
High-Performance Modular Multiplication on the Cell
Broadband Engine

Joppe W. Bos

Laboratory for Cryptologic Algorithms
EPFL, Lausanne, Switzerland

joppe.bos@epfl.ch

1 / 21

Outline

Motivation and previous work

Applications for multi-stream modular multiplication

Background

Fast reduction with special primes
The Cell broadband engine

Modular multiplications on the Cell

Performance results

Conclusions

2 / 21

Motivation

Modular multiplication is a performance critical operation in many
cryptographic applications

RSA

ElGamal

Elliptic curve cryptosystems

as well as in cryptanalytic applications

computing elliptic curve discrete logarithms (Pollard rho)

factoring integers (elliptic curve factorization method)

Measure the performance on the Cell.

3 / 21

Previous works

Misc. Platforms

Lots of performance results for many platforms

GNU Multiple Precision (GMP) Arithmetic Library: almost all
platforms (multiplicaton + reduction seperately),

Bernstein et. al (Eurocrypt 2009): NVIDIA GPUs,

Brown et al. (CT-RSA 2001): NIST primes on x 86.

On the Cell Broadband Engine

The Multi-Precision Math (MPM) Library by IBM,

Optimize for one specific bit-size

Costigan and Schwabe (Africacrypt 2009): special 255-bit prime,

Bernstein et. al (SHARCS 2009): 195-bit generic moduli

4 / 21

Contributions

What did I do?

Present high-performance multi-stream algorithms

Montgomery multiplication,

schoolbook multiplication,

various special reduction schemes.

Implementation details (in C) are presented for a cryptologic interesting
range 192− 521 bits targeted at the Cell Broadband Engine.

5 / 21

Multi-Stream Modular Multiplication Applications

Modular exponentiations using a square-and-multiply algorithm.

Cryptography

Exponentiations with the same random exponent:

ElGamal encryption (ElGamal, Crypto 1984),
Double base ElGamal - Damg̊ard ElGamal (Damg̊ard, Crypto 1991),
“Double” hybrid Damg̊ard ElGamal (Kiltz et. al, Eurocrypt 2009).

Batch decryption in elliptic curve cryptosystems

Cryptanalysis

Pollard rho (elliptic curve discrete logarithm problem)

Integer factorization (elliptic curve factorization method)

6 / 21

Special Primes

Faster reduction exploiting the structure of the special prime.

By US National Institute of Standards

Five recommended primes in the FIPS 186-3 (Digital Signature Standard)

P192 = 2192 − 264 − 1
P224 = 2224 − 296 + 1
P256 = 2256 − 2224 + 2192 + 296 − 1
P384 = 2384 − 2128 − 296 + 232 − 1
P521 = 2521 − 1

Prime used in Curve25519

Proposed by Bernstein at PKC 2006

P255 = 2255 − 19

7 / 21

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192, 0 ≤ xH , xL < 2192, x = xH · 2192 + xL

x ≡ xL + xH · 264 + xH mod P192

xH · 264 < 2256

Solinas, technical report 1999

Note: this reduces to [0, 4 · P192]

8 / 21

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192, 0 ≤ xH , xL < 2192, x = xH · 2192 + xL

x ≡ xL + xH · 264 + xH mod P192

xH · 264 < 2256

xH · 264 ≡ xH · 264 mod 2192 +
⌊

xH ·264

2192

⌋
· 264 +

⌊
xH ·264

2192

⌋
mod P192

Solinas, technical report 1999

Note: this reduces to [0, 4 · P192]

8 / 21

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192, 0 ≤ xH , xL < 2192, x = xH · 2192 + xL

x ≡ xL + xH · 264 + xH mod P192

xH · 264 < 2256

xH · 264 ≡ xH · 264 mod 2192 +
⌊

xH ·264

2192

⌋
· 264 +

⌊
xH ·264

2192

⌋
mod P192

s1 = (c5, c4, c3, c2, c1, c0), s2 = (c11, c10, c9, c8, c7, c6),
s3 = (c9, c8, c7, c6, 0, 0), s4 = (0, 0, c11, c10, 0, 0),
s5 = (0, 0, 0, 0, c11, c10) Return s1 + s2 + s3 + s4 + s5

Solinas, technical report 1999

Note: this reduces to [0, 4 · P192]

8 / 21

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192, 0 ≤ xH , xL < 2192, x = xH · 2192 + xL

x ≡ xL + xH · 264 + xH mod P192

xH · 264 < 2256

xH · 264 ≡ xH · 264 mod 2192 +
⌊

xH ·264

2192

⌋
· 264 +

⌊
xH ·264

2192

⌋
mod P192

s1 = (c5, c4, c3, c2, c1, c0), s2 = (0, 0, c7, c6, c7, c6),
s3 = (c9, c8, c9, c8, 0, 0), s4 = (c11, c10, c11, c10, c11, c10)

Return s1 + s2 + s3 + s4

Solinas, technical report 1999

Note: this reduces to [0, 4 · P192]

8 / 21

Multiplication algorithms

Generic Moduli

Montgomery multiplication (with final subtraction)

Special Moduli

Multiplication + special reduction

Size of the modulus: 192 - 521 bit
Multiplication method: schoolbook

Investigate other methods (such as Karatsuba) is left as future work.

9 / 21

The Cell Broadband Engine

Cell architecture in the PlayStation 3 (@ 3.2 GHz):

Broadly available (24.6 million)

Relatively cheap (US$ 300)

The Cell contains

eight “Synergistic Processing Elements” (SPEs)
six available to the user in the PS3

one “Power Processor Element” (PPE)

the Element Interconnect Bus (EIB)
a specialized high-bandwidth circular data bus

10 / 21

Cell architecture, the SPEs

The SPEs contain

a Synergistic Processing Unit (SPU)

Access to 128 registers of 128-bit
SIMD operations
Dual pipeline (odd and even)
Rich instruction set
In-order processor

256 KB of fast local memory (Local Store)

Memory Flow Controller (MFC)

11 / 21

Programming Challenges

Memory

The executable and all data should fit in the LS
Or perform manual DMA requests to the main memory (max. 214 MB)

Branching

No “smart” dynamic branch prediction
Instead “prepare-to-branch” instructions to redirect instruction prefetch
to branch targets

Instruction set limitations

16× 16→ 32 bit multipliers (4-SIMD)

Dual pipeline

One odd and one even instruction can be dispatched per clock cycle.

12 / 21

Modular Multiplication on the Cell I

Four (16 ·m)-bit integers A, B, C, D represented in m vectors.

X =
m−1∑
i=0

xi · 216·i

V [0] =

128-bit wide vector︷ ︸︸ ︷
16-bit︸ ︷︷ ︸
high

16-bit︸ ︷︷ ︸
low

b0 c0 d0

...
...

V [i] =
ai bi ci di

...
...

V [m − 1] =
am−1 bm−1︸ ︷︷ ︸ cm−1 dm−1

the most significant position of X1 is located in

either the lower or higher 16-bit of the 32-bit word

13 / 21

Modular Multiplication on the Cell II

Implementation

use the multiply-and-add instruction,

if 0 ≤ a, b, c , d < 216, then a · b + c + d < 232.

try to fill both the odd and even pipelines,

are branch-free.

Do not fully reduce modulo (m-bits) P,

Montgomery and special reduction [0, 2m〉,
These numbers can be used as input again,

Reduce to [0, P〉 at the cost of a single comparison + subtraction.

14 / 21

Modular Multiplication on the Cell III

Special reduction → [0, t · P〉 (t ∈ Z and small)

How to reduce to [0, 2m〉?
Apply special reduction again

Repeated subtraction (t times)

For a constant modulus m-bit P

Select the four values to subtract simultaneously
using select and cmpgt instructions and a look-up table.

15 / 21

Modular Multiplication on the Cell IV

For the special primes this can be done even faster.

t t · P224 = t ·
(
2224 − 296 + 1

)
= {c7, . . . , c0}

c7 c6 c5 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0 0

1 0 232 − 1 232 − 1 232 − 1 232 − 1 0 0 1

2 1 232 − 1 232 − 1 232 − 1 232 − 2 0 0 2

3 2 232 − 1 232 − 1 232 − 1 232 − 3 0 0 3

4 3 232 − 1 232 − 1 232 − 1 232 − 4 0 0 4

c0 = t, c1 = c2 = 0 and c3 = (unsigned int) (0− t).

If t > 0 then c4 = c5 = c6 = 232 − 1 else c4 = c5 = c6 = 0.

Use a single select.

16 / 21

Modular Multiplication on the Cell V

P255 = 2255 − 19

Original approach

Proposed by Bernstein and implemented on the SPE by Costigan and
Schwabe (Africacrypt 2009):

Here x ∈ F2255−19 is represented as x =
19∑
i=0

xi2
d12.75ie.

Redundant representation

Following ideas from Bos, Kaihara and Montgomery (SHARCS 2009),

Calculate modulo 2 · P255 = 2256 − 38 =
15∑
i=0

xi2
16,

Reduce to [0, 2256〉.
17 / 21

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 150 200 250 300 350 400 450 500 550

N
um

be
r

of
 c

yc
le

s

Bitsize of the modulus

Modular Multiplication Performance Results

NIST primes
Generic primes

Curve25519 prime

Performance Results

Montgomery multiplication
multiplication + fast reduction ≈ 1.4 – 2.5 18 / 21

Comparison Special Moduli

Number of cycles for what?

Measurements over millions of multi-stream modular multiplications,

Cycles for a single modular multiplication,

include benchmark overhead, function call, loading (storing) the input
(output), converting from radix-232 to radix-216.

Special prime P255

Costigan and Schwabe (Africacrypt 2009), 255 bit.

single-stream: 444 cycles (144 mul, 244 reduction, 56 overhead).

multi-stream: 168 cycles.

no function call, loading and storing,
“perfectly” scheduled (filled both pipelines)

this work: 180 cycles (< 168 + 56),

both approaches are comparable in terms of speed (on the Cell).

19 / 21

Comparison Special Moduli

Number of cycles for what?

Measurements over millions of multi-stream modular multiplications,

Cycles for a single modular multiplication,

include benchmark overhead, function call, loading (storing) the input
(output), converting from radix-232 to radix-216.

Special prime P255

Costigan and Schwabe (Africacrypt 2009), 255 bit.

single-stream: 444 cycles (144 mul, 244 reduction, 56 overhead).

multi-stream: 168 cycles.

no function call, loading and storing,
“perfectly” scheduled (filled both pipelines)

this work: 180 cycles (< 168 + 56),

both approaches are comparable in terms of speed (on the Cell).

19 / 21

Comparison Generic Moduli

Generic 195-bit moduli

Bernstein et al. (SHARCS 2009), multi-stream, 189 cycles,

This work: multi-stream, 159 cycles for 192-bit generic moduli,

Scaling: (195
192)2 · 159 = 164 cycles.

Generic moduli

Bitsize #cycles

New MPM uMPM

192 159 1,188 877

224 237 1,188 877

256 300 1,188 877

384 719 2,092 1,610

512 1,560 3,275 2,700

20 / 21

Conclusions

We presented SIMD algorithms for Montgomery and schoolbook
multiplication and fast reduction.

Implementations are optimized for the Cell architecture.

Implementation results for moduli of size 192 to 521 bits show that
special primes are 1.4 to 2.5 times faster compared to generic primes.

Future work

Try Karatsuba multiplication

Further optimize Montgomery multiplication (almost finished)

21 / 21

	The Cell Broadband Engine

