
1

Implementing Secure Computation

Benny Pinkas, University of Haifa

2

Main theme

 Most MPC protocols were only designed to
show feasibility.

 Implementations can give valuable insight

 Identify bottlenecks and motivate researchers to
focus on high-impact issues.

 The area is full with opportunities for theory
based observations that lead for optimizations.

 Quantitative improvements do add up.

 Result in a qualitative improvement, which can
bring secure computation to the masses.

3

A canonical example:
The millionaires’ problem

$X

• Want to find out if X > Y

• But leak no other information! (even to each other)

• Standard crypto tools (encryption) do not help in
this case!

$Y
Alice Bob

4

Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:

Output:

x yAs if…

F(x,y) F(x,y)

Trusted third party

Exact definitions based on this concept

5

Feasibility results in secure
computation

 Any function can be computed securely [Yao,GMW]

 Two-party computation: Yao’s seminal work

 Multi-party: many generic protocols

 Functions are not represented as programs, but
rather as

 Boolean circuits

 Arithmetic circuits (+,* gates)

 Other models (e.g., Damgard-Ishai)

6

Feasibility results in secure
computation

 Any function can be computed securely [Yao,GMW]

 Two-party computation: Yao’s seminal work

 Multi-party: many generic protocols

 Functions are not represented as programs, but
rather as

 Boolean circuits 

 Arithmetic circuits (+,* gates) 

 Other models (e.g., Damgard-Ishai) ?

7

Secure computation is not widely used
 Why isn’t secure computation widely used? (compared to

linear programming or data compression)

 Perhaps there is no real demand for this technology

 Real-world secure computation was not considered “practical”
 Therefore

 Most results were only stated as mathematical theorems.
 One had to read the relevant papers and implement them

from scratch.

 Therefore
 Secure computation is/was inaccessible to non-experts.
 Implementation issues have not been addressed.

8

There is a long road from a feasibility
result to a working system

 The results are hard to understand

 The techniques are quite complicated

 Feasibility results are hard to use

 Focus on asymptotic results (e.g., O(1) is
better than O(log n), even if this only holds for
n > 1012).

 Constants don’t matter.

 Issues which are crucial for performance were
not thoroughly investigated.

 User interface can make or break a system.

9

Protocols

 We consider generic protocols rather than specific
protocols for specific problems

 The basic technique of generic protocols:

 Any function can be represented as a Boolean circuit
or an algebraic circuit

 Show how each gate can be securely evaluated

 Applying this to layer after layer of the circuit, the
entire function can be computed (without revealing
any intermediate result)

OR OR

AND

10

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

11

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first (and only) generic system for secure
two-party computation, implementing Yao’s
protocol.

12

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first (and only) generic system for secure
two-party computation, implementing Yao’s
protocol.

 Based on the compilation paradigm:

 Users write programs in a high-level programming
language (SFDL – Secure Function Definition Lang).

13

SFDL Example

program Millionaires {

type int = Int<20>; // 20-bit integer

type AliceInput = int;

type BobInput = int;

type AliceOutput = Boolean;

type BobOutput = Boolean;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output millionaires(Input input) {

output.alice = input.alice > input.bob;

output.bob = input.bob > input.alice;

}

}

14

SFDL Example

program Millionaires {

type int = Int<20>; // 20-bit integer

type AliceInput = int;

type BobInput = int;

type AliceOutput = Boolean;

type BobOutput = Boolean;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output millionaires(Input input) {

output.alice = input.alice > input.bob;

output.bob = input.bob > input.alice;

}

}

15

SFDL Example

program Millionaires {

type int = Int<20>; // 20-bit integer

type AliceInput = int;

type BobInput = int;

type AliceOutput = Boolean;

type BobOutput = Boolean;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output millionaires(Input input) {

output.alice = input.alice > input.bob;

output.bob = input.bob > input.alice;

}

}

16

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The use of a high-level programming
language was a major innovation

 Much easier than designing a circuit

17

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first generic system for secure two-party
computation, implementing Yao’s protocol.

 Based on the compilation paradigm:

 Users write programs in a high-level programming
language (SFDL – Secure Function Definition Lang).

 Programs are translated by the system to a Boolean
circuit, described in SHDL (Simple Hardware Definition
Lang).

18

Background: Fairplay
[Malkhi,Nisan,Pinkas,Sella ’04]

 The first generic system for secure two-party
computation, implementing Yao’s protocol.

 Based on the compilation paradigm:

 Users write programs in a high-level programming
language (SFDL – Secure Function Definition Lang).

 Programs are translated by the system to a Boolean
circuit, described in SHDL (Simple Hardware Definition
Lang).

 The SHDL circuit is translated to Java programs
implementing Yao’s protocol.

 The tool can be downloaded http://www.fairplayproject.net

19

The setting

Alice (P1) Bob (P2)

Program

F()

X Y

Java
program

Java
program

F(X,Y) F(X,Y)

local
copy
of

Fairplay

local
copy
of

Fairplay

must only

trust her

local program

must only

trust his

local program

20

Background:

Yao’s protocol

21

Secure two-party computation of
general functions [Yao82,86]

 P1 (aka Bob) constructs a binary circuit
computing F, and then garbles it.

 Garbled values:

G

ki
0,ki

1 kJ
0,kJ

1

kl
0,kl

1
ki

0 = 0 on wire i

ki
1 = 1 on wire i

(P2 will learn one

string per wire, but

not which bit it

corresponds to.)

22

Gate tables

 P1 defines garbled values for every wire.

 For every gate, every combination of
garbled input values is used as a key for
encrypting the corresponding output

 Assume G=AND. P1 constructs a table:

 Keys ki
0,kJ

0 encrypt key kl
0

 Keys ki
0,kJ

1 encrypt key kl
0

 …Keys ki
1,kJ

1 encrypt key kl
1

 Result: given ki
x,kJ

y, one can compute
kl

G(x,y) and nothing else.

23

Gate tables

 P1 defines garbled values for every wire.

 For every gate, every combination of
garbled input values is used as a key for
encrypting the corresponding output

 Assume G=AND. P1 constructs a table:

 Encryption of kl
0 using keys ki

0,kJ
0

 Encryption of kl
0 using keys ki

0,kJ
1

 … Encryption of kl
1 using keys ki

1,kJ
1

 Result: given ki
x,kJ

y, one can compute
kl

G(x,y) and nothing else.

24

The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol

25

The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol

 Oblivious transfer:
 P2 has an input bit b

 P1 has two inputs X 0, X 1

 P2 learns X b

 P1 learns nothing

implemented using public-key crypto

26

The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol, where

 P2’s input is her input bit (b).

 P1’s input is ki
0,ki

1

 P2 learns ki
b

27

The Protocol (semi-honest case)

 P1 sends to P2

 Tables encoding each circuit gate.

 Garbled values (k’s) of P1’s input values.

 For every wire i of P2’s input:

 The parties run an oblivious transfer (OT) protocol, where

 P2’s input is her input bit (b).

 P1’s input is ki
0,ki

1

 P2 learns ki
b

 Afterwards P2 can compute the circuit by herself.

 Efficient for medium size circuits

 There is a full proof of security (after modifications)
against semi-honest adversaries [LP06]

28

Fairplay – Implementation and Results

 Implementation:
 Written in Java

 Implements Yao’s protocol

 Crypto using the Java BigInteger libraries

 El Gamal based OT

 Solving the billionaires problem (30 bit ints)

 OTs accounted for 90% of running time on a LAN

 For 50% of running time on a WAN

 OT is the only public-key operation

 Conjecture: OT is the bottleneck

29

Two-party Computation Secure
against Malicious Adversaries

Yehuda Lindell

Benny Pinkas

Eurocrypt 2007

Potential adversarial behavior

 Possible adversarial behavior
 Semi-honest: adversary follows the directions of the

protocol, but tries to learn about the other side’s
inputs.

 Malicious: adversary can behave arbitrarily.

 Ensuring security against malicious
adversaries is much harder than against semi-
honest adversaries.

 The original Fairplay system was only secure
against semi-honest adversaries.

Approaches for obtaining security
against malicious adversaries

 In the protocol, one party (P1) constructs a
garbled version of the circuit, and the other
party (P2) then computes this circuit.

 How can P2 verify that the garbled version of
the circuit is constructed correctly?

 P1 can be required to prove in zero-knowledge
that the circuit is correct. This is in general not
very efficient. 

Approaches for obtaining security
against malicious adversaries

 In the protocol, one party (P1) constructs a
garbled version of the circuit, and the other
party (P2) then computes this circuit.

 How can P2 verify that the garbled version of
the circuit is constructed correctly?

 P1 can be required to prove in zero-knowledge
that the circuit is correct. This is in general not
very efficient. 

 LP07 show an alternative and more efficient
method for verifying the circuits.

Malicious Behavior and Cut-and-
Choose

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be

changed anymore by P1.

All circuits compute F, but each circuit is generated
by an independent cryptographic encoding.

Cut-and-Choose: first attempt

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be

changed anymore by P1.

 P2 asks P1 to open s-1 circuits, which P2 then
checks.

Cut-and-Choose: first attempt

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be

changed anymore by P1.

 P2 asks P1 to open s-1 circuits, which P2 then
checks.

Cut-and-Choose: first attempt

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be

changed anymore by P1.

 P2 asks P1 to open s-1 circuits, which P2 then
checks. If any of these is bad, P2 aborts.

Cut-and-Choose: first attempt

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be

changed anymore by P1.

 P2 asks P1 to open s-1 circuits, which P2 then
checks. If any of these is bad, P2 aborts.

 The parties then evaluate the remaining circuit

Cut-and-Choose: first attempt

 Proving circuit is correct using “cut-and-
choose”:

 P1 constructs and commits to s circuits
 Committed circuits are hidden from P2, but cannot be

changed anymore by P1.

 P2 asks P1 to open s-1 circuits, which P2 then
checks. If any of these is bad, P2 aborts.

 The parties then evaluate the remaining circuit

 A corrupt P1 succeeds with prob. 1/s

Improving security of cut-and-choose

Improving security of cut-and-choose

 P2 asks P1 to open a random subset of s/2
circuits, which P2 checks.

 If any of them is bad, P2 aborts.

 The protocol continues with the remaining s/2
circuits. P2 outputs the value outputted by the
majority of these circuits.

Improving security of cut-and-choose

 P2 asks P1 to open a random subset of s/2
circuits, which P2 checks.

 If any of them is bad, P2 aborts.

 The protocol continues with the remaining s/2
circuits. P2 outputs the value outputted by the
majority of these circuits.

 A corrupt P1 succeeds with probability 2-s/4

 In order to cheat, P1 needs to corrupt a majority of the s/2
circuits, and that none of them is checked.

New problems: Inconsistent
outputs

 What should P2 do if not all s/2 evaluated
circuits yield the same output?

New problems: Inconsistent
outputs

 What should P2 do if not all s/2 evaluated
circuits yield the same output?

 P1 definitely cheated, but should P2 abort?

 Aborting reveals information to P1.

 For example

 P1 constructs s-1 circuits computing F, and a single
circuit computing F if and only if P2’s input is 0.

 With probability ½, that circuit is not checked in the
first stage. Then P2 finishes the computation iff its
input is 0.

 P2 must therefore always output the
majority value.

New problems: Inconsistent inputs

 P1 might provide different inputs (of P1) to
different circuits among the s/2 evaluated
circuits.

New problems: Inconsistent inputs

 P1 might provide different inputs (of P1) to
different circuits among the s/2 evaluated
circuits.

 Does this matter? Yes it does.
 Cut-and-choose checks the circuits but not P1’s

inputs.

 Smart input choices by P1 provide information on Y.

 Solution: must verify consistency of P1’s inputs
(this step proved to be quite tricky).

Lindell-Pinkas 07

 The first truly practical two-party protocol secure
against malicious adversaries.

 The protocol is proven to be secure according to the
strongest security definition (Ideal/real simulation

paradigm)

 The resulting protocol is rather efficient

 Computational overhead as in semi-honest case 

 Larger communication overhead 

 Competing approaches

 Jarecki-Shmatikov (efficient ZK proof per gate)

 Nielsen – Orlandi (LEGO)

Implementing secure
computation

Lindell – Pinkas – Smart ’08

Pinkas – Smart – Schneider – Williams

Contributions

 Implemented the LP ’07 protocol

 This was not a simple task.

 Implemented a version based on random oracles, and a
version in the standard model.

 Optimized the circuit construction (note that for 2-40

security must send s=160 copies of it).

 Spoiler: obtained some interesting results
regarding

 Standard model vs. random oracle implementation.

 Oblivious transfer as the bottleneck.

Optimizations

 Automatically optimized the circuit

 Example: 16-bit comparison.

 Original circuit consisted of 61 2-to-1 gates.

 Optimized circuit has 15 3-to-1 gates and one 2-to-1 gate
(essentially computing X-Y and checking the sign).

 Encountered interesting questions

 Used a modified protocol which computes XOR gates for
free [KS08].

 Subsequent work built tools to modify circuit in order to
maximize the number of XOR gates [KSS09].

 Input coding…

Protecting P2’s inputs

 To protect P2’s input we must
(for reasons not described here):

 Replace P2’s n inputs with
N=max(4n,8s) new inputs.
This reduces the error
probability to 2-s.

 Set each of the n original
input values to be the xor of
a random set of the new
input values.

Protecting P2’s inputs

 To protect P2’s input we must
(for reasons not described here):

 Replace P2’s n inputs with
N=max(4n,8s) new inputs.
This reduces the error
probability to 2-s.

 Set each of the n original
input values to be the xor of
a random set of the new
input values.

C

XOR
circuit

XOR
circuit

XOR
circuit

n original
inputs

N new inputs

Protecting P2’s inputs

 To protect P2’s input we must
(for reasons not described here):

 Replace P2’s n inputs with
N=max(4n,8s) new inputs.
This reduces the error
probability to 2-s.

 Set each of the n original
input values to be the xor of
a random set of the new
input values.

 We set s=40 for 2-40 security.

C

XOR
circuit

XOR
circuit

XOR
circuit

n original
inputs

N new inputs

Protecting P2’s inputs

 To protect P2’s input we must
(for reasons not described here):

 Replace P2’s n inputs with
N=max(4n,8s) new inputs.
This reduces the error
probability to 2-s.

 Set each of the n original
input values to be the xor of
a random set of the new
input values.

 We set s=40 for 2-40 security.
Therefore

n <80 >80

new input
bits (N)

320 4n

each
original
input is
xor of

160 2n

of new
xor gates

160n 2n2This might be larger than the
original circuit!
For n=16 input bits get 2560
additional gates!

Protecting P2’s inputs

 To protect P2’s input we must
(for reasons not described here):

 Replace P2’s n inputs with
N=max(4n,8s) new inputs.
This reduces the error
probability to 2-s.

 Set each of the n original
input values to be the xor of
a random set of the new
input values.

 We set s=40 for 2-40 security.
Therefore

n <80 >80

new input
bits (N)

320 4n

each
original
input is
xor of

160 2n

of new
xor gates

160n 2n2

Luckily, KS08 show how to
compute XOR gates for free

Reducing the size of the XOR circuits

 P2’s n input bits must be expanded to N new input
bits. Currently use N=max(4n,320).

 It is possible to reduce the size of the XOR circuit
(by 60%) by reusing as many gates as possible.

C

XOR
circuit

XOR
circuit

XOR
circuit

n original
inputs

N new inputs

There are likely to be (many)
XOR expressions which are
used in multiple XOR circuits.

Similar method to structured
Gaussian elimination.

Reducing the size of the XOR circuits

 P2’s n input bits must be expanded to N new input
bits. Currently use N=max(4n,320).

 It is possible to reduce the size of the XOR circuit
(by 60%) by reusing as many gates as possible.

 Actually need a binary [N,n,40] linear code

 For 2-40 security we always need a distance of s=40

 Would like N/n to be small. Namely the information rate
n/N should be large even for small blocks (even for, e.g.,
n=30).

 Explicit constructions? http://www.codetable.de

 Randomized constructions?

 Can achieve N=3n for n=100, N=2n for n=300, etc.

Implementation details

 Implemented in C++

 Elliptic curve routines implemented in
assembler
 Used the standard curve P256 to match AES-

128 security level

 Multiplication of a fixed generator in 1.2 msec

Results for 16bit comparison
Wall time, ROM vs. Standard Model

•OT is not the bottleneck.
•ROM time ≈ Standard model time

 Stages
 1: P1 creating

garbled circuits

 2: OT stage

 3: transferring
the circuits

 5-6:send
decomits

 7: P2 checks
half the circuits

 8: P2 evaluates
remaining
circuits

Looked for an interesting application…

Secure computation of AES
P-Schneider-Smart-Williams

 AES is by design a complex function.

 Alice has K. Bob learns AESk(X).

 Optimized circuit has ~34000 gates.

 Best run times (including circuit construction):

 Semi-honest: 8 sec. Covert: 100 sec.

 Malicious: 1150 sec

 This is essentially an OPRF - oblivious pseudo-
random function.

 Implementing this as a circuit in Yao’s protocol was
suggested before but considered impractical.

 Has multiple applications [FIPR04, HL08, LLM05,
RAFCR09].

Observations

 Most optimizations were based on understanding
the protocol and its proof of security
 XOR for free
 Coding
 Used OT protocols which amortize the cost of ZK proofs
 There is active work on optimizing the current bottlenecks

 Some optimizations are generic
 Circuit optimization (and the fact we have a compiler)
 EC based public key crypto

 Surprising observations
 OT is not the major bottleneck

 Very efficient implementation of OT.
 Large circuit; many copies sent and processed.

 No performance penalty for using standard model
compared to random oracle model.

FairplayMP
A System for Secure Multi-Party
Computation

Assaf Ben-David

Noam Nisan

Benny Pinkas

ACM CCS 2008

Which MPC protocol to use?

 Wanted to build a full fledged system for secure
multi-party computation

 Our high level requirements:

 We suspected that the number of communication rounds is
a major bottleneck

 Therefore needed a protocol whose # of rounds is constant

 Wanted to use a Boolean circuit representation of the
function (for two good reasons)

 There are many protocols for SMP

 The BGW protocol efficiently computes arithmetic circuits

 The BMR (Beaver-Micali-Rogaway) protocol is unique in
satisfying all our requirements

Modifying the setting

Theoretical papers assume n
symmetric players

• Each player:

• Has an input

• Participates in the
computation

• Learns the output

• There is interaction between all
players 

• Protocol secure if not too many
players collude 

The model is generalized.
Players can be separated
into three types.

• Input players (IP)

• Computation players (CP):
• Emulate the trusted party

• Interact with each other

• Protocol is secure if less than half
of CPs are corrupt

• Result players (RP) learn the
output

• A participant can have several
of these roles

The compilation paradigm

 Programs are written in SFDL 2.0

 An improved version of Fairplay’s SFDL,
amended to support inputs and outputs
from/to multiple parties.

program SecondPriceAuction {
const nBidders = 4;
type Bid = Int<4>; // enough bits to represent a small bid.
type WinningBidder = Int<3>; // enough bits to represent a winner
type SellerOutput = struct{WinningBidder winner, Bid winningPrice};
type Seller = struct{SellerOutput output}; // Seller has no input
type BidderOutput = struct{Boolean win, Bid winningPrice};
type Bidder = struct{Bid input, BidderOutput output};

SFDL example: The main function
function void main(Seller seller, Bidder[nBidders] bidder) {

var Bid high = bidder[0].input, Bid second = 0;
var WinningBidder winner = 0;
// Making the auction.
for(i=1 to nBidders-1) {

if(bidder[i].input > high) {
winner = i; second = high; high = bidder[i].input;

} else if(bidder[i].input > second)
second = bidder[i].input;

}
// Setting the result.
seller.output.winner = winner;
seller.output.winningPrice = second;
for(i=0 to nBidders-1) {

bidder[i].output.win = (winner == i);
bidder[i].output.winningPrice = second;

}}}

The BMR protocol

 Two random seeds (garbled values) are used for
every wire of the Boolean circuit.

 Each seed Si is a concatenation of n k-bit seeds
si

1  si
2  si

n generated by each of the CPs.

 For each wire, the CPs run a joint coin flip to set a
secretly shared random bit w.

 Iff w=0 then S0 represents 0, S1 represents 1.
Otherwise their roles are flipped.

The BMR protocol

 The parties compute a 4x1 table for every gate

 Like in Yao’s two-party protocol

 A table entry for an OR gate is of the form

 If a  b = c then
 Ag = ga

1   ga
n  gb

1  gb
n  sc

1    sc
n  0

 Unlike Yao, here the table must be computed by
a secure protocol run between the CPs.

 The BMR paper suggests using any secure
protocol to implement this step.

 Finally, given the tables, and seeds of the input
values, it is easy to compute the circuit output.

Improvements to the BMR construction

 Computing table entries is the major
bottleneck

 If a  b = c then
 Ag = ga

1   ga
n  gb

1  gb
n  sc

1    sc
n  0

 Change to

 If a  b = c then
 Ag = ga

1+  + ga
n + gb

1 + + gb
n+ sc

1    sc
n  0

(addition in a sufficiently large finite field)

How can this step be implemented?
 We replaced

 If a  b = c then

 Ag = ga
1   ga

n  gb
1  gb

n  sc
1    sc

n  0

by

 Ag = ga
1 + + ga

n + gb
1+  + gb

n+ sc
1    sc

n  0

 Can now use the BGW protocol for this step
 To compute “ga

1 + + ga
n + gb

1+  + gb
n” each party i sends

shares of ga
i; sums the shares it receives.

 To compute “sc
1    sc

n” party i shifts sc
i (by ik bits) and

sends shares; sums shares it receives.

 To compute “If a  b=c” use multiplication to compute ab;
use it to get 0/1 result for “a  b=c”; multiply by
“ga

1++gb
n+sc

1 0”.

The improvement to BMR
 Change to

 If a  b = c then Ag =
ga

1++ga
n+gb

1++gb
n+sc

1   sc
n  0

 Can now run the BGW protocol.

 Use 3 multiplications per table entry

 A circuit for the same task (computing one entry in
a single gate) has about ~2n2k gates.

 n=5, k=128  ~6400 gates.

 The coin flipping can also be implemented using
BGW [DFKNT 05]

The implemented protocol

 FairplayMP is implemented in Java

 Modular and readable code

 Five packages (~2000 code lines):

 circuit – An interface that allows to use different
representations of circuits.

 communication - Basic Client/Server, msg.

 config – Allows simple configuration via code.

 players – Implementation of the protocol steps for each
of the players (IP, CP, RP).

 utils – Implementation of BGW and PRG.

Data communication

 As in the two-party case, inefficient data
communication between the parties can cause
major delays.

 First versions of code handled communication
inefficiently.

 Item wrapping, opening ports, etc.

 Solutions:

 Handle this very carefully

 Use Google’s protocolbuffer

Run time (in msec) of evaluating a full binary tree of

different sizes

1000

10000

100000

32 64 128 256 512 1024

Circuit size

R
u

n
 t

im
e

9

7

5

Second price auction. Circuit with

400 gates. Run time of 5.4 secs.

Experiments
The effect of the circuit size

CP’s:

Experiments
The effect of the circuit depth

Run time (in msec) of evaluating a full binary tree vs.

linked list

1000

10000

32 64 128 256 512 1024

Circuit size

R
u

n
 t

im
e

Line

Tree

Conclusions

 FairplayMP

 First generic system for secure MPC.

 Many existing MPC protocols, but there are
“hidden issues” which make it hard to
implement them.

 Needed to “massage” the BMR protocol.

 Feasibility of MPC systems

 Semi-honest vs. malicious 

 Random oracle vs. standard model 

