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Quick Recap of Multiparty Computation

P1 —_— P2 > n players

wish to jointly compute f
player P; has input x;

> players learn
y = f(x1,%x2,...,%n)
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Quick Recap of Multiparty Computation

P]_(—>P2

N/

n players

wish to jointly compute f
player P; has input x;
players learn

y = f(x1,%x2,...,%n)

up to t players are corrupt
must keep inputs private
must ensure correct output

players only learn y
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Requirements

We need fast local operations:

» fast cryptosystems
» fast hash functions

» and so on...
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Requirements

We need fast local operations:
» fast cryptosystems
» fast hash functions
» and so on. ..
But we also need:
» fast cryptographic protocols
» flexible protocol description language

» efficient usage of network resources
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VIFF Overview

» VIFF: Virtual Ideal Functionality Framework
» Python library for MPC
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» VIFF: Virtual Ideal Functionality Framework
» Python library for MPC

» we wanted to write:

i = int(sys.argv[1]) # read commandline argument
(a, b, ¢) = shamir_share(i)  # Shamir secret share input

X =ax*xb+c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)
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VIFF Overview

» VIFF: Virtual Ideal Functionality Framework
» Python library for MPC

» we wanted to write:

i = int(sys.argv[1]) # read commandline argument
(a, b, ¢) = shamir_share(i)  # Shamir secret share input

X =ax*xb+c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)

» we also wanted this code to execute in one round:

Xx=axb
y=bxc
Z=c*a

» we wanted to do MPC over real networks, i.e., the Internet
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Applications

We have implemented a number of applications in VIFF:
» Distributed AES

Distributed RSA

Double Auction

\{

\{

v

Voting
Poker

v
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Related Projects
SIMAP — http://simap.dk/

» general multiparty computations
» Java implementation

» some work done on a domain specific language
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Related Projects
SIMAP — http://simap.dk/

» general multiparty computations

» Java implementation

» some work done on a domain specific language
FairPlay — http://fairplayproject.net/

» Yao-garbled circuits for 2 or more parties

» Java implementation

» own language for MPC programs
Sharemind — http://sharemind.cs.ut.ee/

» computation over the ring Zys

» C++ implementation

> scalable to very large data sets

» own MPC assembler language and compiler


http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/
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Asynchronous vs. Synchronous Network

VIFF assumes an asynchronous network:
> real-world networks are asynchronous

> it is the most flexible choice
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Asynchronous vs. Synchronous Network

VIFF assumes an asynchronous network:
> real-world networks are asynchronous

> it is the most flexible choice

° | multiply | multiply | » all rounds equally fast
o » optimal execution
= |share|share|share|share|
| multiply | multiply | > processing stalls
el - » wasted time!
=
|share share share|share
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Transport Protocol
We currently use SSL over TCP:

> gives reliable, authenticated point-to-point channels

> litterature generally wants exactly this

11/27



Transport Protocol
We currently use SSL over TCP:

> gives reliable, authenticated point-to-point channels
> litterature generally wants exactly this
UDP would be an interesting alternative:
» discrete packets — send one share per packet
» we do not care about reordering

» most protocols can handle some dropped packets!
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Network Architecture

We use a peer-to-peer architecture:
> parties are symmetric

» very general architecture
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Network Architecture

We use a peer-to-peer architecture:
> parties are symmetric
» very general architecture
SIMAP used a central coordinator:
» forwards packets only
» makes NAT-traversal simple

» a potential bottle-neck
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Programming Language

VIFF is written in Python:
> flexible language, well suited for rapid prototyping

» Twisted library for asynchronous network communication
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Programming Language

VIFF is written in Python:

>

>

>

flexible language, well suited for rapid prototyping
Twisted library for asynchronous network communication

anonymous functions:

share_x.addCallback(lambda x: x * x)

operator overloading:

a.add(b).sub(a.mul(b).mul(2)) ~» |a+b—2%xaxb

absolutely everything is interpreted

lack of static types enables stupid mistakes
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Programming Environment

VIFF provides the a framework in the form of a library:
» makes “VIFF programs” regular Python programs

» provides full access to Python standard library
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Programming Environment

VIFF provides the a framework in the form of a library:
» makes “VIFF programs” regular Python programs
» provides full access to Python standard library

» however, we cannot use control structures directly:

if rt.open(a < b and b < c):
print "Wow, monotone!"

Must rewrite as:

def check_monotone(result):
if result:
print "Wow, monotone!"

x = rt.open(a < band b < ¢)
x.addCallback(check_monotone)

> long-term solution: put a DSL on top of VIFF

14 /27



Programming Paradigm

Asynchronous communication via callbacks:
» “don’t call us, we'll call you"

> uses a network library called Twisted
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d = Deferred()
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Programming Paradigm

Asynchronous communication via callbacks:
» “don’t call us, we'll call you"
> uses a network library called Twisted

» Twisted’'s fundamental abstraction is the Deferred:
| 10
. '8 2 ~\
def output(x): print x | lambda x: x + 1 |

d = Deferred()
d.addCallback(lambda x: x + 1)
d.addCallback(lambda x: x * 2)
d.addCallback(output)
d.callback(10)

> this can lead to an unnatural way of programming

» completely single-threaded — no blocking the event loop!
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More on Deferreds

We use Deferreds heavily:

» subclass Share provides operator overloading:

x—=a*b+cx*x10
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» Share objects are created and combined:
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;
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More on Deferreds

We use Deferreds heavily:

» subclass Share provides operator overloading:

x—=a*b+cx*x10

» Share objects are created and combined:
X

;

*/ \*
/N /N
a b C 10
N1/

network trafic
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Dangers of Deferreds

Deferreds are not free:
> a single, empty Deferred is about 200 bytes

» adding a callback costs at least 300 bytes more
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Dangers of Deferreds

Deferreds are not free:
> a single, empty Deferred is about 200 bytes
» adding a callback costs at least 300 bytes more

> it is easy to allocate lots of Deferreds:

for i in range(10000):

X = X % X

v

all 10,000 multiplications are scheduled immediately:
TS /\ 4/\ K\

X ¢—— *
b\ \_/ v &_/
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What About Threads?

Threads are the main alternative to callbacks:
» can use multiple cores!

» normal program flow, you can block when you want
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What About Threads?

Threads are the main alternative to callbacks:
» can use multiple cores!
» normal program flow, you can block when you want
> thread-switches supposedly have some overhead
» must synchronize threads (and avoid dead-locks. .. )

» need a way to specify future tasks (callbacks. ..)

18 /27



Pipelining
Network delay kills throughput unless we run things in parallel:

> like a CPU, we pipeline many operations in parallel
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Pipelining

Network delay kills throughput unless we run things in parallel:
> like a CPU, we pipeline many operations in parallel

» can potentially remove idle time:

A

|d|e{x

B

Idle

Idle

Idle

VW,
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Automatic pipelining

VIFF will automatically pipeline everything:
» network traffic begins upon return to event loop
> no notion of rounds

» fits naturally with asynchronous execution
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Why We Must Keep Track of Things

Consider this very high-level code for multiplication:

def mul(share_a, share_b):
result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result
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Why We Must Keep Track of Things

Consider this very high-level code for multiplication:

def mul(share_a, share_b):
result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

It is used twice like this:

x=a*b
y=cxd

We now have a problem:
» finish_mul is executed when a and b arrives
» finish_mul is executed when c and d arrives

» other players cannot know which pair arrives first!
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Program Counters

VIFF use program counters to track operations:

[0]

[1]

]

ul —J [1,0]

finish_mul

ul —J 2,0]

finish__mul
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Program Counter Properties

> assignment depends on program structure
> ensures deterministic assignments

> unique labels for each operation

23 /27



Preprocessing

Many protocols can be divided into two phases:
» an off-line phase which is independent of actual input

» an on-line phase which do depend on the input
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Preprocessing

Many protocols can be divided into two phases:
» an off-line phase which is independent of actual input
» an on-line phase which do depend on the input
A good example is an actively secure multiplication:
> generate a random triple ([a], [b], [ab]) off-line
» use it to multiply [x] and [y]:

d = open([x] — [a])
e = open([y] — [b])
[xy] = de + d[y] + e[x] + [ab]

But how to implement this?
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Program Counters Strikes Again!

We have an unique label for each operation:
> run program without any preprocessed data
» record program counters for missing data

> start next run with a preprocessing phase
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Program Counters Strikes Again!

We have an unique label for each operation:
> run program without any preprocessed data
» record program counters for missing data
> start next run with a preprocessing phase
Will the program always use the same program counters?

» yes! — otherwise it would leak information on the inputs
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Conclusion

Experiences with VIFF:
» asynchronous design works well

» flexible design pays off
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Conclusion

Experiences with VIFF:
» asynchronous design works well

» flexible design pays off

Thank you!
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