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Multivariate PKC (MPKC)

Public map of a typical multivariate PKC over base field K = Fq:

P : w ∈ Kn S7→ x = MSw + cS
Q7→ y

T7→ z = MTy + cT ∈ Km

S and T affine and invertible

Q quadratic, known as as the central map
(and the components of Q are central polynomials)

For encryption schemes, n < m

For signature schemes, n > m

Most often q = 2 or a lower power of 2.
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Why are MPKCs Worth Studying?

Diversification

: Future-proof against quantum computers.

Efficiency

: Faster than “traditional” PKCs.
... Maybe.
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Design of Current MPKCs

Basic Trapdoor

Ways for the legitimate user to invert Q:

Big-Field: C ∗, HFE, `IC,

Small-Field: UOV, Triangular

Modifiers

Ways to guard against an attacker finding Q: +, −, p, i , v , . . .
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MPKC Modifiers

All vanilla trapdoors have been broken

Need modifiers to address attacks
I Minus (-): throw away some polynomials
I Plus (+): add central polynomials
I Prefix or postfix (p): force some wi = 0
I Vinegar (v): perturbation in a small subspace
I Internal perturbation (i): equal to p+v.

A few others; not discussed here.
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UOV (Unbalanced Oil and Vinegar)
Patarin, 1997

We can write the quadratic part of a polynomial in w as a symmetric
matrix M.
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UOV (Unbalanced Oil and Vinegar)
Patarin, 1997

We can write the quadratic part of a polynomial in w as a symmetric
matrix M. If dealing with F2k , let f (w) = wT M̄w + (lower parts), then
M = M̄ + M̄T is the matrix we want.
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UOV (Unbalanced Oil and Vinegar)
Patarin, 1997

We can write the quadratic part of a polynomial in w as a symmetric
matrix M. Matrices corresponding to central polynomials of UOV
schemes have a distinctive form:

Mi :=



α
(i)
11 · · · α

(i)
1,v α

(i)
1,v+1 · · · α

(i)
1,n

...
. . .

...
...

. . .
...

α
(i)
v ,1 · · · α

(i)
v ,v α

(i)
v ,v+1 · · · α

(i)
v ,n

α
(i)
v+1,1 · · · α

(i)
v+1,v 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n,1 · · · α

(i)
n,v 0 · · · 0


Hence given y and x1, . . . , xv we can solve for xv+1, . . . , xn.

B.-Y. Yang (IIS-Sinica) Implementing MPKCs SPEED-CC, Oct. 12, ’09 7 / 40



Rainbow-Type Signatures
or Stage-wise UOV, Ding 2005

For 0 < v1 < v2 < · · · < vu+1 = n
I Sl := {1, 2, . . . , vl}
I Ol := {vl + 1, . . . , vl+1}
I ol := vl+1 − vl = |Ol |
Q : x = (x1, . . . , xn) 7→ y = (yv1+1, . . . , yn)

I yk := qk(x), with following form if vl < k ≤ vl+1

qk =
∑

i≤j≤vl

α
(k)
ij xixj +

∑
i≤vl<j<vl+1

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi

Given all yi with vl < i ≤ vl+1 and all xj with j ≤ vl , we can compute
xvl+1, . . . , xvl+1

via elimination
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Rainbow Variants

TTS: Chen+Yang 2004

Uses a sparse Q
Q−1 only need solving linear systems like Rainbow

Example from 2004: TTS(20,28)

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8, . . . , 16

y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4
+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13

y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5
+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14

yi = xi + pi ,0xi−11xi−9 +
∑i

j=19 pi ,j−18x2(i−j)−(i mod 2)xj

+
∑27

j=i+1 pi ,j−18xi−j+19xj , i = 19, . . . , 27

TRMS: Wang-*-Yang, 2005

Each UOV stage is

piece of y = quadratic(xvinegar) + linear(xvinegar) ×F
qk

linear(xoil)

To invert the central map do divisions in various Fqk

Rainbow-type Parameters Today

Suggested examples are q = 16 or 31 and layers sizes (24, 20, 20).
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UOV matrices look like this

Mi :=

[
∗ ∗
∗ 0

]
=



α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v ,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v , 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0



Rainbow and variants also have some matrices like this

Mi :=

[
∗ 0
0 0

]
=



α
(i)
11 · · · α

(i)
1v 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


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The C ∗ Trapdoor
Matsumoto and Imai, 1988

The central map is a monomial over Fqn

Q(x) = x1+qθ
= x · xqθ

I Fqn is an n-dimension vector space over Fq

I Since x 7→ xq is linear, Q is quadratic
I Requires that gcd(1 + qθ, qn − 1) = 1
I Q is inverted by raising to the inverse power of 1 + qθ

Basic scheme broken by Patarin in 1995

C ∗ − p and C ∗ + i not yet broken
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HFE: Hidden Field Equations
Patarin 1998

Generalization of C ∗

Central map is a Dembowski-Ostrom polynomial in Fqn

Q(x) =
∑

qi+qj≤D

ai ,j<rx
qi+qj

+
∑
qi≤D

bix
qi

+ c

I Inversion using Berlekamp Algorithm, much slower than C∗

I Basic scheme is breakable if r too small
I QUARTZ (a HFE-v) still standing
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Variant Trapdoors with Smaller “Big Fields”

`-invertible Cycles

Like C ∗, `IC also uses an intermediate field L∗ = Kk

Extends C ∗ by using the following central map from (L∗)` to itself

Q : (X1, . . . ,X`) 7→ (Y1, . . . , Y`) := (X1X2, X2X3, . . . , X`−1X`,X`X
qα

1 )

“Standard 3IC,” ` = 3, α = 0

Q : (X1,X2,X3) ∈ (L∗)3 7→ (X1X2,X2X3,X3X1)

HFE with intermediate fields for speed

Q is a random quadratic maps in Lk 7→ Lk , called 3HFE if k = 3, etc.

To do Q−1 convert by elimination (Gröbner basis computation) to
univariate equation of degree 2k .

Note: 3HFEp, 3IC-p, and 2IC+i still standing.
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Q : (X1, . . . ,X`) 7→ (Y1, . . . , Y`) := (X1X2, X2X3, . . . , X`−1X`,X`X
qα

1 )

“Standard 3IC,” ` = 3, α = 0 , Q−1 in (L∗)3 is easy:

Q−1 : (Y1,Y2,Y3) ∈ (L∗)3 7→ (
√

Y1Y3/Y2,
√

Y1Y2/Y3,
√

Y2Y3/Y1, )

HFE with intermediate fields for speed

Q is a random quadratic maps in Lk 7→ Lk , called 3HFE if k = 3, etc.

To do Q−1 convert by elimination (Gröbner basis computation) to
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Rate-Determining Mechanisms for MPKCs

Key Generation

Evaluation of coefficients

Public Maps

Evaluating a generic set of quadratic polynomials in K = Fq

Private Maps
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Rate-Determining Mechanisms for MPKCs

Key Generation

Evaluation of coefficients:

Often as differentials of public map.

Sometimes, by brute force!

Public Maps

Evaluating a generic set of quadratic polynomials in K = Fq

Private Maps
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Rate-Determining Mechanisms for MPKCs

Key Generation

Evaluation of coefficients

Public Maps

Evaluating a generic set of quadratic polynomials in K = Fq

usually as a matrix multiplying the vector of monomials

Private Maps
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Rate-Determining Mechanisms for MPKCs

Key Generation

Evaluation of coefficients

Public Maps

Evaluating a generic set of quadratic polynomials in K = Fq

Private Maps

UOV Solving linear systems of equations in K = Fq

Rainbow Like UOV plus mini “Public Map”

TTS Like UOV except public map is sparse

C∗ High powers in L = Fqn

HFE Equation solving in L = Fqn (general arithmetic)

TRMS Inverse and multiplication in various L = Fqk

`IC Inverses and roots in L
kHFE Like HFE plus an elimination in L
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Practical Side of Computing

Moore’s law

Transistor budget doubles every 18–24 months

Memory Latencies vs Clock Speeds

Year Hi-End CPU MHz DRAM

1979 Z80 2 500ns
1984 80286 10 400ns
1989 80486 40 300ns
1994 Pentium 100 250ns
1999 Athlon 750 200ns
2004 Pentium 4 3800 160ns
2009 Core i7 3200 130ns
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Are MPKCs Still Fast?

Progress in high-precision arithmetic
I In 80’s, CPUs computed one 32-bit integer product every 15–20 cycles
I In 2000, x86 CPUs computed one 64-bit product every 3–10 cycles
I K10’s and Core i7’s today produces one 128-bit product every 2 cycles
I Marvelous for ECC (and RSA)

In contrast, progress in F2q arithmetic is slow
I 6502 or 8051: a dozen cycles via three table look-ups
I Modern x86: roughly same that many cycles

Moore’s law favors computation, not so much memories
I Memory access speed increased at a snail’s pace

Wang et al. made life even harder for MPKCs
I Forcing longer message digests
I RSA untouched
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Questions We Want to Answer

Can all the extras on modern commodity CPUs help MPKCs as well?

How have architectural changes affected implementation choices?

If so, how do MPKCs compare to traditional PKCs today?
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Arithmetic in F2k

Multiplication Tables in Memory

Log/Exp Tables to a generator g

Bit-Slicing
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Arithmetic in F2k

Multiplication Tables in Memory

One lookup per multiply

Can result in large tables and pressure on cache

Some parallelism can be achieved for F4 and F16.

Log/Exp Tables to a generator g

Bit-Slicing
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Arithmetic in F2k

Multiplication Tables in Memory

Log/Exp Tables to a generator g

Compute xy as g logg x+logg y if neither is zero.

Maximum of 3 lookups per mult, some logs can be pre-computed

Require conditionals (bad!)

Bit-Slicing
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Arithmetic in F2k

Multiplication Tables in Memory

Log/Exp Tables to a generator g

Bit-Slicing

Highly parallel — 32/64/128 multiplies at the same time

Often requires rearranging of data

Parameters can result in awkward dimensions like 1 + (word size)

Require Conditionals or jump tables.
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Arithmetic in F2k

Multiplication Tables in Memory

Becomes attractive again if parallel lookups available.

Log/Exp Tables to a generator g

Bit-Slicing

Highly parallel — 32/64/128 multiplies at the same time

Often requires rearranging of data

Parameters can result in awkward dimensions like 1 + (word size)

Require Conditionals or jump tables.
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*SSE*, the X86 Vector Instruction Set Extensions

SSE: Streaming SIMD Extensions
I SIMD: Single Instruction Multiple Data

Most useful: SSE2 integer instructions
I Work on 16 xmm 128-bit registers
I As packed 8-, 16-, 32- or 64-bit operands
I Move xmm to/from xmm, memory (even unaligned), x86 registers
I Shuffle data and pack/unpack on vector data
I Bit-wise logical operations like AND, OR, NOT, XOR
I Shift left, right logical/arithmetic by units, or entire xmm byte-wise
I Add/subtract on 8-, 16-, 32- and 64-bits
I Multiply 16-bit and 32-bits in various ways

SSSE3’s PSHUFB (16 nibble-to-byte lookup in 1 cycle) and
PALIGNR (256-bit bytewise rotation) quite powerful
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PSHUFB in SSSE3

“Packed Shuffle Bytes”
I Source: (x0, . . . , x15)
I Destination: (y0, . . . , y15)
I Result: (yx0 mod 32, . . . , yx15 mod 32), treating x16, . . . , x31 as 0
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Speeding Up MPKCs over F16

TT : 16× 16 table, with TTi ,j = i ∗ j , 0 ≤ i , j < 16

To compute av, a ∈ F16, v ∈ (F16)
16

I xmm ← a-th row of TT
I av← PSHUFB xmm,v

Works similarly for a ∈ (F16)
2, v ∈ (F16)

32

I Need to unpack, do PSHUFBs, then pack

Delivers 2× performance over simple bit slicing in private map
evaluation of rainbow and TTS

Some other platforms also have similar instructions
I AMD’s SSE5: PPERM (superset of PSHUFB)
I IBM POWER AltiVec/VMX: PERMU
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Speeding Up MPKCs over F256
Nibble Slicing

TL : 256× 16 table, with TLi ,j = i ∗ j , 0 ≤ i < 256, 0 ≤ j < 16

TH : 256× 16 table, with THi ,j = i ∗ (16j), 0 ≤ i < 256, 0 ≤ j < 16

To compute av, a ∈ F256, v ∈ (F256)
16

I avi = a(16bvi/16c) + a(vi mod 16), 0 ≤ i < 16

v′i ← a(16bvi/16c)
I v′i ← bvi/16c (SHIFT)
I xmm ← a-th row of TH
I v′ ← PSHUFB xmm,v′

vi ← a(vi mod 16)
I vi ← vi mod 16 (AND)
I xmm ← a-th row of TL
I v← PSHUFB xmm,v

av← v + v′ (OR)
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Some Interesting Design Choices
System and Architecture-Dependent Stuff

Key Generation

Matrix-to-Vector-Multiply and Evaluating Public Maps

Tower Field Arithmetic

System- and Equation-Solving
I Pre-scripted Gröbner Basis Computation
I Iterative Methods instead of Gaussian Eliminations
I Cantor-Zassenhaus instead of Berlekamp
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Key Generation

Matsumoto-Imai’s notaton: zk :=
X

i

wi

"
Pik + Qikwi +

X
j<i

Rijkwj

#
.

Usual Way: as differentials of public map P = (p1, . . . , pm)

for q > 2, we choose any a 6= 0, 1 and get

Qik := (a(a− 1))−1 (pk(avi )− apk(vi ))

Pik := pk(vi )− Qik

Rijk := pk(vi + vj)− Qik − Qjk − Pik − Pjk

For F2, it becomes

Pik := pk(vi )

Rijk := pk(vi + vj)− Pik − Pjk

(vi means the unit vector on the i-th direction)
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Key Generation

Matsumoto-Imai’s notaton: zk :=
X

i

wi

"
Pik + Qikwi +

X
j<i

Rijkwj

#
.

Usual Way: as differentials of public map P = (p1, . . . , pm)

For TTS and other sparse central Q: by brute force

Pik =
m−1∑
h=0

(MT )kh

(MS)hi +
∑

p xαxβ in qh

p ((MS)αi (cS)β + (cS)α(MS)βi )


Qik =

m−1∑
h=0

(MT )kh

 ∑
p xαxβ in qh

p (MS)αi (MS)βi


Rijk =

m−1∑
h=0

(MT )kh

 ∑
p xαxβ in qh

p ((MS)αi (MS)βj + (MS)αj(MS)βi )


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Evaluating Public Maps

Naive Way (and on µP’s still)

zk =
∑

i wi

[
Pik + Qikwi +

∑
i<j Rijkwj

]
For better memory access pattern

1 c← [wT , (wiwj)i≤j ]
T

2 z← Pc, where P is the m × n(n + 3)/2 public-key matrix

How to do Matrix-to-Vector mults

Microcontrollers Naively

Somewhat newer CPUs Bit-slicing for F2k

With more cache Big look-up tables (with nibble-slicing)

Newest architectures More or less naively, with SSE*
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MPKCs over Odd Prime Fields

Are you out of your mind?

XOR is easy, addition mod q is not.

How can it possibly be faster?

It’s more than about speed

Good for defending against Gröbner basis attacks
I The field equation X q − X = 0 becomes much less useful

SSE* gives you parallel arithmetic on small integers,
I and you only need to parallelize 4 or 8 at a time.

Do you know how many 18-bit multipliers there are on an FPGA?
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I and you only need to parallelize 4 or 8 at a time.

Do you know how many 18-bit multipliers there are on an FPGA?
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Basic Building Blocks for Speeding Up Odd MPKCs

IMULHIb: the upper half in a signed product of two b-bit words

Useful for computing bxy/2bc
I For −2b−1 ≤ x ≤ 2b−1 − (q − 1)/2
I t ← IMULHIb b2b/qc, x + b(q − 1)/2c
I y ← x − qt computes y = x mod q, |y | ≤ q

For q = 31 and b = 16, we can do even better
I For −32768 ≤ x ≤ 32752
I t ← IMULHI16 2114, x + 15
I y ← x − 31t computes y = x mod 31,−16 ≤ y ≤ 15

B.-Y. Yang (IIS-Sinica) Implementing MPKCs SPEED-CC, Oct. 12, ’09 27 / 40



Speeding Up Matrix-to Vector Mults

PMADDWD: Packed Multiply and Add, Word to Double-word
I Source: (x0, . . . , x7)
I Destination: (y0, . . . , y7)
I Result: (x0y0 + x1y1, x2y2 + x3y3, x4y4 + x5y5, x6y6 + x7y7)

Helpful in evaluating z = Pc, piece by piece
I Let Q be a 4× 2 submatrix of P
I dT be the corresponding 2× 1 submatrix of c
I r1 ← (Q11,Q12,Q21,Q22,Q31,Q32,Q41,Q42)
I r2 ← (d1, d2, d1, d2, d1, d2, d1, d2)
I PMADDWD r1, r2 computes Qd
I Continue in 32-bits until reduction modq

Saves a few modq operations and delivers 1.5× performance
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Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

Pre-compute av for each column v in any constant matrix

Read off the appropriately offset vector as needed

Can nibble-slice F16/F256 into F16/F4

Obviously minimizes the need for operations

Unbelievably ...

Slower than SSE on Core 2 45nm and Core i7 (or K10 45nm for mod31)!

When L2 isn’t fast enough

SSE instructions have a reverse throughput of 1 cycle today

memory access is linear when using SSE

L2 latency 20+ cycles; LUT reads not regular enough

We are still trying to amend this with manual pre-fetching
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Inversion in F31

On C2 and Ci7: can use two SSE lookups with some extra work.

On K8/K10: x 7→ x29

I y ← x ∗ x ∗ x mod 31 (y = x3)
I y ← x ∗ y ∗ y mod 31 (y = x7)
I y ← y ∗ y mod 31 (y = x14)
I y ← x ∗ y ∗ y mod 31 (y = x29)

Deliver 2× performance over serial table look-ups!
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Remarks on Getting More Performance
Laziness often leads to optimality

Do not always need the tightest range

The less reductions, the better!

The less memory access, the better!

The more regular memory access, the better!

Packing Fq-blocks into binary can use more bits than necessary as
long as the map is injective and convenient to compute
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Wiedemann vs. Gauss Elimination modq

How to solve a medium-sized dense linear system?
I Wiedemann iterative solver for Ax = b

F Compute zAib for some z
F Compute minimal polynomial using Berlekamp-Massey

I Requires O(2n3) field multiplications
I Straightforward Gauss elimination requires O(n3/3)

However, Wiedemann involves much less reductions modulo q

Result: Wiedemann beats Gauss by a factor of 2!

B.-Y. Yang (IIS-Sinica) Implementing MPKCs SPEED-CC, Oct. 12, ’09 32 / 40



Big Tower Fields modq

Fqk isomorphic to Fq [t]/p(t), deg p = k and p irreducible

For k|(q − 1) and a few other cases, p(t) = tk − a for a small a.
I > 2× reduction performance over cases where p has 3 terms
I X 7→ X q becomes trivial to compute
I Multiplication is straightforward, S:M ratio is between 0.75 and 0.92.
I Inversion: (again) raising to the (qk − 2)-th power!
I For some tower of tower fields such as F3130 , can use Karatsuba.

Square roots computed via Tonelli-Shanks Example: in F319 we raise
to the 1

4

(
319 + 1

)
-th power

i . temp1 := (((input)2)2)2, ii . t2 := (t1)2 ∗ ((t1)2)2,
iii . t2 :=

ˆ
t2 ∗ ((t2)2)2

˜31
, iv . t2 := t2 ∗ (t2)31,

v . result := t1 ∗ t2 ∗
`
(t2)31

´31
;

and note that this shares some steps with inversion.
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Some Performance numbers

Microarchitecture MULT SQ INV SQRT inv+sqrt

C2 (65nm) 234 194 2640 4693 6332

C2+ (45nm) 145 129 1980 3954 5244

K8 (Athlon 64) 397 312 5521 8120 11646

K10 (Phenom) 242 222 2984 5153 7170

As an illustration of how we are doing, 128-way bitsliced multiplication
with multi-stage Karatsuba and Toom in F288 with djb-class code is about
4 times faster on the K10.

B.-Y. Yang (IIS-Sinica) Implementing MPKCs SPEED-CC, Oct. 12, ’09 34 / 40



To Solve Equation(s) in a Big Tower Field modq

Scripted Gröbner Basis Computation

From 3 quadratic equations in 3 variables, we in succession run Gaussian
eliminations on matrices of dimensions 3× 10, 11× 19, 8× 16, 5× 13,
with many coefficients that we know to be zero in advance, to reach a
degree-8 equation. You can call this a tailored matrix-F4.

Cantor-Zassenhaus (instead of Berlekamp)

1 Replace u(X ) by gcd(u(X ),X qk − X ) so that u splits in L.
1 Compute and tabulate X d mod u(X ), . . . , X 2d−2 mod u(X ).
2 Compute X q mod u(X ) via square-and-multiply.
3 Compute and tabulate X qi mod u(X ) for i = 2, 3, . . . , d − 1.

4 Compute X qi

mod u(X ) for i = 2, 3, . . . , k, then X qk

mod u(X ).

2 Do gcd
(
v(X )(q

k−1)/2 − 1, u(X )
)

for random v(X ) with

deg v < deg u, to find nontrivial factor ≥ 1
2 of the time; repeat as

needed.
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Anything else New For F2k?

Not Really.

Ok, So we implemented some

Karatsuba-type implementations for tower fields

Parallel bitslicing for F2k useful for MPKCs

More SSSE3 parallelization using PSHUB

But no sense talking such with so many sado-masochistic bitslicers here!
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Performance Comparison on Intel Q9550

Scheme Result PubKey PriKey KeyGen PubMap PriMap

RSA (1024 bits) 128 B 128 B 1024 B 27.2 ms 26.9 µs 806.1 µs
4HFE-p (31,10) 68 B 23 KB 8 KB 4.1 ms 6.8 µs 659.7 µs
3HFE-p (31,9) 67 B 7 KB 5 KB 0.8 ms 2.3 µs 60.5 µs

RSA (1024 bits) 128 B 128 B 1024 B 26.4 ms 22.4 µs 813.5 µs
ECDSA (160 bits) 40 B 40 B 60 B 0.3 ms 409.2 µs 357.8 µs
C∗-p (pFLASH) 37 B 72 KB 5 KB 28.7 ms 97.9 µs 473.6 µs
3IC-p (31,18,1) 36 B 35 KB 12 KB 4.2 ms 11.7 µs 256.2 µs
Rainbow (31,24,20,20) 43 B 57 KB 150 KB 120.4 ms 17.7 µs 70.6 µs
TTS (31,24,20,20) 43 B 57 KB 16 KB 13.7 ms 18.4 µs 14.2 µs

Measured using SUPERCOP: System for unified performance evaluation
related to cryptographic operations and primitives.
http://bench.cr.yp.to/supercop.html, April 2009.
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Conclusions and Remarks

Take-away point: Odd MPKCs worth studying!
I Algebraic attacks become harder
I Friendly to mainstream computing devices

F X86 CPUs have vector instructions
F High-end FPGAs have multiplier IPs
F Can be good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)

It is very important to tune to your architecture.

MPKCs still competitive speedwise, including on 8051s.

When Intel’s new vector instruction set comes out, it’s likely to
double the MPKC throughput per cycle too.

Future work

Implement for new CPUs and instructions (PCLMULQDQ).

Implement on Graphic cards and all that.

Implement some side-channel-attack resistant versions?
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Thanks for Listening!

Questions or comments?
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