Pairing-Friendly Fields

Koblitz & Menezes – A field is defined as pairingfriendly with repect to a cryptographic pairing of embedding degree k>2, if $p=1 \mod 12$. Let F_{pk} be a pairing-friendly field, and let E be an element in $F_{\rm p}$ that is neither a square nor a cube. Then the polynomial X^k - E is irreducible. Nice binomial irreducible! Easy to build a tower of extensions. Nice for automatic generation of finite field code!

Pairing friendly fields

Therefore to be a pairing-friendly field then p=1 mod 3 and p=1 mod 4 (a little restrictive!)

Consider now a pairing-friendly elliptic curve which supports "efficient arithmetic". Then for the Tate pairing e(P,Q) if 6|k, and the CM discriminant is D=3, then Q can be a point on the sextic twist $E(F_pk/6)$. If 4|k and D=4, then Q can be a point on the quartic twist $E(F_pk/4)$.

Pairing friendly fields

Main result (indeed only result!)

For pairing friendly fields as applied to pairing-friendly curves with efficient arithmetic, then automatically $p=1 \mod 3$ or $p=1 \mod 4$. So we are already half-way towards being able to use a pairing-friendly field.

Pairing-friendly Fields

In the case D=3 the elliptic curve is of the form $y^2=x^3+B$. Therefore $p=1 \mod 3$, as otherwise the elliptic curve is supersingular with embedding degree 2.

In the case D=4 the elliptic curve is of the form $y^2=x^3+Ax$. Therefore $p=1 \mod 4$, as otherwise the elliptic curve is supersingular with embedding degree 2.