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Motivation

Advanced Encryption Standard

Rijndael announced in 2001 as the AES.

One of the most widely used cryptographic primitives.

IP Security, Secure Shell, Truecrypt
RFID and low-power authentication methods
Key tokens, RF-based Remote Access Control

Many intensive efforts to speed up AES in both hard- and software.

Related work
E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. CHES 2009.

P. Bulens, et al. Implementation of the AES-128 on Virtex-5 FPGAs AFRICACRYPT 2008.

O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Modern Graphics Hardware. USENIX Sec. Symp. 2008.

S. Rinne, et al. Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers. SPEED 2007.

K. Shimizu, et al. Cell Broadband Engine Support for Privacy, Security, and Digital Rights Management Applications. 2005.
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Contributions

New software speed records for various architectures

8-bit AVR microcontrollers

compact, efficient single stream AES version

Synergistic processing elements of the Cell broadband engine

widely available in the PS3 video game console
single instruction multiple data (SIMD) architecture
process 16 streams in parallel (bytesliced)

NVIDIA graphics processing unit

first AES decryption implementation
single instruction multiple threads (SIMT) architecture
process thousand of streams in parallel (T -table based)
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The Advanced Encryption Standard

Fixed block length version of the Rijndael block cipher

Key-iterated block cipher with 128-bit state and block length

Support for 128-, 192-, and 256-bit keys

Strong security properties → no attacks on full AES-128

Very efficient in hardware and software
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AES-128 Block Cipher

Algorithm consists of 5 steps:
1 Key expansion:

128-bit → Nr + 1 = 11 128-bit round keys
2 State initialization:

initial state ← plaintext block ⊕ 128-bit key
3 Round transformation:

apply round function on state Nr − 1 times
4 Final round transformation:

apply the modified round function

Core of AES, the round function, consists of the following steps:

SubBytes, ShiftRows, MixColumns, and AddRoundKey.

Decryption follows the same procedure
- round function steps are the inverse and run in reverse order
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Round Function Steps

1 SubBytes:

S-box

a00 a01 a02 a03

a10 a11 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03

b10 b11 b13

b20 b21 b22 b23

b30 b31 b32 b33

a12 b12

2 ShiftRows:
a00 a01 a02 a03

a10 a11 a13

a20 a21 a22 a23

a30 a31 a32 a33

a12

a00 a01 a02 a03

a11 a13

a22 a23

a33

a12 a10

a20 a21

a30 a31 a32

1 MixColumns:

a00 a02 a03

a10 a13

a20 a22 a23

a30 a32 a33

b00 b02 b03

b10 b13

b20 b22 b23

b30 b32 b33

a12 b12

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

×

a01

a11

a21

a31

b01

b11

b21

b31

2 AddRoundKey:
a00 a01 a02 a03

a10 a11 a13

a20 a21 a22 a23

a30 a31 a32 a33

a12

k00 a01 k02 k03

k10 a11 k13

k20 a21 k22 k23

k30 k31 k32 k33

k12

b00 b01 b02 b03

b10 b11 b13

b20 b21 b22 b23

b30 b31 ab32 b33

b12
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Target Platforms

Cell B.E

NVIDIA GPUs

Atmel AVRs

© IBM Systems
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Advanced Virtual RISC Architecture

Modified Harvard architecture

32 · 8-bit registers

16-bit pointer registers

Registers are addressable

Mostly single-cycle execution
1
2 KB to 384KB flash memory

0 to 32KB SRAM

0 to 4KB EEPROM
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Encryption Comparison AVR
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Decryption Comparison AVR
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Cell Broadband Engine Architecture

Use the Synergistic Processing Elements

runs at 3.2 GHz
128-bit wide SIMD-architecture
two instructions per clock cycle (dual pipeline)
in-order processor
rich instruction set: i.e.
all distinct binary operations
f : {0, 1}2 → {0, 1} are present.

“Expensive” QS22 Blade Servers (2× 8 SPEs)

“Cheap” PS3 video game console (6 SPEs)
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SPU Results Comparison
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2005

This article

Throughput per PS3: 13.2 (encryption) and 10.8 Gbps (decryption)

Work-in-progress, fill both pipelines

Current version: 1752 odd and 2764 even instructions for encryption.
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NVIDIA Graphic Processing Units

Contain 12-30 simultaneous
multiprocessors (SMs):

8 streaming processors (SPs)
16KB 16-way banked fast
shared memory
8192/16384 32-bit registers
8KB constant memory cache
6KB-8KB texture cache
2 special function units
instruction fetch and
scheduling unit

GeForce 8800GTX:
16 SMs @ 1.35GHz

GTX 295:
2× 30 SMs @ 1.24GHz
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AES GPU Implementation

Combine SubBytes, ShiftRows, MixColumns using the standard
“T -table” approach. Update each column (0 ≤ j ≤ 3):

[sj0, sj1, sj2, sj3]T = T0[ac00]⊕ T1[ac11]⊕ T2[ac22]⊕ T3[ac33]⊕ kj ,

where each Ti is 1KB and kj is the jth column of the round key.

Example (j = 0):

T0a01 a02 a03

a10 a13

a20 a21 a23

a30 a31 a32

a12 T1

T2

T3

a00

a11

a22

a33

b00

b10

b20

b30

s01 s02 s03

s11 s13

s21 s22 s23

s31 s32 s33

s12

k00

k10

k20

k30

s00

s10

s20

s30

Optimization approach: launch thread blocks containing multiple
independent groups of 16 (1/2-warp) streams.
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AES GPU Implementation (cont.)

Key expansion:
1 On-the-fly:

allows thousands of independent streams
speed dependent on T -access speed
multi-block speed improvement: cache few round keys / stream in
shared memory; 16-streams/group → no bank conflicts!

2 Texture memory:

keys alive between kernel launches: multi-block encryption is faster
than on-the-fly!
thread count limited by texture cache size

3 Shared memory:

16 round key column reads with no bank conflicts → single kernel
multi-block encryption is the fastest!
thread count limited by shared memory size
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AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank. All shared
memory used by 1 thread block → very low device utilization.
Lazy approach
Place T -tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.
combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank.

All shared
memory used by 1 thread block → very low device utilization.
Lazy approach
Place T -tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.
combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank. All shared
memory used by 1 thread block → very low device utilization.

Lazy approach
Place T -tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.
combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank. All shared
memory used by 1 thread block → very low device utilization.
Lazy approach
Place T -tables in order.

On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.
combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank. All shared
memory used by 1 thread block → very low device utilization.
Lazy approach
Place T -tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.

combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank. All shared
memory used by 1 thread block → very low device utilization.
Lazy approach
Place T -tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.
combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



AES GPU Implementation (cont.)

Placement of T -tables:
1 Constant memory:

simple and very quick approach
unless encrypting same block with same key: almost all T -accesses are
serialized
combine with any key scheduling algorithm

2 Shared memory:

Collision-free approach
Ti , i > 0 are rotations of T0: place 1KB T0 in each bank. All shared
memory used by 1 thread block → very low device utilization.
Lazy approach
Place T -tables in order. On average: 6/16 collisions, so remaining
reads are parallel. Allows for multiple blocks/SM → higher device
occupancy.
combine with on-the-fly key scheduling or key expansion in texture
memory.

3 Texture memory: ongoing work, but estimates are lower than lazy
shared memory approach.

17 / 19



GPU Results Comparison
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Encryption: 59.6 and 14.6 Gbps on the GTX 295 and 8800GTX, respectively.

Decryption: 52.4 and 14.3 Gbps on the GTX 295 and 8800GTX, respectively.
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Conclusions

AES-128 software speed records for encryption and decryption

8-bit AVR

1.24× encryption
1.10× decryption
smaller code size

Cell Broadband Engine (SPE)

1.06× encryption
1.18× decryption

NVIDIA GPU

1.75× encryption
First decryption implementation

All numbers subject to further improvements

To be continued. . .
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