Fast Implementations of AES on Various Platforms

Joppe W. Bos!  Dag Arne Osvik!  Deian Stefan?

LIEPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland
{joppe.bos, dagarne.osvik}@epfl.ch

2Dept. of Electrical Engineering, The Cooper Union, NY 10003, New York, USA
stefan@cooper.edu

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

COOPER



Introduction

o Motivation
o Previous Work
o Contributions

The Advanced Encryption Standard

Target Platforms

e The 8-bit AVR Microcontroller
o The Cell Broadband Engine Architecture
e The NVIDIA Graphics Processing Unit

@ Conclusions



Motivation

Advanced Encryption Standard
@ Rijndael announced in 2001 as the AES.

@ One of the most widely used cryptographic primitives.

o IP Security, Secure Shell, Truecrypt
e RFID and low-power authentication methods
o Key tokens, RF-based Remote Access Control

@ Many intensive efforts to speed up AES in both hard- and software.

v

Related work

E. Kasper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. CHES 2009.

P. Bulens, et al. Implementation of the AES-128 on Virtex-5 FPGAs AFRICACRYPT 2008.
O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Modern Graphics Hardware. USENIX Sec. Symp. 2008.

S. Rinne, et al. Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers. SPEED 2007.

K. Shimizu, et al. Cell Broadband Engine Support for Privacy, Security, and Digital Rights Management Applications. 2005.




Contributions

New software speed records for various architectures

@ 8-bit AVR microcontrollers
e compact, efficient single stream AES version
@ Synergistic processing elements of the Cell broadband engine

e widely available in the PS3 video game console
o single instruction multiple data (SIMD) architecture
o process 16 streams in parallel (bytesliced)

@ NVIDIA graphics processing unit

o first AES decryption implementation
o single instruction multiple threads (SIMT) architecture
e process thousand of streams in parallel ( T-table based)



The Advanced Encryption Standard

Fixed block length version of the Rijndael block cipher
Key-iterated block cipher with 128-bit state and block length
Support for 128-, 192-, and 256-bit keys

Strong security properties — no attacks on full AES-128

Very efficient in hardware and software



AES-128 Block Cipher

@ Algorithm consists of 5 steps:

@ Key expansion:

128-bit — N, + 1 = 11 128-bit round keys
@ State initialization:

initial state < plaintext block & 128-bit key
© Round transformation:

apply round function on state N, — 1 times
@ Final round transformation:

apply the modified round function

@ Core of AES, the round function, consists of the following steps:
e SubBytes, ShiftRows, MixColumns, and AddRoundKey.



AES-128 Block Cipher

@ Algorithm consists of 5 steps:
@ Key expansion:
128-bit — N, +1 = 11 128-bit round keys
@ State initialization:
initial state < plaintext block & 128-bit key
© Round transformation:
apply round function on state N, — 1 times
@ Final round transformation:
apply the modified round function
@ Core of AES, the round function, consists of the following steps:

e SubBytes, ShiftRows, MixColumns, and AddRoundKey.

@ Decryption follows the same procedure
- round function steps are the inverse and run in reverse order



Round Function Steps

© SubBytes:

200|201 [ afl [ s bio | Bor | W [ s
A0 | A | B2 | 215 bm bH bi!
A | 32 | 33 | A3 blﬂ b11 bZZ bl!
A3 | a3 | A5, | 33 bBD b)V b)Z b33




Round Function Steps

© SubBytes:

200|201 [ afl [ s bio | Bor | W [ s
Ao | A | A2 | A bw bH bi!
A | 32 | 33 | A3 blﬂ b11 bZZ bl!
A3 | a3 | A5, | 33 bBD b)V b)Z bJJ

@ ShiftRows:

390 | 301 | 302

A0 | A1y | @y

A | 3 | @

330 | 33 | @5,




Round Function Steps

© SubBytes: © MixColumns:

S-box 231

123

112

200|201 [ afl [ s bio | Bor | W [ s 30
a0 | an, [ agg [ 2 by [ by bys ag [ @0 | 22 | 2
Ay | ay|ay|as byo | by | by | bys Ajp [ @3y | 212 | 13
a3y | a3 | a3, | a3 byg | by | byy | by Ay | @21 | 222 | 323
A3 | @3 | 35, | 333

@ ShiftRows:

390 | 301 | 302
A0 | A1y | @y
A | 3 | @
330 | 33 | @5,




Round Function Steps

© SubBytes: © MixColumns:

o
s
M
CREED
- e ow

200|201 [ afl [ s bio | Bor | W [ s

Ao | A | A2 | A bw bH bi! Ago | @y | 202 | @03

A | 32 | 33 | A3 blﬂ b11 bZZ bl! Ajp [ @3y | 212 | 13

aso | an a5 | a5 by [ by [ b5z | by az [l 22 | a3
A3 | @3 | 35, | 333

@ ShiftRows: © AddRoundKey:

390 | 301 | 302 30 | 301 | 302 200 [ 301 | 32 [ 203 Koo | 301 | koa
A0 [ 3 | 32 an | a Ay A [an | an|an @ ko | a1 | kiy
Az | 3z | 3z az ay | a5 20| 31 | 32 | 323 Ko | an | kn
A3 | @3 | 832 a3, | a3, [ a5 A30 | 33 | A3 | A3 Ko | ka1 | Ksz




(2]
S
—
L
JHEE)
A
o
4=
(0]
eY0]
©
_I

NVIDIA GPUs

Atmel AVRs

©I1BM Systems

/19



Advanced Virtual RISC Architecture

Modified Harvard architecture
32 - 8-bit registers
16-bit pointer registers

Registers are addressable
Mostly single-cycle execution
%KB to 384KB flash memory
0 to 32KB SRAM

0 to 4KB EEPROM

9/19



Encryption Comparison AVR

3600
3400 |+ + g
3200 | .

3000 b
2800 b

Rinneetal.
2600 K Poettering X

L Otte |
2400 Qe Eﬁ

2200 b
2000 r b

.
1800 1

1600 X b

1400 L L L L I
1500 2000 2500 3000 3500 4000 4500

Cycles for Encryption

Code Size in Bytes

10/19



Decryption Comparison AVR

3600
: +
3400 | + Poettering X
Otte X
3200 New | |
3000 1

Fiinne ét al.

2800 | 1
2600 | ¥ 1
2400 | 1
2200 | 1
2000 | 1

Code Size in Bytes

1800 b

1600 X b

1400 L L L L >< L L L L

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Cycles for Decryption

11/19



Cell Broadband Engine Architecture

@ Use the Synergistic Processing Elements

e runs at 3.2 GHz

128-bit wide SIMD-architecture

two instructions per clock cycle (dual pipeline)
in-order processor

rich instruction set: i.e.

all distinct binary operations

f:{0,1}2 — {0,1} are present.

e "“Expensive” QS22 Blade Servers (2 x 8 SPEs)
e "“Cheap” PS3 video game console (6 SPEs)

12 /19



SPU Results Comparison

20 171
14.4

o0 124 197
_%'. H K. Shimizu et al.
310 - 2005
v H This articl
5‘ is article

5 -

0 T f

Encryption Decryption

Throughput per PS3: 13.2 (encryption) and 10.8 Gbps (decryption)
Work-in-progress, fill both pipelines

Current version: 1752 odd and 2764 even instructions for encryption.
13/19



NVIDIA Graphic Processing Units

e Contain 12-30 simultaneous
multiprocessors (SMs):

8 streaming processors (SPs)

16KB 16-way banked fast

shared memory Il

o 8192/16384 32-bit registers
o 8KB constant memory cache -
o 6KB-8KB texture cache
e 2 special function units Scheduler =
e instruction fetch and E - s o 2
scheduling unit 3 =g
5 SP SP 2
o GeForce 8800GTX: a £l
g sp P &
16 SMs @ 1.35GHz =
| SR s |
o GTX 205: U SFU
2 x 30 SMs @ 1.24GHz — -

14 /19



AES GPU Implementation

@ Combine SubBytes, ShiftRows, MixColumns using the standard
“T-table” approach. Update each column (0 < < 3):

[sj07 5i1, 552, 5_1'3]T = TO[aCoo] 2] Tl [acll] D T2 [aC22] D T3[3C33] D kj7

where each T; is 1KB and k; is the jth column of the round key.

15/19



AES GPU Implementation

@ Combine SubBytes, ShiftRows, MixColumns using the standard
“T-table” approach. Update each column (0 < < 3):

[sj07 5i1, 552, 5_1'3]T = TO[aCoo] 2] Tl [acll] D T2 [aC22] D T3[3C33] D kj7

where each T; is 1KB and k; is the jth column of the round key.
e Example (j = 0):

Qg0 [57 [ D0z | D03 To by So1 | Soz2 | So3

A | an [T TS T, byo m = S11 | Si2 | S13
@ =

Ay | @21 | A2 [T3 Tz byo Sy1 | S22 | S23

Az | 31 | A3z | A33 T; b, m S31 | S32 | S33

15/19



AES GPU Implementation

@ Combine SubBytes, ShiftRows, MixColumns using the standard
“T-table” approach. Update each column (0 < < 3):

[5j07 5i1, 552, 5_1'3]T = TO[aCoo] 2] Tl [acll] D T2 [3(_-22] D T3[3C33] D kj7

where each T; is 1KB and k; is the jth column of the round key.
e Example (j = 0):

- —es|

Qg0 [57 [ D0z | D03 To by So1 | Soz2 | So3

Ao | an [ T, byo m = S11 | Sz | Sa3
@ =

Ay | @21 | A2 [T3 Tz byo Sy1 | S22 | S23

Az | 31 | A3z | A33 T3 b, m S31 | S32 | S33

@ Optimization approach: launch thread blocks containing multiple
independent groups of 16 (1/2-warp) streams.

15/19



AES GPU Implementation (cont.)

o Key expansion:
© On-the-fly:
@ allows thousands of independent streams
@ speed dependent on T-access speed
o multi-block speed improvement: cache few round keys / stream in
shared memory; 16-streams/group — no bank conflicts!

16/19



AES GPU Implementation (cont.)

o Key expansion:
© On-the-fly:
@ allows thousands of independent streams
@ speed dependent on T-access speed
o multi-block speed improvement: cache few round keys / stream in
shared memory; 16-streams/group — no bank conflicts!
@ Texture memory:
o keys alive between kernel launches: multi-block encryption is faster
than on-the-fly!
o thread count limited by texture cache size



AES GPU Implementation (cont.)

o Key expansion:
© On-the-fly:
@ allows thousands of independent streams
@ speed dependent on T-access speed
o multi-block speed improvement: cache few round keys / stream in
shared memory; 16-streams/group — no bank conflicts!
@ Texture memory:
o keys alive between kernel launches: multi-block encryption is faster
than on-the-fly!
o thread count limited by texture cache size
© Shared memory:
@ 16 round key column reads with no bank conflicts — single kernel
multi-block encryption is the fastest!
@ thread count limited by shared memory size



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:

@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are

serialized
@ combine with any key scheduling algorithm

17/19



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:

@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are

serialized
@ combine with any key scheduling algorithm

@ Shared memory:

o Collision-free approach
Ti,i > 0 are rotations of Ty: place 1KB Ty in each bank.

17/19



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:

@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are

serialized
@ combine with any key scheduling algorithm
@ Shared memory:

o Collision-free approach
Ti,i > 0 are rotations of Ty: place 1KB Ty in each bank. All shared
memory used by 1 thread block — very low device utilization.

17/19



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:
@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are
serialized
@ combine with any key scheduling algorithm
@ Shared memory:
o Collision-free approach
Ti,i > 0 are rotations of Ty: place 1KB Ty in each bank. All shared
memory used by 1 thread block — very low device utilization.
o Lazy approach
Place T-tables in order.

17/19



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:
@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are
serialized
@ combine with any key scheduling algorithm
@ Shared memory:
o Collision-free approach
Ti,i > 0 are rotations of Ty: place 1KB Ty in each bank. All shared
memory used by 1 thread block — very low device utilization.
o Lazy approach
Place T-tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM — higher device
occupancy.

17/19



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:
@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are
serialized
@ combine with any key scheduling algorithm
@ Shared memory:
o Collision-free approach
Ti,i > 0 are rotations of Ty: place 1KB Ty in each bank. All shared
memory used by 1 thread block — very low device utilization.
o Lazy approach
Place T-tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM — higher device

occupancy.
@ combine with on-the-fly key scheduling or key expansion in texture
memory.

17/19



AES GPU Implementation (cont.)

@ Placement of T-tables:
@ Constant memory:
@ simple and very quick approach
@ unless encrypting same block with same key: almost all T-accesses are
serialized
@ combine with any key scheduling algorithm
@ Shared memory:
o Collision-free approach
Ti,i > 0 are rotations of Ty: place 1KB Ty in each bank. All shared
memory used by 1 thread block — very low device utilization.
o Lazy approach
Place T-tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM — higher device
occupancy.
@ combine with on-the-fly key scheduling or key expansion in texture
memory.
© Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17/19



GPU Results Comparison

2 171 M S. A. Manavski 2007
. (8800GTX)

15 - 156 M ).Yangetal.2007
o113 (ATI HD 2900 XT)
s i O. Harrison et al.
2, 2008 (8800GTX)

2 0.74 0.76
© : M This article
5‘0 5 | (8800GTX)
: 0.17 0.19 This article (GTX295)
0 . .
Encryption Decryption

Encryption: 59.6 and 14.6 Gbps on the GTX 295 and 8800GTX, respectively.
Decryption: 52.4 and 14.3 Gbps on the GTX 295 and 8800GTX, respectively.

18/19



Conclusions

AES-128 software speed records for encryption and decryption

e 8-bit AVR
e 1.24x encryption
e 1.10x decryption
e smaller code size

o Cell Broadband Engine (SPE)

e 1.06x encryption
e 1.18x decryption

e NVIDIA GPU

e 1.75x encryption
o First decryption implementation

@ All numbers subject to further improvements

19/19



Conclusions

AES-128 software speed records for encryption and decryption

e 8-bit AVR
e 1.24x encryption
e 1.10x decryption
e smaller code size

o Cell Broadband Engine (SPE)

e 1.06x encryption
e 1.18x decryption

e NVIDIA GPU

e 1.75x encryption
o First decryption implementation

@ All numbers subject to further improvements

To be continued. ..

19/19



