

Improved Garbled Circuit Building Blocks and Applications to Auctions & Computing Minima

Ahmad-Reza Sadeghi, Thomas Schneider

Ruhr-University Bochum, Germany

Vladimir Kolesnikov

Alcatel-Lucent Bell Labs, USA

SPEED-CC 2009, Berlin, Germany - October 12-13, 2009

Secure 2-Party Computation (S2PC) = Secure Function Evaluation (SFE)

Outline

- Two Paradigms for Secure 2-Party Computation
 - Homomorphic Encryption (HE)
 - Garbled Circuits (GC)
- How to combine HE and GC efficiently
- Efficient Circuit Constructions
- Improved Applications
 - Millionaire's Problem, Auctions, Minimum Distance
 - Outlook: Privacy-Preserving Face Recognition

Paradigm 1: Homomorphic Encryption (HE)

Property:

 $\forall x, y \in P : \mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{pk}}(x) \circ_{\mathsf{pk}} \mathsf{Enc}_{\mathsf{pk}}(y)) = x \diamond y$

Some Schemes:	+	Paillier99 Damgård/Jurik01 Damgård/Geisler/Krøigård07	(default) (large P) (tiny P)
	+,1*	Boneh/Goh/Nissim05	
	+, *	Gentry09	

Application: S2PC by Computing on Encrypted Data

Paradigm 2: Garbled Circuits (GC) [Yao86]

Parallel Oblivious Transfer (OT) is Efficient

Garbled Circuits are Efficient

t=t'-1: symmetric security parameter (e.g., t=80) hash: hash one block with cryptographic hash function

Paradigm 1+2: Combining HE with GC

Communication complexity to convert ℓ -bit values x for GC

(σ : statistical security parameter, t' - 1: symmetric security parameter)

	Input	Output		
Private $\mathcal{S}: x$	$\ell t'$ bits	$\ell ext{ bits}$		
Private $\mathcal{C}: x$	$ OT_{t'}^{\ell}$	$\ell ext{ bits}$		
HE S : Enc (x)	1 ciphertext + $5\ell t'$ bits + $OT_{t'}^{\ell}$	1 ciphertext + $(\ell + \sigma)(5t' + 1)$ bits		
	I	I		
add random mask under HE and subtract in GC		add random mask in GC and subtract under HE		

Efficient Circuit Constructions

Functionality for ℓ -bit Values	Size [# non-XOR gates]
Multiplexer, Addition, Subtraction, Comparison	ℓ
Multiplication (school method)	$2\ell^2 - \ell$
Minimum Value + Index of n values	$2\ell(n-1) + (n+1)$

Improved Application: Millionaire's Problem

GC is efficient secure comparison protocol [Yao86]

Communication Complexity:

Communication	Previous Work (HE)			This Work (GC)		
Complexity	[Fis01]	[BK04]	[DGK07]	Setup Phase	Online Phase	Total
Asymptotic	$(\kappa+1)\ell T$	$4\ell T$	$2\ell T$	$16\ell t$	$3\ell t$	$19\ell t$
short-term	82 kByte	8 kByte	4 kByte	2.5 kByte	0.5 kByte	3.0 kByte
medium-term	164 kByte	16 kByte	8 kByte	3.5 kByte	$0.7 \mathrm{~kByte}$	4.2 kByte
long-term	246 kByte	24 kByte	12 kByte	4.0 kByte	$0.8 \mathrm{~kByte}$	4.8 kByte

 Computation Complexity: OTs pre-computed in Setup Phase
=> only symmetric crypto in Online Phase!

Improved Application: Auctions

• Offline Auctions [NPS99]

• **Online Auctions**: [DGK07/08] with GC instead HE

Improved Application: Minimum Distance

 \mathcal{S} : points Q_1, \ldots, Q_M

 \mathcal{C} : index min for Q_{\min} closest to P

- Find index of closest point
 - Hamming distance $d_H(P,Q) = \sum p_i \oplus q_i = \bar{p}_i q_i + p_i \bar{q}_i$
 - Euclidean distance $d_E(P,Q)^2 = \sum_{i=1}^{i} (p_i q_i)^2$
- Application: Biometric Authentication
 - Privacy-Preserving Face Recognition using Eigenfaces [EFGKLT09] (using HE only)
- Improved Approach: Combine HE with GC
 - HE to compute distances
 - GC to select minimum value+index

Improved Privacy-Preserving Face Recognition

Thanks for your kind attention.

Contact:

thomas.schneider@trust.rub.de

Full Version: http://eprint.iacr.org/2009/411

To be published in:

8th International Conference on Cryptology And Network Security (CANS'09) December 14-16, 2009 - Kanazawa, Ishikawa, Japan