On the Design and Implementation of Efficient Zero-Knowledge Proofs of Knowledge SPEED-CC, Berlin (Germany), October 13th, 2009 Endre Bangerter¹, <u>Stephan Krenn</u>^{1,2}, Ahmad-Reza Sadeghi³, Thomas Schneider³, and Joe-Kai Tsay⁴ ¹ Bern University of Applied Sciences (Switzerland) ² University of Fribourg (Switzerland) ³ Ruhr-University Bochum (Germany) ⁴ Ecole Normale Supérieure de Cachan (France) # Why to Avoid ZK-PoK in Hidden Order Groups SPEED-CC, Berlin (Germany), October 13th, 2009 Endre Bangerter¹, <u>Stephan Krenn</u>^{1,2}, Ahmad-Reza Sadeghi³, Thomas Schneider³, and Joe-Kai Tsay⁴ ¹ Bern University of Applied Sciences (Switzerland) ² University of Fribourg (Switzerland) ³ Ruhr-University Bochum (Germany) ⁴ Ecole Normale Supérieure de Cachan (France) #### Outline Proofs of knowledge in hidden order groups Exact efficiency and security analysis Conclusion #### Introduction Proof of Knowledge: Prover cannot cheat Zero-Knowledge: Verifier cannot learn secret ## **Applications** # Remote Authentication (e.g. DAA) # Credential Systems (e.g. idemix) #### The Schnorr Protocol $\overline{1 \operatorname{know} x} = \log_g y.$ $$r \in_R \mathbb{Z}$$ $t := g^r$ $$\stackrel{\mathcal{t}}{\longrightarrow}$$ $$c \in_{\mathbb{R}} C$$ $$s := r + cx$$ $$\stackrel{S}{\longrightarrow}$$ $$c \in_R C$$ $$g^s \stackrel{?}{=} ty^c$$ #### The Schnorr Protocol $$r \in_R \mathbb{Z}$$ $t := g^r$ $$s := r + cx$$ $$c \in_R C$$ $$c \in_R C$$ $$g^s \stackrel{?}{=} ty^c$$ **BUT:** We must use $C = \{0,1\}$! A Computationally Hard Problem Given safe RSA modulus n, and $x, y \in_R \mathbb{Z}_n^*$, cannot compute a, b, c, w such that $w^c = x^a y^b$ and $(c \nmid a \text{ or } c \nmid b)$. holds under: Strong RSA Assumption Given safe RSA modulus n, and $y \in_R \mathbb{Z}_n^*$, cannot compute $a, e \neq 1$ such that $a^e = y$. # A Damgård/Fujisaki based Protocol $$r, \overline{r}, \overline{x} \in_R \mathbb{Z}$$ $t := g^r$ $$\bar{y} := \bar{h}_1^x \bar{h}^{\bar{x}}$$ $$\bar{t} := \bar{h}_1^r \bar{h}^{\bar{r}}$$ $$s := r + cx$$ $$\bar{s} := \bar{r} + c\bar{x}$$ $$t, \bar{t}, \bar{y}$$ $$S, \overline{S}$$ $$c \in_R C$$ $$g^s \stackrel{?}{=} ty^c$$ $$\bar{h}_1^s \bar{h}^{\bar{s}} \stackrel{?}{=} \bar{t} \bar{y}^c$$ With large challenge set. # E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, J.-K. Tsay # Why it works... # E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, J.-K. Tsay # Why it works... $$g^{s_i} = t y^{c_i}$$ $$i = 1,2$$ $$\rightarrow$$ $g^{\Delta s} = y^{\Delta c}$ $$\rightarrow$$ $x = \Delta s (\Delta c)^{-1}$ $$\begin{array}{c} t, \overline{t}, \overline{y} \\ \leftarrow c \\ \hline S, \overline{S} \\ \rightarrow \end{array}$$ $$\bar{h}_1^{s_i}\bar{h}^{\bar{s}_i} = \bar{t}\bar{y}^{c_i} \qquad i = 1,2$$ $$ightharpoonup ar{h}_1^{\Delta S} ar{h}^{\Delta ar{S}} = ar{y}^{\Delta C}$$ and $\Delta C \mid \Delta S$ $$\rightarrow x = \frac{\Delta s}{\Delta c}$$ #### **Outline** Proofs of knowledge in hidden order groups Exact efficiency and security analysis Conclusion ## **Intuitive Comparison** #### Schnorr protocol: slow looooong DF-based protocol: fast elegant #### A Closer Look Common reference string Only computationally sound Bad complexity reductions ### **Bad Reductions** Probability of breaking Strong RSA Probability of breaking the protocol # Is DAA broken? #### **Bad Reductions** Probability of breaking Strong RSA Probability of breaking the protocol #### **Relative Costs** Costs (Schnorr) Costs (DF-based) for cheating probability of 2⁻⁸⁰ and prover limited to 2⁸⁰ steps. | $ n_0 $ | n = 15528 | n = 2048 | optimal n | |---------|--------------------|-------------------|--------------------| | 1024 | 42.7 | 2.7 | 1.9 | | 1280 | 24.0 | 1.7 | 1.1 | | 1536 | 13.1 | 1.0 | 0.7 | | 2048 | 5.6 | 0.6 | 0.3 | # So... # Sources of Inefficiency Complexity of proof goal Relative costs Size of underlying group Relative costs Flexibility of |n| Relative costs Relative costs Efficiency of math-library ### Dependencies of Relative Costs Decreasing size of underlying group #### Outline Proofs of knowledge in hidden order groups Exact efficiency and security analysis Conclusion Crypto folklore Design vs. implementation #### On the Design and Implementation of # Efficient Zero-Knowledge Proofs of Knowledge SPEED- erlin (Germany), October 13th, 2009 Endre Bangerter¹, <u>Ste</u>an <u>Krenn</u>^{1,2}, Ahmad-Reza Sadeghi³, <u>Thomas Schneider</u>³, and Joe-Kai Tsay⁴ ¹ Bern University of Applied Sciences (Switzerland) ² University of Fribourg (Switzerland) ³ Ruhr-University Bochum (Germany) ⁴ Ecole Normale Supérieure de Cachan (France)