp−1 ≡ 1 mod p.

If a is a quadratic non-residue modulo p, i.e., a = g2j+1 for some generator g

modulo p, then a
p−1
2 = g(2j+1) p−1

2 = gj(p−1) ·g p−1
2 = g

p−1
2 6≡ 1 mod p, as otherwise g

would have order dividing p−1 contradicting that it is a generator, but
(

a
p−1
2

)2

≡
1 mod p and so the result is a root of x2 − 1. This polynomial has degree 2 and
since p is odd, 1 and −1 are its two distinct roots. So we must have

a
p−1
2 ≡ −1 mod p

if a is a quadratic non-residue modulo p. ✷

This property holds for all primes p and will replace the Fermat test in the
Solovay-Strassen test. To use this equality as a test we need to find an efficient
way to compute the Legendre symbol. The following lemmata collect properties
of the Legendre symbol.

Lemma 7.2.10 Let p be an odd prime number and let a, b ∈ ZZ. We have the
following properties of the Legendre symbol modulo p:

1. If a ≡ b mod p then
(

a
p

)

=
(

b
p

)

.

2.
(

a·b
p

)

=
(

a
p

)(
b
p

)

3. If b is not divisible by p we have
(
a · b2
p

)

=

(
a

p

)

.

4.
(

1
p

)

= 1;
(

−1
p

)

= (−1)
p−1
2 .
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Proof. The first property follows immediately from the definition.
If p divides a or b then p divides the product ab and so both sides equal zero.
Now let gcd(ab, n) = 1. We use Lemma 7.2.9 and get

(
ab

p

)

≡ (ab)
p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)

·
(
b

p

)

mod p.

Since the symbol can only be 1 or −1 the left- and right-hand side are actually
equal.

The third property follows from the second and from
(

b2

p

)

= 1 because b2 appar-

ently is a quadratic residue modulo p.
Lemma 7.2.9 immediately gives the last property. ✷

We state the following rule without proof.

Lemma 7.2.11 Let p be an odd prime. We have for the Legendre symbol of 2
modulo p that

(
2

p

)

= (−1)
p2−1

8 .

To significantly reduce the running time of evaluating the Legendre symbol the
quadratic reciprocity law is very important. We state it without proof and refer
the reader to the literature, e.g. Koblitz’ book mentioned in the introduction.

Lemma 7.2.12 (Quadratic reciprocity law)
Let p and q be odd primes. We have the equality

(
p

q

)

= (−1)
(p−1)(q−1)

4

(
q

p

)

=







−
(

q
p

)

, p ≡ q ≡ 3 mod 4,
(

q
p

)

, otherwise.

Example 7.2.13 Is 7411 a quadratic residue modulo 9283? Both numbers are
prime, which can be proven by e.g. the naive test.
By the quadratic reciprocity law we have

(
7411
9283

)
= −

(
9283
7411

)
since both numbers

are congruent to 3 modulo 4.
We use the first, the second, and then the third property of Lemma 7.2.10 with

9283 ≡ 1872 mod 7411 and 1872 = 24 ·32 ·13 to see
(
9283
7411

)
=
(
1872
7411

)
=
(

24·32·13
7411

)

=
(

24

7411

)

·
(

32

7411

)

·
(

13
7411

)
=
(

2
7411

)4 ·
(

3
7411

)2 ·
(

13
7411

)
=
(

13
7411

)
.

Since 13 ≡ 1 mod 4 the reciprocity law gives
(

13
7411

)
=
(
7411
13

)
and then 7411 ≡

1 mod 13. Since 1 = 12 is a quadratic residue the result is 1 and with the previous
steps we get

(
7411

9283

)

= −
(
9283

7411

)

= −
(

1

13

)

= −1.

This means that 7411 is not a square modulo 9283; as a side result we obtained
that 1872 is a square modulo 7411.
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The Legendre symbol requires the bottom entry to be prime and to apply the
reciprocity law both inputs need to be prime. The generalization is given by the
Jacobi Symbol.

Definition 7.2.14 (Jacobi symbol)
Let n be an odd integer and let n factor as n = pα1

1 · · · pαr
r , where the pi are

distinct primes and the exponents αi are positive integers. Let a be an integer.
The Jacobi-Symbol of a modulo n is defined as

(a

n

)

=

(
a

p1

)α1

· · ·
(
a

pr

)αr

,

where
(

a
pi

)

is the Legendre symbol of a modulo the prime pi.

Lemma 7.2.15 Let n,m be odd integers. We have the following rules for the
Jacobi symbol:

(
ab

n

)

=
(a

n

)( b

n

)

(
2

n

)

= (−1)n2−1
8

( n

m

)

= (−1)
(n−1)(m−1)

4

(m

n

)

Proof. The proof is left to the reader as Exercise 7.2.24.c. ✷

Remark 7.2.16 Note that we do no longer have the interpretation that
(
a
n

)
= 1

implies that a is a square modulo n.
Consider the case n = pq, where p and q are distinct primes, and let a be a
quadratic non-residue modulo p and modulo q. Then we have

(a

n

)

=

(
a

p

)(
a

q

)

= (−1) (−1) = 1.

However, a cannot be a square modulo n as a ≡ b2 mod n would imply a ≡
b2 mod p.
In fact we will see below that only a quarter of all numbers is a square modulo n.

Lemma 7.2.17 Let n be a composite odd integer.
For at least half of all possible bases a with gcd(a, n) = 1 we have that the Solovay-
Strassen test fails, i.e.

(a

n

)

6≡ a
n−1
2 mod n.
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Proof. Let A = {a1, . . . , ak} be the set of ai for which
(
ai
n

)
≡ a

n−1
2

i mod n with
1 ≤ ai < n and gcd(ai, n) = 1.

If there exists an integer 1 ≤ b ≤ n with gcd(b, n) = 1 and
(
b
n

)
6≡ b

n−1
2 mod n

then we have by the first property in Lemma 7.2.15 that

(
b · ai
n

)

=

(
b

n

)

·
(ai
n

)

while

(b · ai)
n−1
2 = b

n−1
2 · a

n−1
2

i

and so (
b · ai
n

)

6≡ (b · ai)
n−1
2 mod n.

Therefore, the Solovay-Strassen test detects compositeness with at least 50% of
all values a if such a number b exists.
Now we show that such a number b exists. Note, that this proof uses the factor-
ization of n, so it does not help in the actual test.
Let n factor as n = pα1

1 , . . . , p
αr
r , where the pi are distinct odd primes and the

exponents αi are positive integers. We consider two cases.
Let first one of the the exponents αi be larger than 1, e.g. p21 | n, and put
n′ = n/p21.
For b = 1 + n

p1
= 1 + p1n

′ we have

(
b

n

)

=

(
1 + p1n

′

n

)

=

(
1 + p1n

′

p1

)2(
1 + p1n

′

n′

)

=

(
1 + p1n

′

n′

)

=

(
1

n′

)

= 1.

To show that b
n−1
2 6≡ 1 mod n we consider powers of b using the binomial formula.

Let j ∈ IN. We have

bj = (1 + p1n
′)
j
=

j
∑

i=0

(
j

i

)

(p1n
′)i

≡ 1 + jp1n
′ +

(
j

2

)

(p1n
′)2 + . . .

≡ 1 + jp1n
′ mod n,

because (p1n
′)2 = n′n ≡ 0 mod n and the same holds for higher powers. This

implies that bj ≡ 1 mod n if and only if jp1n
′ ≡ 0 mod n, i.e. if and only if p1 | j.

Because p1 divides n it does not divide n − 1 and therefore also not (n − 1)/2.
Accordingly

(
b

n

)

6≡ b
n−1
2 mod n.

We now consider the case that the exponents αi = 1, i.e. n = p1 · · · pr is product
of distinct primes. Let 1 ≤ a < p1 be a quadratic non-residue modulo p1. Put
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n′ = n/p1. By the Chinese remainder theorem 3.4.20 there exists an integer b in
1 ≤ b < n which solves the system of equivalences

b ≡ a mod p1,

b ≡ 1 mod n′.

For this b we have
(
b

n

)

=

(
b

p1

)(
b

n′

)

= (−1)
(

1

n′

)

= −1

but we cannot have b
n−1
2 ≡ −1 mod n since n′ divides n and

b
n−1
2 ≡ 1 mod n′.

So for both cases we have constructed a number b which fails the test. ✷

We now have presented all the properties required for the Solovay-Strassen test.

Algorithm 7.2.18 (Solovay-Strassen compositeness test)
IN: Odd n ∈ IN, k ∈ IN
OUT: “n is composite” or “n is prime with probability at least 1− 1

2k
”

1. for i = 1 to k

(a) choose a ∈ ZZ randomly with 1 < a < n

(b) if gcd(a, n) 6= 1 return “n is composite”

(c) else

i. c←
(
a
n

)
(computed using Lemma 7.2.15)

ii. d←an−1
2 mod n (using a representative in −n/2 < d < n/2)

iii. if c 6= d return “n is composite”

2. return “n is prime with probability at least 1− 1
2k
”

Example 7.2.19 Let n = 711. Like before we choose a = 2 and compute

c =

(
2

711

)

= (−1)(7112−1)/8 = (−1)63190 = 1

using Lemma 7.2.15. Next we compute 2
710
2 ≡ 569 mod 711 and so d = 569.

Since c 6= d we see that n is composite.
As a second example we consider n = 341 and again choose the basis a = 2. We
have

c =

(
2

341

)

= (−1)(3412−1)/8 = (−1)14535 = −1.
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While 2170 ≡ 1 mod 341 and so c 6= d and already a = 2 detects n as composite.
For the Carmichael number n = 561 we have

c =

(
2

561

)

= (−1)(5612−1)/8 = (−1)39340 = 1

and 2280 ≡ 1 mod 561; so n is a pseudo-prime under the Solovay-Strassen test to
the basis a = 2.
For a = 5 we obtain:

c =

(
5

561

)

=

(
561

5

)

=

(
1

5

)

= 1

and 5280 ≡ 67 mod 561; and so n is detected as composite.

Both of these tests have probability 1/2 of detecting a composite number for each
iteration. The Fermat test needs one modular exponentiation per iteration while
the Solovay-Strassen test needs one modular exponentiation and the computation
of one Jacobi symbol per iteration. In return there are no exceptions to the
Solovay-Strassen test while the Carmichael numbers are pseudo-prime for any
basis in the Fermat test in spite of being composite.
The compositeness test of Miller and Rabin has probability of detecting a com-
posite number at least 3/4 per iteration. It uses the observation that modulo a
prime p there are only two solutions a of x2 ≡ 1 mod p for −p/2 < a < p/2. Let
p− 1 = 2rt, where t is an odd integer and let b ∈ ZZ with 1 ≤ b < p. Then either

bt ≡ 1 mod p or there exists an r′ < r so that b2
r′ t ≡ −1 mod p.

If n is composite then there are more than two solutions 1 ≤ a < n. Let e.g.
n = pq with p, q prime then the Chinese remainder theorem 3.4.20 leads to one
solution for each of the 4 choices of sign in

a ≡ ±1 mod p,

a ≡ ±1 mod q,

and so there are 4 solutions. If n has more factors then there are more solutions.
Let n split as n−1 = 2rt, where t is an odd integer. Let b ∈ ZZ with gcd(b, n) = 1.
If n is pseudo-prime to the basis b then bn−1 ≡ 1 mod n but this does not imply

that either bt ≡ 1 mod n or that there exists an r′ < r so that b2
r′ t ≡ −1 mod n

because there are more elements a which are equivalent to 1 modulo n when
squared. So if a subsequent squaring of bt reaches 1 without having reached −1
we know that n is composite. On top of that we detect compositeness of n if it
is not pseudo-prime for a chosen basis, namely if b2

rt 6≡ 1 mod n.
This motivates the definition of strong pseudo-primes.

Definition 7.2.20 (Strong pseudo-prime)
Let n be an odd composite integer and let n− 1 = 2rt, with t odd.
Let b ∈ ZZ with gcd(b, n). If either bt ≡ 1 mod n or if there exists 0 ≤ r′ < r so

that b2
r′ t ≡ −1 mod n then n is a strong pseudo-prime to the basis b.
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The above considerations have motivated the following lemma which we present
without proof. The interested reader is referred to Koblitz’ book mentioned in
the introduction to this chapter.

Lemma 7.2.21 Let n be an odd composite integer. It is a strong pseudo-prime
to at most one quarter of all possible bases b.

Algorithm 7.2.22 (Miller-Rabin compositeness test)
IN: Odd n ∈ IN, k ∈ IN with n− 1 = 2rt and t odd
OUT: “n is composite” or “n is prime with probability at least 1− 1

4k
”

1. for i = 1 to k

(a) choose a ∈ ZZ randomly with 1 < a < n

(b) if gcd(a, n) 6= 1 return “n is composite”

(c) else if at 6≡ ±1 mod n

i. j←1

ii. while a2
j ·t 6≡ ±1 mod n and j < r

j←j + 1

iii. if a2
j ·t ≡ 1 mod n return “n is composite”

iv. if j = r return “n is composite”

2. return “n is prime with probability at least 1− 1
4k
”

Example 7.2.23 Let n = 711. We have n − 1 = 710 = 21 · 355, so r = 1 and
t = 355. We chose again a = 2.
We have at = 2355 ≡ 569 6≡ 1 mod 711, so the iteration starts. However, j = 1 =
r is reached immediately and we obtain n is composite as answer. Note that it is
correct to stop the test here because either the next squaring leads to a value 6= 1
in which case the Fermat test detects n as composite or n is pseudo-prime to the
basis a but reaches the value 1 without having reached −1 which we identified as
another criterion for compositeness.
Now consider n = 341 with n− 1 = 340 = 22 · 85, so r = 2 and t = 85. For the
basis a = 2 we have

285 ≡ 32 6≡ 1 mod 341, 22·85 ≡ 1 mod 341,

and so n is detected as composite since 1 was reached as square of 85 6≡ −1 mod
341.
Finally, let n = 561 with n− 1 = 560 = 24 · 35. We have

235 ≡ 263 mod 561, 22·35 ≡ 166 mod 561, 22
2·35 ≡ 67 mod 561, 22

3·35 ≡ 1 mod 561,

which in the last round on the first basis a detects n as composite.
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Exercise 7.2.24 a) Let n1 = 717. Check compositeness of n1 using the Fermat
test.

b) Compute
(

7001
14175

)
.

c) Prove Lemma 7.2.15 using the properties of the Legendre symbol. Hint: study
how remainders modulo 8 and 16 behave under multiplication and squaring.

d) Let n2 = 709 and n3 = 721. Use the Miller-Rabin test to check compositeness
of n2 and n3 for k = 2.

7.3 Tests proving primality

This section considers tests which are always passed by composite numbers while
prime numbers have a non-negligible chance of being detected in which case the
test proves that the number is prime. We present in detail the Pocklington
primality test and sketch the idea behind elliptic curve primality proving.
The following test relates primality of n to the primality of a divisor q of n− 1.
So, to apply it one needs to be able to find a factor of n − 1 and one needs to
know that q is prime. This leads to a recursive primality proof where one finally
finds a q small enough that the naive test proves primality.

Lemma 7.3.1 Let n be an odd integer. If there exists a prime factor q of n− 1
with q >

√
n− 1 and if there exists a basis 1 ≤ a < n with

1. an−1 ≡ 1 mod n

2. gcd
(

a
n−1
q − 1, n

)

= 1,

then n is prime.

Proof. Let q >
√
n − 1 be a prime divisor of n − 1. If n is not prime there

must exist a prime factor p with p ≤ √n. Since q is prime and p < q we have
gcd(p− 1, q) = 1. By Bezout’s identity (Lemma 3.2.10) there exists an integer u
so that uq ≡ 1 mod p− 1.
This implies that for any 1 < a < n which satisfies an−1 ≡ 1 mod n (so in
particular p ∤ a) we have

a
n−1
q ≡ auq

n−1
q = au(n−1) ≡ 1 mod p.

Which, in turn, implies

p | gcd
(

a
n−1
q − 1, n

)

,

so that no a can satisfy both criteria if n is composite. ✷

First of all we point out that for n a prime the first part of the Pocklington test is
always satisfied. The second one is not satisfied if and only if a(n−1)/q ≡ 1 mod n.

Lemma 7.3.2 Let n be a prime so that n − 1 has a prime factor q >
√
n − 1.

For a fraction of 1/q of all bases a we have gcd
(
a(n−1)/q − 1, n

)
= n.
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Proof. The bound q >
√
n− 1 on q implies in particular that q2 6 |n− 1. Since

n is prime, the multiplicative group modulo n is cyclic and generated by some

1 < g < n. The powers gj of g for which (gj)
(n−1)/q ≡ 1 mod n are exactly those

j which are divisible by q, i.e. the (n− 1)/q multiples of q less than n− 1. This
corresponds to a fraction of 1/q of all bases. ✷

Note that the proof did not use the bound on q other than in the consequence
that q2 6 |n− 1.
This lemma implies that a large fraction of all bases a serve as witnesses of the
primality of n, i.e. they detect n as prime. Repeated use of this criterion with
random choices of the basis a makes it likely that a witness is found which proves
n to be prime. Since for each a also an−1 ≡ 1 mod n is checked, the test can also
lead to proving compositeness.

Algorithm 7.3.3 (Pocklington primality test)
IN: Odd n ∈ IN, k ∈ IN, prime q with q|n− 1 and q >

√
n− 1

OUT: “n is prime” or “n is composite” or “n is composite with probability at
least 1− 1

qk
”

1. for i = 1 to k

(a) choose a ∈ ZZ randomly with 1 < a < n

(b) if gcd(a, n) 6= 1 return “n is composite”

(c) else if an−1 6≡ 1 mod n return “n is composite”

(d) else if gcd
(
a(n−1)/q − 1, n

)
= 1 return “n is prime”

2. return “n is composite with probability at least 1− 1
qk
”

Example 7.3.4 Consider n = 283. We have 282 = 6 · 47 and will prove in the
next step that 47 is a prime. The condition that 47 >

√
283−1 > 15.82 is satisfied

so that the test can be applied. Pick a = 2 and compute 2282 ≡ 1 mod 283 and
26 ≡ 64 mod 283. This means that gcd(26 − 1, 283) = gcd(63, 283) = 1 and so
the basis 2 is a witness to 283 being prime, where we assume that 47 is prime.
Now consider nm = 47. We have 46 = 2 · 23 and 23 >

√
47 − 1 > 5.85. We

could repeat all previous steps to show that 23 = 2 · 11 + 1 and 11 = 2 · 5 + 1
are prime, thus linking the primality of 283 to that of 5 but we skip the further
steps and only show the next round. Again we choose 2 as he basis. We have
246 ≡ 1 mod 47 and 22 ≡ 4 mod 47, so that gcd(22 − 1, 47) = gcd(3, 47) = 1 and
a = 2 detects 47 as prime.

A problem with applying Pocklington’s test as stated is that n − 1 needs to
have a large prime factor. There are different versions of this test, including the
historically earliest due to Lucas, which deal with other cases but require more
knowledge on the factorization of n− 1. We state one test without proof.
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Lemma 7.3.5 Let k,m, n ∈ ZZ with n−1 = km, wherem > k and gcd(k,m) = 1,
and suppose the factorization of m is known. If for every prime factor q of m
there exists an integer a > 1 such that

1. an−1 ≡ 1 mod n

2. gcd
(

a
n−1
q − 1, n

)

= 1,

then n is prime.

Notice that different a’s can be used for each prime q.

Looking at what we have done in an abstract way we notice that we are using
the multiplicative group (ZZ/nZZ)× and the conditions are about divisors of the
alleged group order |(ZZ/nZZ)×| = n− 1. An alternative is to use an elliptic curve
over ZZ/nZZ and working with an alleged group order which one obtains assuming
that n is prime. We do not treat point counting algorithms in this manuscript
and so the following has to remain sketchy. For the moment assume that we are
able to find an m so that [m]P = P∞ if one uses the affine group operations as
in Chapter 6. For details we refer to the literature.

Lemma 7.3.6 Let n be an odd integer. Let E denote the set of solutions to

y2 ≡ x3 + ax+ b mod n,

where gcd(4a3 + 27b2, n) = 1. Let m ∈ IN and let q be prime with q|m and
q > (n1/4 + 1)2. If there exists a point P ∈ E with

1. [m]P = P∞,

2. [m
q
]P 6= P∞ and [m

q
]P defined,

then n is prime.

Exercise 7.3.7 a) Use the Pocklington test to prove that n2 = 709 is prime.
You can take for granted that 7 is prime.
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Notation Index

A

a ≡ b mod n: a is equivalent to b modulo n, 21
a | b: a divides b, 34
(
a
n

)
: Jacobi Symbol of a modulo n, 134

(
a
p

)

: Legendre symbol of a modulo p, 131

B

b2: a
2
1 + 4a2, 118

b4: 2a4 + a1a3, 118
b6: a

2
3 + 4a6, 118

C

c4: b
2
2 − 24b4, 118

c6: −b32 + 36b2b4 − 216b6, 118
char(K): characteristic of K, 76
χ(T ):characteristic polynomial of the Frobenius endomorphism, 115
C∗: complex numbers without 0, 13

D

deg(f): degree of polynomial f , 48
dimK(V ): dimension of the vector space V over the field K, 54

E

E: elliptic curve, 109
E(K): set of K-rational points on elliptic curve E, 109
E(L): set of L-rational points on elliptic curve E, 109

F

f ′: derivative of polynomial f , 82
f(x) ∈ K[x]: polynomial in one variable x over a field K, 47
IFp: finite field with p elements, prime field, 78
IFq: finite field with q elements, 76

G

G1 ×G2: Cartesian product of G1 and G2, 16
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〈g〉: cyclic group generated by g, 18
(g1, . . . , gl): ideal generated by g1, . . . , gl, 43
gcd(a, b):greatest common divisor, 34
G/G′: quotient group of G modulo subgroup G′, 26

I

Im(ψ): image of homomorphism ψ, 29

K

K(θ): K adjoin θ, 88
Ker(ψ): kernel of homomorphism ψ, 29

L

LC(f): leading coefficient of polynomial f , 48
[L : K]: extension degree of field L over K, [L : K] = dimK(L), 55
LT (f): leading coefficient of polynomial f , 48

M

[m]g: m-fold composition of group element g with itself, 18
mα(x): minimal polynomial of α ∈ L over K ⊂ L, 83
mod: modulo, 21

N

N: norm, 92
NIFqm :IFq : relative norm of IFqm over IFq, 92

P

p: prime number, 79
ϕ(n): Euler ϕ-function, 24

Q

q: prime power q = pn, 79
Q∗: rationals without 0, 13

R

R×: group of units in ring R, 35
R/I:quotient ring of R modulo I, 41
R× S: Cartesian product of rings R and S, 33
IR∗: reals without 0, 13

S

S3: symmetry group of equilateral triangle, 16
σ: Frobenius automorphism, 92

T
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Tr: trace, 92
TrIFqm/IFq : relative trace of IFqm over IFq, 92

Z

(ZZ/nZZ)×: multiplicative group modulo n, 27
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General Index

Symbols

K-rational points, 109
L-rational points, 109

A

abelian, 12
absolute norm, 92, 93
absolute trace, 92, 93
adjoin, 88
affine coordinates, 119, 124
average-case complexity, 59

B

Bézout’s identity, 25
basis, 54
best-case complexity, 59
big-O, 59
binary field, 96
binary form, 64
binomial, 95, 99
bubble sort, 61

C

Cartesian product, 16, 33, 39
characteristic, 76
characteristic polynomial of the

Frobenius endomorphism,
115, 126

Chinese Remainder Theorem, 38
coefficient, 47
commutative, 12, 32
complexity, 59

average-case, 59
best-case, 59
big-O, 59
exponential, 60
linear, 60

polynomial, 60
worst-case, 59

compositeness test
Fermat’s compositeness test, 131

conjugates, 91
cyclic group, 18, 31

D

degree
of a polynomial, 48

derivative, 82
dimension, 54
direct product, 16
discriminant, 119
divisible, 34
domain, 34

E

elliptic
Montgomery coordinates, 121

elliptic curve, 102, 109
K-rational points, 109
L-rational points, 109
addition, 105, 107, 110, 111
affine coordinates, 119, 124
binary field, 122
characteristic polynomial of the

Frobenius endomorphism,
115, 126

discriminant, 119
doubling, 105–107, 111
Frobenius endomorphism, 114,

125
group law, 103, 105, 107, 111
Hasse’s theorem, 113
isomorphic transformation, 117
Jacobian coordinates, 120, 125
Koblitz curves, 125
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mixed coordinates, 120
nonsingular, 107
optimal extension field, 121
over IR, 102, 103, 107
over K, 111
prime field, 117
projective coordinates, 119, 124
Satoh’s algorithm, 117
Schoof’s algorithm, 117
singular, 107
supersingular, 123
trace of the Frobenius endomor-

phism, 115
elliptic curve over field K, 109
elliptic curves

mixed coordinates, 124, 125
Montgomery form, 121

Euclidean, see Euclidean domain
Euclidean algorithm, 36, 69
Euclidean domain, 35, 50
Euler ϕ-function, 24, 27, 129
evaluation of a polynomial, 49
exponent, 20
exponential complexity, 60
extended Euclidean algorithm, 25
extension

finite, 55
infinite, 55

extension degree, 55
extension field, 46

F

Fermat test, 129
Fermat’s compositeness test, 131
Fermat’s little theorem, 27
field, 45

extension
degree, 55

extension field, 46
finite extension, 55
finite field, 46, 76
infinite extension, 55
subfield, 46
zero divisor, 46

finite extension, 55
finite field, 46, 76, 78

additive structure, 78
adjoin, 88
binary field, 96
characteristic, 76
conjugate, 91
Frobenius automorphism, 92
minimal polynomial, 83
multiplicative group, 80
multiplicative structure, 80
norm, 92, 93
pentanomial, 98
prime field, 78
prime subfield, 77
primitive element, 81
splitting field, 85
trace, 92, 93
trinomial, 97

finite field:binomial, 99
Frobenius automorphism, 92
Frobenius endomorphism, 114, 125

G

Galois field, see finite field
generator, 18, 43
greatest common divisor, 34
group, 12

abelian, 12
Cartesian product, 16
commutative, 12
cyclic, 18, 31
direct product, 16
exponent, 20
generator, 18
homomorphism, 28
image, 29
isomorphism, 28
kernel, 29
Klein four-group, 31
monoid, 13
multiplicative group modulo n,

27
order, 19
product, 30
proper subgroup, 17
quotient group, 26, 41
semigroup, 13
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subgroup, 16, 17
symmetry group, 16
trivial subgroup, 17

H

Hamming weight, 65
Hasse’s theorem, 113
homomorphism, 28

image, 29
isomorphism, 28
kernel, 29

I

ideal, 41
generators, 43
principal ideal, 43

image, 29
infinite extension, 55
insertion sort, 58, 59
irreducible

Rabin test, 94
irreducible polynomial, 50, 51, 82
isomorphic transformation, 117
isomorphism, 28, 42

J

Jacobi criterion, 108
Jacobi symbol, 134
Jacobian coordinates, 120, 125
joint sparse form, 69
JSF, see joint sparse form

K

kernel, 29
Klein four-group, 31
Koblitz curves, 125

L

Lagrange’s theorem, 27
leading coefficient, 48
leading term, 48
Legendre symbol, 131, 133, 134
linear combination, 54
linear complexity, 60
linearly independent, 54

M

merge sort, 61
Miller-Rabin compositeness test, 138
minimal polynomial, 83
mixed coordinates, 120, 124, 125
modulo, 21
modulus, 21
monic, 48
monoid, 13
Montgomery coordinates, 121
Montgomery form, 121
Montgomery’s ladder, 67
multi-scalar multiplication, 68
multiplicative group, 80
multiplicative group modulo n, 27

N

NAF, see non-adjacent form
non-adjacent form, 65, 125
nonsingular, 107
norm, 92, 93

O

OEF, see optimal extension field
optimal extension field, 99, 121
order, 19

element, 19
group, 19

P

pentanomial, 95, 98
PID, see principal ideal domain
Pocklington primality test, 140
polynomial, 13, 47

binomial, 95
coefficient, 47
degree, 48
derivative, 82
evaluation, 49
irreducible, 50, 51, 82
leading coefficient, 48
leading term, 48
minimal polynomial, 83
monic, 48
pentanomial, 95
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Rabin test, 94
reducible, 50, 82
root, 49
splitting field, 85
trinomial, 95

polynomial complexity, 60
prime field, 77, 78
prime subfield, 77
primitive element, 81
principal ideal, 43
principal ideal domain, 43
product of groups, 30
projective coordinates, 119, 124
proper subgroup, 17
pseudo-prime, 129, 137

Q

quadratic non-residue modulo n, 131
quadratic reciprocity law, 133
quadratic residue modulo n, 131
quotient group, 26, 41
quotient ring, 41

R

Rabin test, 94
recursive algorithm, 61
reducible, 50, 82
relative norm, 92, 93
relative trace, 92, 93
residue class, 21
ring, 32

Cartesian product, 33, 39
commutative ring, 32
divisible, 34
domain, 34
Euclidean domain, 35, 50
greatest common divisor, 34
homomorphism, 42
ideal, 41
isomorphism, 42
principal ideal domain, 43
quotient ring, 41
ring with unity, 32
subring, 41
unique factorization, 51, 52

unit, 35
zero-product property, 34

ring homomorphism, 42
root, 49

S

Satoh’s algorithm, 117
Schoof’s algorithm, 117
semigroup, 13
sieve of Eratosthenes, 129
singular, 107
Solovay-Strassen compositeness test,

136
Solovay-Strassen test, 134
sort

bubble, 61
insertion, 58, 59
merge, 61

splitting field, 85
strong pseudo-prime, 137
subfield, 46
subgroup, 16, 17
subring, 41
subspace, 55
supersingular, 123
symmetry group, 16

T

trace, 92, 93
trace of the Frobenius endomor-

phism, 115
trinomial, 95, 97
trivial subgroup, 17

U

unique factorization, 51, 52
unit, 35

V

vector space, 53
basis, 54
dimension, 54
linear combination, 54
linearly independent, 54
subspace, 55
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W

worst-case complexity, 59

Z

zero divisor, 46
zero-product property, 34
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