Implementing Multiparty Computation

A VIFF Case Study
http://viff.dk/

Martin Geisler
(mg@cs.au.dk)

University of Aarhus
Denmark

October 12, 2009
SPEED-CC

/27

Outline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

Design
Network
Environment
Asynchronicity
Program Counters

Conclusion

27

Outline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

27

Quick Recap of Multiparty Computation

P1 —_— P2 > n players

wish to jointly compute f
player P; has input x;

> players learn
y = f(x1,%x2,...,%n)

v

\4

27

Quick Recap of Multiparty Computation

P]_(—>P2

N/

n players

wish to jointly compute f
player P; has input x;
players learn

y = f(x1,%x2,...,%n)

up to t players are corrupt
must keep inputs private
must ensure correct output

players only learn y

27

Requirements

We need fast local operations:

» fast cryptosystems
» fast hash functions

» and so on...

27

Requirements

We need fast local operations:
» fast cryptosystems
» fast hash functions
» and so on. ..
But we also need:
» fast cryptographic protocols
» flexible protocol description language

» efficient usage of network resources

5/27

VIFF Overview

» VIFF: Virtual Ideal Functionality Framework
» Python library for MPC

27

VIFF Overview

» VIFF: Virtual Ideal Functionality Framework
» Python library for MPC

» we wanted to write:

i = int(sys.argv[1]) # read commandline argument
(a, b, ¢) = shamir_share(i) # Shamir secret share input

X =ax*xb+c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)

6

27

VIFF Overview

» VIFF: Virtual Ideal Functionality Framework
» Python library for MPC

» we wanted to write:

i = int(sys.argv[1]) # read commandline argument
(a, b, ¢) = shamir_share(i) # Shamir secret share input

X =ax*xb+c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)

» we also wanted this code to execute in one round:

Xx=axb
y=bxc
Z=c*a

» we wanted to do MPC over real networks, i.e., the Internet

6 /27

Applications

We have implemented a number of applications in VIFF:
» Distributed AES

Distributed RSA

Double Auction

\{

\{

v

Voting
Poker

v

27

Related Projects
SIMAP — http://simap.dk/

» general multiparty computations
» Java implementation

» some work done on a domain specific language

27

http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/

Related Projects
SIMAP — http://simap.dk/

» general multiparty computations

» Java implementation

» some work done on a domain specific language
FairPlay — http://fairplayproject.net/

» Yao-garbled circuits for 2 or more parties

» Java implementation

» own language for MPC programs

27

http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/

Related Projects
SIMAP — http://simap.dk/

» general multiparty computations

» Java implementation

» some work done on a domain specific language
FairPlay — http://fairplayproject.net/

» Yao-garbled circuits for 2 or more parties

» Java implementation

» own language for MPC programs
Sharemind — http://sharemind.cs.ut.ee/

» computation over the ring Zys

» C++ implementation

> scalable to very large data sets

» own MPC assembler language and compiler

http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/

Outline

Design
Network
Environment
Asynchronicity
Program Counters

27

Asynchronous vs. Synchronous Network

VIFF assumes an asynchronous network:
> real-world networks are asynchronous

> it is the most flexible choice

10/27

Asynchronous vs. Synchronous Network

VIFF assumes an asynchronous network:
> real-world networks are asynchronous

> it is the most flexible choice

» all rounds equally fast

(]
R » optimal execution

10/27

Asynchronous vs. Synchronous Network

VIFF assumes an asynchronous network:
> real-world networks are asynchronous

> it is the most flexible choice

° | multiply | multiply | » all rounds equally fast
o » optimal execution
= |share|share|share|share|
| multiply | multiply | > processing stalls
el - » wasted time!
=
|share share share|share

10/27

Transport Protocol
We currently use SSL over TCP:

> gives reliable, authenticated point-to-point channels

> litterature generally wants exactly this

11/27

Transport Protocol
We currently use SSL over TCP:

> gives reliable, authenticated point-to-point channels
> litterature generally wants exactly this
UDP would be an interesting alternative:
» discrete packets — send one share per packet
» we do not care about reordering

» most protocols can handle some dropped packets!

11/27

Network Architecture

We use a peer-to-peer architecture:
> parties are symmetric

» very general architecture

12 /27

Network Architecture

We use a peer-to-peer architecture:
> parties are symmetric
» very general architecture
SIMAP used a central coordinator:
» forwards packets only
» makes NAT-traversal simple

» a potential bottle-neck

12 /27

Programming Language

VIFF is written in Python:
> flexible language, well suited for rapid prototyping

» Twisted library for asynchronous network communication

13 /27

Programming Language
VIFF is written in Python:
> flexible language, well suited for rapid prototyping

» Twisted library for asynchronous network communication

» anonymous functions:

share_x.addCallback(lambda x: x * x)

13 /27

Programming Language

VIFF is written in Python:

>

>

>

flexible language, well suited for rapid prototyping
Twisted library for asynchronous network communication

anonymous functions:

share_x.addCallback(lambda x: x * x)

operator overloading:

a.add(b).sub(a.mul(b).mul(2)) ~» |a+b—2%xaxb

13 /27

Programming Language

VIFF is written in Python:

>

>

>

flexible language, well suited for rapid prototyping
Twisted library for asynchronous network communication

anonymous functions:

share_x.addCallback(lambda x: x * x)

operator overloading:

a.add(b).sub(a.mul(b).mul(2)) ~» |a+b—2%xaxb

absolutely everything is interpreted

lack of static types enables stupid mistakes

13 /27

Programming Environment

VIFF provides the a framework in the form of a library:
» makes “VIFF programs” regular Python programs

» provides full access to Python standard library

14 /27

Programming Environment

VIFF provides the a framework in the form of a library:
» makes “VIFF programs” regular Python programs
» provides full access to Python standard library

» however, we cannot use control structures directly:

if rt.open(a < b and b < c):
print "Wow, monotone!"

Must rewrite as:

def check_monotone(result):
if result:
print "Wow, monotone!"

x = rt.open(a < band b < ¢)
x.addCallback(check_monotone)

> long-term solution: put a DSL on top of VIFF

14 /27

Programming Paradigm

Asynchronous communication via callbacks:
» “don’t call us, we'll call you"

> uses a network library called Twisted

15 /27

Programming Paradigm

Asynchronous communication via callbacks:
» “don’t call us, we'll call you"
> uses a network library called Twisted

» Twisted’'s fundamental abstraction is the Deferred:
| 10

(Rd Y
def output(x): print x | lambda x: x + 1 |

d = Deferred()
d.addCallback(lambda x: x + 1)
d.addCallback(lambda x: x * 2)
d.addCallback(output)
d.callback(10)

15 /27

Programming Paradigm

Asynchronous communication via callbacks:
» “don’t call us, we'll call you"
> uses a network library called Twisted

» Twisted’'s fundamental abstraction is the Deferred:
| 10
. '8 2 ~\
def output(x): print x | lambda x: x + 1 |

d = Deferred()
d.addCallback(lambda x: x + 1)
d.addCallback(lambda x: x * 2)
d.addCallback(output)
d.callback(10)

> this can lead to an unnatural way of programming

» completely single-threaded — no blocking the event loop!

15 /27

More on Deferreds

We use Deferreds heavily:

» subclass Share provides operator overloading:

x—=a*b+cx*x10

16 /27

More on Deferreds

We use Deferreds heavily:

» subclass Share provides operator overloading:

x—=a*b+cx*x10

» Share objects are created and combined:
X

;

+

*/ *
/N VAR
a) c 10

16 /27

More on Deferreds

We use Deferreds heavily:

» subclass Share provides operator overloading:

x—=a*b+cx*x10

» Share objects are created and combined:
X

;

*/ *
/N /N
a b C 10
N1/

network trafic

16 /27

Dangers of Deferreds

Deferreds are not free:
> a single, empty Deferred is about 200 bytes

» adding a callback costs at least 300 bytes more

17 /27

Dangers of Deferreds

Deferreds are not free:
> a single, empty Deferred is about 200 bytes
» adding a callback costs at least 300 bytes more

> it is easy to allocate lots of Deferreds:

for i in range(10000):

X = X % X

v

all 10,000 multiplications are scheduled immediately:
TS /\ 4/\ K\

X ¢—— *
b\ _/ v &_/

17 /27

What About Threads?

Threads are the main alternative to callbacks:
» can use multiple cores!

» normal program flow, you can block when you want

18 /27

What About Threads?

Threads are the main alternative to callbacks:
» can use multiple cores!
» normal program flow, you can block when you want
> thread-switches supposedly have some overhead
» must synchronize threads (and avoid dead-locks. ..)

» need a way to specify future tasks (callbacks. ..)

18 /27

Pipelining
Network delay kills throughput unless we run things in parallel:

> like a CPU, we pipeline many operations in parallel

19/27

Pipelining
Network delay kills throughput unless we run things in parallel:

> like a CPU, we pipeline many operations in parallel

» can potentially remove idle time:
A B A B

19/27

Pipelining
Network delay kills throughput unless we run things in parallel:

> like a CPU, we pipeline many operations in parallel

» can potentially remove idle time:
A B A B

P I

19/27

Pipelining
Network delay kills throughput unless we run things in parallel:

> like a CPU, we pipeline many operations in parallel

» can potentially remove idle time:
A B

— A>B
e

19/27

Pipelining
Network delay kills throughput unless we run things in parallel:

> like a CPU, we pipeline many operations in parallel

» can potentially remove idle time:

VWY

19/27

Pipelining

Network delay kills throughput unless we run things in parallel:
> like a CPU, we pipeline many operations in parallel

» can potentially remove idle time:

A

|d|e{x

B

Idle

Idle

Idle

VW,

19/27

Automatic pipelining

VIFF will automatically pipeline everything:
» network traffic begins upon return to event loop
> no notion of rounds

» fits naturally with asynchronous execution

20 /27

Why We Must Keep Track of Things

Consider this very high-level code for multiplication:

def mul(share_a, share_b):
result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

21/27

Why We Must Keep Track of Things

Consider this very high-level code for multiplication:

def mul(share_a, share_b):
result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

It is used twice like this:

x=a*b
y=cxd

21/27

Why We Must Keep Track of Things

Consider this very high-level code for multiplication:

def mul(share_a, share_b):
result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

It is used twice like this:

x=a*b
y=cxd

We now have a problem:
» finish_mul is executed when a and b arrives
» finish_mul is executed when c and d arrives

» other players cannot know which pair arrives first!

21/27

Program Counters

VIFF use program counters to track operations:

[0]

[1]

]

ul —J [1,0]

finish_mul

ul —J 2,0]

finish__mul

22/27

Program Counter Properties

> assignment depends on program structure
> ensures deterministic assignments

> unique labels for each operation

23 /27

Preprocessing

Many protocols can be divided into two phases:
» an off-line phase which is independent of actual input

» an on-line phase which do depend on the input

24 /27

Preprocessing

Many protocols can be divided into two phases:
» an off-line phase which is independent of actual input
» an on-line phase which do depend on the input
A good example is an actively secure multiplication:
> generate a random triple ([a], [b], [ab]) off-line
» use it to multiply [x] and [y]:

d = open([x] — [a])
e = open([y] — [b])
[xy] = de + d[y] + e[x] + [ab]

But how to implement this?

24 /27

Program Counters Strikes Again!

We have an unique label for each operation:
> run program without any preprocessed data
» record program counters for missing data

> start next run with a preprocessing phase

25 /27

Program Counters Strikes Again!

We have an unique label for each operation:
> run program without any preprocessed data
» record program counters for missing data
> start next run with a preprocessing phase
Will the program always use the same program counters?

» yes! — otherwise it would leak information on the inputs

25 /27

QOutline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

Design
Network
Environment
Asynchronicity
Program Counters

Conclusion

26 /27

Conclusion

Experiences with VIFF:
» asynchronous design works well

» flexible design pays off

27 /27

Conclusion

Experiences with VIFF:
» asynchronous design works well

» flexible design pays off

Thank you!

27 /27

	Overview
	Multiparty Computation
	Virtual Ideal Functionality Framework

	Design
	Network
	Environment
	Asynchronicity
	Program Counters

	Conclusion

