

On the Design and Implementation of Efficient Zero-Knowledge Proofs of Knowledge

SPEED-CC, Berlin (Germany), October 13th, 2009

Endre Bangerter¹, <u>Stephan Krenn</u>^{1,2}, Ahmad-Reza Sadeghi³, Thomas Schneider³, and Joe-Kai Tsay⁴

¹ Bern University of Applied Sciences (Switzerland)
 ² University of Fribourg (Switzerland)
 ³ Ruhr-University Bochum (Germany)
 ⁴ Ecole Normale Supérieure de Cachan (France)

Why to Avoid ZK-PoK in Hidden Order Groups

SPEED-CC, Berlin (Germany), October 13th, 2009

Endre Bangerter¹, <u>Stephan Krenn</u>^{1,2}, Ahmad-Reza Sadeghi³, Thomas Schneider³, and Joe-Kai Tsay⁴

¹ Bern University of Applied Sciences (Switzerland)
 ² University of Fribourg (Switzerland)
 ³ Ruhr-University Bochum (Germany)
 ⁴ Ecole Normale Supérieure de Cachan (France)

Outline

Proofs of knowledge in hidden order groups

Exact efficiency and security analysis

Conclusion

Introduction

Proof of Knowledge: Prover cannot cheat

Zero-Knowledge: Verifier cannot learn secret

Applications

Remote Authentication (e.g. DAA)

Credential Systems (e.g. idemix)

The Schnorr Protocol

 $\overline{1 \operatorname{know} x} = \log_g y.$

$$r \in_R \mathbb{Z}$$

 $t := g^r$

$$\stackrel{\mathcal{t}}{\longrightarrow}$$

$$c \in_{\mathbb{R}} C$$

$$s := r + cx$$

$$\stackrel{S}{\longrightarrow}$$

$$c \in_R C$$

$$g^s \stackrel{?}{=} ty^c$$

The Schnorr Protocol

$$r \in_R \mathbb{Z}$$

 $t := g^r$

$$s := r + cx$$

$$c \in_R C$$

$$c \in_R C$$

$$g^s \stackrel{?}{=} ty^c$$

BUT: We must use $C = \{0,1\}$!

A Computationally Hard Problem

Given safe RSA modulus n, and $x, y \in_R \mathbb{Z}_n^*$, cannot compute a, b, c, w such that $w^c = x^a y^b$ and $(c \nmid a \text{ or } c \nmid b)$.

holds under: Strong RSA Assumption

Given safe RSA modulus n, and $y \in_R \mathbb{Z}_n^*$,

cannot compute $a, e \neq 1$ such that $a^e = y$.

A Damgård/Fujisaki based Protocol

$$r, \overline{r}, \overline{x} \in_R \mathbb{Z}$$

 $t := g^r$

$$\bar{y} := \bar{h}_1^x \bar{h}^{\bar{x}}$$

$$\bar{t} := \bar{h}_1^r \bar{h}^{\bar{r}}$$

$$s := r + cx$$

$$\bar{s} := \bar{r} + c\bar{x}$$

$$t, \bar{t}, \bar{y}$$

$$S, \overline{S}$$

$$c \in_R C$$

$$g^s \stackrel{?}{=} ty^c$$

$$\bar{h}_1^s \bar{h}^{\bar{s}} \stackrel{?}{=} \bar{t} \bar{y}^c$$

With large challenge set.

E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, J.-K. Tsay

Why it works...

E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, J.-K. Tsay

Why it works...

$$g^{s_i} = t y^{c_i}$$

$$i = 1,2$$

$$\rightarrow$$
 $g^{\Delta s} = y^{\Delta c}$

$$\rightarrow$$
 $x = \Delta s (\Delta c)^{-1}$

$$\begin{array}{c}
t, \overline{t}, \overline{y} \\
 \leftarrow c \\
 \hline
S, \overline{S} \\
 \rightarrow
\end{array}$$

$$\bar{h}_1^{s_i}\bar{h}^{\bar{s}_i} = \bar{t}\bar{y}^{c_i} \qquad i = 1,2$$

$$ightharpoonup ar{h}_1^{\Delta S} ar{h}^{\Delta ar{S}} = ar{y}^{\Delta C}$$
 and $\Delta C \mid \Delta S$

$$\rightarrow x = \frac{\Delta s}{\Delta c}$$

Outline

Proofs of knowledge in hidden order groups

Exact efficiency and security analysis

Conclusion

Intuitive Comparison

Schnorr protocol:

slow looooong

DF-based protocol: fast elegant

A Closer Look

Common reference string

Only computationally sound

Bad complexity reductions

Bad Reductions

Probability of breaking Strong RSA

Probability of breaking the protocol

Is DAA broken?

Bad Reductions

Probability of breaking Strong RSA

Probability of breaking the protocol

Relative Costs

Costs (Schnorr)

Costs (DF-based)

for cheating probability of 2⁻⁸⁰ and prover limited to 2⁸⁰ steps.

$ n_0 $	n = 15528	 n = 2048	optimal n
1024	42.7	2.7	1.9
1280	24.0	1.7	1.1
1536	13.1	1.0	0.7
2048	5.6	0.6	0.3

So...

Sources of Inefficiency

Complexity of proof goal

Relative costs

Size of underlying group

Relative costs

Flexibility of |n|

Relative costs

Relative costs

Efficiency of math-library

Dependencies of Relative Costs

Decreasing size of underlying group

Outline

Proofs of knowledge in hidden order groups

Exact efficiency and security analysis

Conclusion

Crypto folklore

Design vs. implementation

On the Design and Implementation of

Efficient Zero-Knowledge Proofs of Knowledge

SPEED- erlin (Germany), October 13th, 2009

Endre Bangerter¹, <u>Ste</u>an <u>Krenn</u>^{1,2}, Ahmad-Reza Sadeghi³, <u>Thomas Schneider</u>³, and Joe-Kai Tsay⁴

¹ Bern University of Applied Sciences (Switzerland)
 ² University of Fribourg (Switzerland)
 ³ Ruhr-University Bochum (Germany)

⁴ Ecole Normale Supérieure de Cachan (France)

