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Main theme

 Most MPC protocols were only designed to 
show feasibility. 

 Implementations can give valuable insight

 Identify bottlenecks and motivate researchers to 
focus on high-impact issues.

 The area is full with opportunities for theory 
based observations that lead for optimizations. 

 Quantitative improvements do add up.

 Result in a qualitative improvement, which can 
bring secure computation to the masses.
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A canonical example:
The millionaires’ problem

$X

• Want to find out if X > Y

• But leak no other information! (even to each other)

• Standard crypto tools (encryption) do not help in 
this case!

$Y
Alice Bob
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Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:

Output:

x yAs if…

F(x,y) F(x,y)

Trusted third party

Exact definitions based on this concept
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Feasibility results in secure 
computation

 Any function can be computed securely [Yao,GMW]

 Two-party computation: Yao’s seminal work 

 Multi-party: many generic protocols

 Functions are not represented as programs, but 
rather as 

 Boolean circuits

 Arithmetic circuits (+,* gates)

 Other models (e.g., Damgard-Ishai)
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Feasibility results in secure 
computation

 Any function can be computed securely [Yao,GMW]

 Two-party computation: Yao’s seminal work 

 Multi-party: many generic protocols

 Functions are not represented as programs, but 
rather as

 Boolean circuits  

 Arithmetic circuits (+,* gates)  

 Other models (e.g., Damgard-Ishai)  ?



7

Secure computation is not widely used
 Why isn’t secure computation widely used? (compared to 

linear programming or data compression)

 Perhaps there is no real demand for this technology

 Real-world secure computation was not considered “practical”
 Therefore

 Most results were only stated as mathematical theorems.
 One had to read the relevant papers and implement them 

from scratch.

 Therefore
 Secure computation is/was inaccessible to non-experts.
 Implementation issues have not been addressed.
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There is a long road from a feasibility 
result to a working system

 The results are hard to understand

 The techniques are quite complicated

 Feasibility results are hard to use

 Focus on asymptotic results (e.g., O(1) is 
better than O(log n), even if this only holds for 
n > 1012). 

 Constants don’t matter.

 Issues which are crucial for performance were 
not thoroughly investigated.

 User interface can make or break a system. 
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Protocols

 We consider generic protocols rather than specific
protocols for specific problems

 The basic technique of generic protocols:

 Any function can be represented as a Boolean circuit 
or an algebraic circuit

 Show how each gate can be securely evaluated

 Applying this to layer after layer of the circuit, the 
entire function can be computed (without revealing 
any intermediate result)

OR OR

AND
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Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]



11

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first (and only) generic system for secure 
two-party computation, implementing Yao’s 
protocol.
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Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first (and only) generic system for secure 
two-party computation, implementing Yao’s 
protocol.

 Based on the compilation paradigm:

 Users write programs in a high-level programming 
language (SFDL – Secure Function Definition Lang).
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SFDL Example

program Millionaires {

type int = Int<20>; // 20-bit integer

type AliceInput = int; 

type BobInput = int;   

type AliceOutput = Boolean;

type BobOutput = Boolean;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output millionaires(Input input) {

output.alice = input.alice > input.bob;

output.bob =  input.bob > input.alice;

}

}



14

SFDL Example

program Millionaires {

type int = Int<20>; // 20-bit integer

type AliceInput = int;

type BobInput = int;   

type AliceOutput = Boolean;

type BobOutput = Boolean;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output millionaires(Input input) {

output.alice = input.alice > input.bob;

output.bob =  input.bob > input.alice;

}

}



15

SFDL Example

program Millionaires {

type int = Int<20>; // 20-bit integer

type AliceInput = int; 

type BobInput = int;   

type AliceOutput = Boolean;

type BobOutput = Boolean;

type Output = struct {AliceOutput alice, BobOutput bob};
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Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The use of a high-level programming 
language was a major innovation

 Much easier than designing a circuit 
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Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first generic system for secure two-party 
computation, implementing Yao’s protocol.

 Based on the compilation paradigm:

 Users write programs in a high-level programming 
language (SFDL – Secure Function Definition Lang).

 Programs are translated by the system to a Boolean 
circuit, described in SHDL (Simple Hardware Definition 
Lang).
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Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first generic system for secure two-party 
computation, implementing Yao’s protocol.

 Based on the compilation paradigm:

 Users write programs in a high-level programming 
language (SFDL – Secure Function Definition Lang).

 Programs are translated by the system to a Boolean 
circuit, described in SHDL (Simple Hardware Definition 
Lang).

 The SHDL circuit is translated to Java programs 
implementing Yao’s protocol.

 The tool can be downloaded http://www.fairplayproject.net
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The setting

Alice  (P1) Bob  (P2)

Program

F()

X Y

Java
program

Java
program

F(X,Y) F(X,Y)

local
copy
of

Fairplay

local
copy
of

Fairplay

must only

trust her

local program

must only

trust his

local program
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Background:

Yao’s protocol
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Secure two-party computation of 
general functions [Yao82,86]

 P1 (aka Bob) constructs a binary circuit 
computing F, and then garbles it. 

 Garbled values:

G

ki
0,ki

1 kJ
0,kJ

1

kl
0,kl

1
ki

0 = 0 on wire i

ki
1 = 1 on wire i

(P2 will learn one

string per wire, but

not which bit it 

corresponds to.)
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Gate tables

 P1 defines garbled values for every wire.

 For every gate, every combination of 
garbled input values is used as a key for 
encrypting the corresponding output

 Assume G=AND. P1 constructs a table:

 Keys ki
0,kJ

0 encrypt key kl
0

 Keys ki
0,kJ

1 encrypt key kl
0

 …Keys ki
1,kJ

1 encrypt key kl
1

 Result: given ki
x,kJ

y, one can compute
kl

G(x,y) and nothing else.
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Gate tables

 P1 defines garbled values for every wire.

 For every gate, every combination of 
garbled input values is used as a key for 
encrypting the corresponding output

 Assume G=AND. P1 constructs a table:

 Encryption of kl
0 using keys ki

0,kJ
0

 Encryption of kl
0 using keys ki

0,kJ
1

 … Encryption of kl
1 using keys ki

1,kJ
1

 Result: given ki
x,kJ

y, one can compute
kl

G(x,y) and nothing else.
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The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol
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The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol

 Oblivious transfer:
 P2 has an input bit b

 P1 has two inputs X 0, X 1

 P2 learns X b

 P1 learns nothing

implemented using public-key crypto
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The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol, where

 P2’s input is her input bit (b).

 P1’s input is ki
0,ki

1

 P2 learns ki
b
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The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol, where

 P2’s input is her input bit (b).

 P1’s input is ki
0,ki

1

 P2 learns ki
b

 Afterwards P2 can compute the circuit by herself.

 Efficient for medium size circuits

 There is a full proof of security (after modifications) 
against semi-honest adversaries [LP06]
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Fairplay – Implementation and Results

 Implementation:
 Written in Java

 Implements Yao’s protocol

 Crypto using the Java BigInteger libraries

 El Gamal based OT

 Solving the billionaires problem (30 bit ints)

 OTs accounted for 90% of running time on a LAN

 For 50% of running time on a WAN

 OT is the only public-key operation

 Conjecture: OT is the bottleneck
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Two-party Computation Secure 
against Malicious Adversaries

Yehuda Lindell

Benny Pinkas

Eurocrypt 2007



Potential adversarial behavior

 Possible adversarial behavior
 Semi-honest: adversary follows the directions of the 

protocol, but tries to learn about the other side’s 
inputs. 

 Malicious: adversary can behave arbitrarily.

 Ensuring security against malicious 
adversaries is much harder than against semi-
honest adversaries.

 The original Fairplay system was only secure 
against semi-honest adversaries. 



Approaches for obtaining security 
against malicious adversaries

 In the protocol, one party (P1) constructs a 
garbled version of the circuit, and the other 
party (P2) then computes this circuit.

 How can P2 verify that the garbled version of 
the circuit is constructed correctly?

 P1 can be required to prove in zero-knowledge 
that the circuit is correct. This is in general not 
very efficient. 



Approaches for obtaining security 
against malicious adversaries

 In the protocol, one party (P1) constructs a 
garbled version of the circuit, and the other 
party (P2) then computes this circuit.

 How can P2 verify that the garbled version of 
the circuit is constructed correctly?

 P1 can be required to prove in zero-knowledge 
that the circuit is correct. This is in general not 
very efficient. 

 LP07 show an alternative and more efficient 
method for verifying the circuits.



Malicious Behavior and Cut-and-
Choose

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be 

changed anymore by P1.

All circuits compute F, but each circuit is generated
by an independent cryptographic encoding.
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 P2 asks P1 to open s-1 circuits, which P2 then 
checks.
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Cut-and-Choose: first attempt

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be 

changed anymore by P1.

 P2 asks P1 to open s-1 circuits, which P2 then 
checks. If any of these is bad, P2 aborts. 

 The parties then evaluate the remaining circuit

 A corrupt P1 succeeds with prob. 1/s



Improving security of cut-and-choose



Improving security of cut-and-choose

 P2 asks P1 to open a random subset of s/2
circuits, which P2 checks.

 If any of them is bad, P2 aborts. 

 The protocol continues with the remaining s/2
circuits. P2 outputs the value outputted by the 
majority of these circuits.



Improving security of cut-and-choose 

 P2 asks P1 to open a random subset of s/2
circuits, which P2 checks.

 If any of them is bad, P2 aborts. 

 The protocol continues with the remaining s/2
circuits. P2 outputs the value outputted by the 
majority of these circuits.

 A corrupt P1 succeeds with probability 2-s/4

 In order to cheat, P1 needs to corrupt a majority of the s/2 
circuits, and that none of them is checked. 



New problems: Inconsistent 
outputs

 What should P2 do if not all s/2 evaluated 
circuits yield the same output?



New problems: Inconsistent 
outputs

 What should P2 do if not all s/2 evaluated 
circuits yield the same output?

 P1 definitely cheated, but should P2 abort?

 Aborting reveals information to P1. 

 For example

 P1 constructs s-1 circuits computing F, and a single 
circuit computing F if and only if P2’s input is 0.

 With probability ½, that circuit is not checked in the 
first stage. Then P2 finishes the computation iff its 
input is 0.

 P2  must therefore always output the 
majority value.



New problems: Inconsistent inputs

 P1 might provide different inputs (of P1) to 
different circuits among the s/2 evaluated 
circuits.



New problems: Inconsistent inputs

 P1 might provide different inputs (of P1) to 
different circuits among the s/2 evaluated 
circuits.

 Does this matter? Yes it does. 
 Cut-and-choose checks the circuits but not P1’s 

inputs.

 Smart input choices by P1 provide information on Y.

 Solution: must verify consistency of P1’s inputs 
(this step proved to be quite tricky).



Lindell-Pinkas 07

 The first truly practical two-party protocol secure 
against malicious adversaries.

 The protocol is proven to be secure according to the 
strongest security definition (Ideal/real simulation 

paradigm) 

 The resulting protocol is rather efficient

 Computational overhead as in semi-honest case 

 Larger communication overhead  

 Competing approaches

 Jarecki-Shmatikov (efficient ZK proof per gate)

 Nielsen – Orlandi (LEGO)



Implementing secure 
computation

Lindell – Pinkas – Smart ’08

Pinkas – Smart – Schneider – Williams 



Contributions

 Implemented the LP ’07 protocol

 This was not a simple task.

 Implemented a version based on random oracles, and a 
version in the standard model.

 Optimized the circuit construction (note that for 2-40 

security must send s=160 copies of it).

 Spoiler: obtained some interesting results 
regarding 

 Standard model vs. random oracle implementation.

 Oblivious transfer as the bottleneck.



Optimizations

 Automatically optimized the circuit

 Example: 16-bit comparison.

 Original circuit consisted of 61 2-to-1 gates.

 Optimized circuit has 15 3-to-1 gates and one 2-to-1 gate 
(essentially computing X-Y and checking the sign).

 Encountered interesting questions

 Used a modified protocol which computes XOR gates for 
free [KS08].

 Subsequent work built tools to modify circuit in order to 
maximize the number of XOR gates [KSS09]. 

 Input coding…



Protecting P2’s inputs

 To protect P2’s input we must 
(for reasons not described here):

 Replace P2’s n inputs with 
N=max(4n,8s) new inputs. 
This reduces the error 
probability to 2-s. 

 Set each of the n original 
input values to be the xor of 
a random set of the new 
input values.
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Protecting P2’s inputs

 To protect P2’s input we must 
(for reasons not described here):

 Replace P2’s n inputs with 
N=max(4n,8s) new inputs. 
This reduces the error 
probability to 2-s. 

 Set each of the n original 
input values to be the xor of 
a random set of the new 
input values.

 We set s=40 for 2-40 security.  
Therefore

n <80 >80

new input 
bits (N)

320 4n

each 
original 
input is 
xor of

160 2n

# of new 
xor gates

160n 2n2This might be larger than the 
original circuit!
For n=16 input bits get 2560 
additional gates!



Protecting P2’s inputs

 To protect P2’s input we must 
(for reasons not described here):

 Replace P2’s n inputs with 
N=max(4n,8s) new inputs. 
This reduces the error 
probability to 2-s. 

 Set each of the n original 
input values to be the xor of 
a random set of the new 
input values.

 We set s=40 for 2-40 security.  
Therefore

n <80 >80

new input 
bits (N)

320 4n

each 
original 
input is 
xor of

160 2n

# of new 
xor gates

160n 2n2

Luckily, KS08 show how to 
compute XOR gates for free



Reducing the size of the XOR circuits

 P2’s n input bits must be expanded to N new input 
bits. Currently use N=max(4n,320).

 It is possible to reduce the size of the XOR circuit 
(by 60%) by reusing as many gates as possible.

C

XOR 
circuit

XOR 
circuit

XOR 
circuit

n original
inputs

N new inputs

There are likely to be (many) 
XOR expressions which are 
used in multiple XOR circuits.

Similar method to structured 
Gaussian elimination.



Reducing the size of the XOR circuits

 P2’s n input bits must be expanded to N new input 
bits. Currently use N=max(4n,320).

 It is possible to reduce the size of the XOR circuit 
(by 60%) by reusing as many gates as possible.

 Actually need a binary [N,n,40] linear code

 For 2-40 security we always need a distance of s=40

 Would like N/n to be small. Namely the information rate 
n/N should be large even for small blocks (even for, e.g., 
n=30).

 Explicit constructions? http://www.codetable.de

 Randomized constructions? 

 Can achieve N=3n for n=100,   N=2n for n=300, etc.



Implementation details

 Implemented in C++

 Elliptic curve routines implemented in 
assembler
 Used the standard curve P256 to match AES-

128 security level

 Multiplication of a fixed generator in 1.2 msec



Results  for 16bit comparison
Wall time, ROM vs. Standard Model

•OT is not the bottleneck.
•ROM time ≈ Standard model time

 Stages
 1: P1 creating 

garbled circuits

 2: OT stage

 3: transferring 
the circuits

 5-6:send 
decomits

 7: P2 checks 
half the circuits 

 8: P2 evaluates 
remaining 
circuits 



Looked for an interesting application…



Secure computation of AES
P-Schneider-Smart-Williams

 AES is by design a complex function.

 Alice has K.   Bob learns AESk(X).

 Optimized circuit has ~34000 gates.

 Best run times (including circuit construction):

 Semi-honest: 8 sec. Covert: 100 sec.

 Malicious: 1150 sec

 This is essentially an OPRF  - oblivious pseudo-
random function.

 Implementing this as a circuit in Yao’s protocol was 
suggested before but considered impractical.

 Has multiple applications [FIPR04, HL08, LLM05, 
RAFCR09].



Observations

 Most optimizations were based on understanding 
the protocol and its proof of security
 XOR for free
 Coding
 Used OT protocols which amortize the cost of ZK proofs
 There is active work on optimizing the current bottlenecks

 Some optimizations are generic
 Circuit optimization  (and the fact we have a compiler)
 EC based public key crypto

 Surprising observations
 OT is not the major bottleneck

 Very efficient implementation of OT.
 Large circuit; many copies sent and processed.

 No performance penalty for using standard model 
compared to random oracle model.



FairplayMP
A System for Secure Multi-Party 
Computation

Assaf Ben-David

Noam Nisan

Benny Pinkas

ACM CCS 2008



Which MPC protocol to use?

 Wanted to build a full fledged system for secure 
multi-party computation

 Our high level requirements:

 We suspected that the number of communication rounds is 
a major bottleneck

 Therefore needed a protocol whose # of rounds is constant

 Wanted to use a Boolean circuit representation of the 
function (for two good reasons)

 There are many protocols for SMP

 The BGW protocol efficiently computes arithmetic circuits

 The BMR (Beaver-Micali-Rogaway) protocol is unique in 
satisfying all our requirements



Modifying the setting

Theoretical papers assume n 
symmetric players

• Each player: 

• Has an input

• Participates in the 
computation

• Learns the output

• There is interaction between all 
players 

• Protocol secure if not too many 
players collude 

The model is generalized. 
Players can be separated 
into three types.

• Input players (IP)

• Computation players (CP): 
• Emulate the trusted party

• Interact with each other

• Protocol is secure if less than half 
of CPs are corrupt

• Result players (RP) learn the 
output

• A participant can have several 
of these roles



The compilation paradigm

 Programs are written in SFDL 2.0

 An improved version of Fairplay’s SFDL, 
amended to support inputs and outputs 
from/to multiple parties.

program SecondPriceAuction {
const nBidders = 4;
type Bid = Int<4>; // enough bits to represent a small bid.
type WinningBidder = Int<3>; // enough bits to represent a winner          
type SellerOutput = struct{WinningBidder winner, Bid winningPrice};
type Seller = struct{SellerOutput output}; // Seller has no input
type BidderOutput = struct{Boolean win, Bid winningPrice};               
type Bidder = struct{Bid input, BidderOutput output};                       



SFDL example: The main function
function void main(Seller seller, Bidder[nBidders] bidder) {

var Bid high = bidder[0].input, Bid second = 0;                                
var WinningBidder winner = 0;                                             
// Making the auction. 
for(i=1 to nBidders-1) {

if(bidder[i].input > high) {
winner = i;  second = high;  high = bidder[i].input;

} else if(bidder[i].input > second)
second = bidder[i].input;

}
// Setting the result.
seller.output.winner = winner;                                                                            
seller.output.winningPrice = second;                                       
for(i=0 to nBidders-1) {

bidder[i].output.win = (winner == i);
bidder[i].output.winningPrice = second;

}}}



The BMR protocol

 Two random seeds (garbled values) are used for 
every wire of the Boolean circuit.

 Each seed Si is a concatenation of n k-bit seeds  
si

1  si
2  si

n generated by each of the CPs.

 For each wire, the CPs run a joint coin flip to set a 
secretly shared random bit w.

 Iff w=0 then S0 represents 0, S1 represents 1. 
Otherwise their roles are flipped. 



The BMR protocol

 The parties compute a 4x1 table for every gate

 Like in Yao’s two-party protocol

 A table entry for an OR gate is of the form

 If a  b = c then
 Ag = ga

1   ga
n  gb

1  gb
n  sc

1    sc
n  0

 Unlike Yao, here the table must be computed by 
a secure protocol run between the CPs.

 The BMR paper suggests using any secure 
protocol to implement this step.

 Finally, given the tables, and seeds of the input 
values, it is easy to compute the circuit output.



Improvements to the BMR construction

 Computing table entries is the major 
bottleneck

 If a  b = c then
 Ag = ga

1   ga
n  gb

1  gb
n  sc

1    sc
n  0

 Change to

 If a  b = c then
 Ag = ga

1+  + ga
n + gb

1 + + gb
n+ sc

1    sc
n  0   

(addition in a sufficiently large finite field)



How can this step be implemented?
 We replaced 

 If a  b = c then

 Ag = ga
1   ga

n  gb
1  gb

n  sc
1    sc

n  0

by

 Ag = ga
1 + + ga

n + gb
1+  + gb

n+ sc
1    sc

n  0

 Can now use the BGW protocol for this step
 To compute “ga

1 + + ga
n + gb

1+  + gb
n” each party i sends 

shares of ga
i; sums the shares it receives.

 To compute “sc
1    sc

n” party i shifts sc
i (by ik bits) and 

sends shares; sums shares it receives.

 To compute “If a  b=c” use multiplication to compute ab; 
use it to get 0/1 result for “a  b=c”; multiply by 
“ga

1++gb
n+sc

1 0”.



The improvement to BMR
 Change to

 If a  b = c then Ag = 
ga

1++ga
n+gb

1++gb
n+sc

1   sc
n  0

 Can now run the BGW protocol.

 Use 3 multiplications per table entry

 A circuit for the same task (computing one entry in 
a single gate) has about ~2n2k gates. 

 n=5, k=128   ~6400 gates.

 The coin flipping can also be implemented using 
BGW [DFKNT 05]



The implemented protocol

 FairplayMP is implemented in Java

 Modular and readable code

 Five packages (~2000 code lines):

 circuit – An interface that allows to use different 
representations of circuits.

 communication - Basic Client/Server, msg.

 config – Allows simple configuration via code.

 players – Implementation of the protocol steps for each 
of the players (IP, CP, RP).

 utils – Implementation of BGW and PRG.



Data communication

 As in the two-party case, inefficient data 
communication between the parties can cause 
major delays.

 First versions of code handled communication 
inefficiently.

 Item wrapping, opening ports, etc.

 Solutions:

 Handle this very carefully

 Use Google’s protocolbuffer
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Experiments
The effect of the circuit depth
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Conclusions

 FairplayMP

 First generic system for secure MPC.

 Many existing MPC protocols, but there are 
“hidden issues” which make it hard to 
implement them.

 Needed to “massage” the BMR protocol.

 Feasibility of MPC systems

 Semi-honest vs. malicious  

 Random oracle vs. standard model  


