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What are Trace Zero Varieties?

Proposed by Gerhard Frey in 1998.

Now in twelfth year.

Constructive application of Weil descent.

Ideal subject to be used as an excuse to go to interesting places

I 2007: SAGA (Papeete, Tahiti, French Polynesia)

I 2009: CHiLE (Frutillar, Lakes Region, Chile)

I 2009: Zurich (Google, Lindt & Sprüngli...)

I 2009: Berlin (Ich bin ein Berliner! i.e. I am a bismarck donut!)
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Why?
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Elliptic curve group law

P

Q

−(P +Q)

P+Q
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A genus two example

P1

P2

Q1

Q2Consider a curve of genus 2, and two

divisors (P1 + P2 − 2∞) and (Q1 +Q2 − 2∞).
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A genus two example

P1

P2

Q1

Q2There is only one cubic that

goes through these four points.
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A genus two example

P1

P2

Q1

Q2All the points on the intersection add

up to zero (informal algebraic geometry).
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A genus two example

P1

P2

Q1

Q2

−R1

−R2

Consider then the two still unnamed

point on this intersection.
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A genus two example

P1

P2

Q1

Q2

−R1

−R2

R1

R2

We reflect these two points across the x axis and get:

(P1 + P2 − 2∞) + (Q1 +Q2 − 2∞) =

= R1 + R2 − 2∞
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A genus three example

A genus 3 curve:

y2 = x7 + 1
2x

6 − 847
144x

5 − 325
144x

4 + 1763
192 x

3 + 403
144x

2 − 1667
576 x+

35
96
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A genus three example

P1

P2

P3

Q1

Q2

Q3

We want to add the divisors

D1 = P1 + P2 + P3 − 3∞ and D2 = Q1 +Q2 +Q3 − 3∞
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A genus three example

P1

P2

P3

Q1

Q2

Q3

−R1

−R2

−R3

−R4

One reduction is not enough

(we still have to reflect across the x axis)
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A genus three example

P1

P2

P3

Q1

Q2

Q3

−R1

−R2

−R3

−R4

S1

S2

S3

We obtain D1 +D2 = S1 + S2 + S3 − 3∞
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Complexity, complexity...

The complexity of curve arithmetic increases with genus
– difficult to find efficient formulas!

Can we find simpler alternatives?

Maybe recycling genus one (and two) arithmetic for
higher-dimensional varieties?

It turns out to be feasible, but field implementation
complexity will increase.

Bonus: Some nice endomorphisms for free!
Fast endomorphisms speed up arithmetic.

Who wins?

Roberto Avanzi : Trace Zero Varieties 9/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Complexity, complexity...

The complexity of curve arithmetic increases with genus
– difficult to find efficient formulas!

Can we find simpler alternatives?

Maybe recycling genus one (and two) arithmetic for
higher-dimensional varieties?

It turns out to be feasible, but field implementation
complexity will increase.

Bonus: Some nice endomorphisms for free!
Fast endomorphisms speed up arithmetic.

Who wins?

Roberto Avanzi : Trace Zero Varieties 9/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Complexity, complexity...

The complexity of curve arithmetic increases with genus
– difficult to find efficient formulas!

Can we find simpler alternatives?

Maybe recycling genus one (and two) arithmetic for
higher-dimensional varieties?

It turns out to be feasible, but field implementation
complexity will increase.

Bonus: Some nice endomorphisms for free!
Fast endomorphisms speed up arithmetic.

Who wins?

Roberto Avanzi : Trace Zero Varieties 9/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Complexity, complexity...

The complexity of curve arithmetic increases with genus
– difficult to find efficient formulas!

Can we find simpler alternatives?

Maybe recycling genus one (and two) arithmetic for
higher-dimensional varieties?

It turns out to be feasible, but field implementation
complexity will increase.

Bonus: Some nice endomorphisms for free!
Fast endomorphisms speed up arithmetic.

Who wins?

Roberto Avanzi : Trace Zero Varieties 9/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Complexity, complexity...

The complexity of curve arithmetic increases with genus
– difficult to find efficient formulas!

Can we find simpler alternatives?

Maybe recycling genus one (and two) arithmetic for
higher-dimensional varieties?

It turns out to be feasible, but field implementation
complexity will increase.

Bonus: Some nice endomorphisms for free!
Fast endomorphisms speed up arithmetic.

Who wins?

Roberto Avanzi : Trace Zero Varieties 9/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Complexity, complexity...

The complexity of curve arithmetic increases with genus
– difficult to find efficient formulas!

Can we find simpler alternatives?

Maybe recycling genus one (and two) arithmetic for
higher-dimensional varieties?

It turns out to be feasible, but field implementation
complexity will increase.

Bonus: Some nice endomorphisms for free!
Fast endomorphisms speed up arithmetic.

Who wins?

Roberto Avanzi : Trace Zero Varieties 9/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Outline

Curves

Trace Zero Varieties

Implementation of Trace Zero Varieties

Pairings

Supersingular Trace Zero Varieties
Pairing on Supersingular Abelian Varieties
A new efficient algorithm for the Tate pairing

Implementation of Supersingular Trace Zero Varieties
Pairings
Scalar Multiplication in Supersingular TZV

Security

Conclusions and future development

Roberto Avanzi : Trace Zero Varieties 10/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

TZV
Roberto Avanzi : Trace Zero Varieties 11/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

What are Trace Zero Varieties?

Start with genus g hyperelliptic curve C over Fq
Trace Zero (sub)Variety of C over a field ext of deg r:

I Subgroup of divisor class group Cl(C/Fqr) of C over Fqr

I Isomorphic to quotient group
Cl(C/Fqr)
Cl(C/Fq)

I Hence dimension over Fq is g(r− 1).
≈ qg(q−1) group elements.

I We shall speak of the big and small divisor class group and
say we work in the big group modulo the small one.
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Construction (From Elliptic Curves)

Fq E(Fq)

Fqr E(Fqr) σ ∈ EndE
P = (x,y) 7→ (xq,yq)

Tr := [1] + σ+ · · ·+ σr−1 ∈ EndE(FFFFqr)

Definition: The trace-zero subgroup of E(Fqr) is:

G := Er(FFFFq) = Ker Tr = {P ∈ E(FFFFqr) : TrP = O} ∼=
E(FFFFqr)

E(FFFFq)

(possibly factor out some r-torsion).
Now: “Recycle” group arithmetic from E.
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The Frobenius

Let Fqr , q = prime, 2d (or 3d), q > 5 and not a square.

C : y2+h(x)y = f(x), f,g ∈ Fq[x], deg f = 2g+1, degh 6 g

equation of non-singular genus g HEC.

Consider divisor class groups of Cl(C/Fq) and Cl(C/Fqr).

Frobenius automorphism of field extension, σ : x 7→ xq, induces
endomorphism of big divisor class group, where the elements of the
small divisor class group are fixed.

On elliptic curves: (x,y) 7→ (σx,σy).
Mumford representation: [U,V] 7→ [σU,σV] in Cl(C/Fqr) .

Roberto Avanzi : Trace Zero Varieties 14/ 56
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Frobenius and Group Order

Characteristic polynomial

P(T) = T2g+a1T
2g−1+ · · ·+agTg+ · · ·+a1qg−1T +qg ∈ Z[T ] ,

Let τ1, ..., τ2g be the roots. Group order over any extension field

|Cl(C/Fqr)| =
2g∏

i=1

(1 − τri) .

If r = 1, this is P(1). For r > 1, easy to make explicit.

Point counting easier (esp. for q prime), since we have to compute
characteristic polynomial for smaller q than with elliptic curves.
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Which cases

For security and practical reasons we limit ourselves to:

I g = 1 with r = 3 , dimension 2 over Fq ,

I g = 1 with r = 5 , dimension 4 over Fq ,

I g = 2 with r = 3 , dimension 4 over Fq .

We shall return later to security considerations.
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Trouble Ahead

Let C be a HEC of genus g over Fq and H be a HEC of genus g
over Fq ′ , with q ′ ≈ qr−1.

Then |Cl(H/Fq ′)| ≈ q(r−1)g, and

∣∣∣∣Cl(C/Fqr)
Cl(C/Fq)

∣∣∣∣ ≈ q(r−1)g.

Hence Cl(H/Fq ′) has ≈ as many points as
Cl(C/Fqr)
Cl(C/Fq)

.

Suppose both orders are cryptographically good (almost primes).

We can compute on both using the same group laws but the field
in the second case will be larger.

! Lower performance? How can we save the day?
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Frobenius and Scalar Multiplication

Simple scalar multiplication

I Compute [m]P m integer, P point
I Double-and-add algorithms logm doublings
I Windowing, multiple bases, give incremental improvements.

Use Frobenius endomorphism σ to speed up scalar multiplication

I σ(P) = [s]P s depends on the curve
I For r = 3 write [m]P = [m0 +m1s]P m0,m1 ≈

√
m

I Compute [m0]P + [m1]σ(P) concurrently almost half dbls
I For r = 5 split scalar in four parts ≈ 4

√
m

I Can this be done? Yes – more details follow.
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Expand to base of “σ”?

Use subgroup G0 of “large” prime order (small index) ` of G.
σG0 = G0 ⇒ exists integer s s.t. sg = σg for all g ∈ G0.

Why don’t we write m =
∑
mis

i and compute mg as
∑
miσ

i(g)?

We can give s explicitly:

I for g = 1, r = 3 : s =
q− 1

1 − a1
mod `

I for g = 1, r = 5 : s =
q2 − q− a21q+ a1q+ 1

q− 2a1q+ a31 − a
2
1 + a1 − 1

mod `

I for g = 2, r = 3 : s =
q2 − a2 + a1
a2 − a1q− 1

mod ` .

! Problem: size of s usually around `.
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Scalar multiplication: Scalar Splitting

Theorem. For the three cases which we consider, there exists an
efficient technique for expressing a scalar m in the form

m ≡
r−2∑

i=0

mis
i mod ` where mi = O(q

g). We have:

I If g = 1, r = 3, then |mi| < 4q for q > 79.

I Similar bounds for other two cases.

Then compute mg as
r−2∑

i=0

miσ
i(g) ( which is =

r−2∑

i=0

mis
ig )

Use multi-exponentiation techniques, windowing, interleaving.
As many additions as in double-and-add for original m, but only

about
1

r− 1
as many doublings.
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Sketch of Proof for g = 1 and r = 3
Using P(s) ≡ 0 mod ` we obtain

m ≡ n0 +
m− n0

q
(−a1s− s

2) mod ` with |n0| <
q

2
.

Expand again: i.e. write n1 ≡ −a1
m−n0
q mod ` with |n1| < q/2, then

m ≡ n0 +
m−n0
q (−a1s− s

2)

≡ n0 + n1s+
−a1

m−n0
q −n1

q (−a1s
2 − s3) − m−n0

q s2 mod ` .

Use s2 + s+ 1 ≡ 0 mod ` to replace s2 and s3. We obtain m0,m1 s.t.

m ≡ m0 +m1s mod ` .

Easy to prove that |m0| and |m1| < 4q for all q > 73. �

(It does really cost just a few tens of multiplications mod q.)
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Scalar multiplication: Random Multi-Scalars

Theorem. Let g be a generator of G0. Then the Br−1 elements

m0g+m1σg+ · · ·+mr−2σ
r−2(g)

are pairwise distinct for 0 6 mi < B, where:

1. for g = 1, r = 3 ,B := min
{

`
q−a1

, q−1
gcd(q−1,a1−1)

}
= O(q) ;

2. for g = 1, r = 5 ,B := a more complicated expression = O(q) ;

3. for g = 2, r = 3 ,B := something even worse = O(q2) .

Then pick the mi at random, use multi-exponentiation.

!
Problem: B can be much smaller than q.
Scalar splitting preferred method in even characteristic.
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Implementation of Finite Fields

Roberto Avanzi : Trace Zero Varieties 22/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Arithmetic in Fq

I For q = 2d:

I Efficient new implementation for 32 and 64 bit machines.

I 32 bit version (A. & Thériault) presented at WAIFI 2007.

I Includes also square roots, new algorithms for trace and
half-trace computations, and new families of polynomials for
very fast square root computation (A. SAC 2007).

I For q = p prime:

I New version of MONGO with x86-64 support.

I 32 and 64 bit code.

I All fundamental operations hand optimised in assembler.

I q = 3d is work in progress.
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For instance: performance of binary fields on 32-bit cpu

32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

** *
**
*** ** *

** *
**

*
* ** * * *

*
*

*
*
*

*
*

*

◦ ◦ ◦ ◦◦
◦ ◦◦ ◦ ◦ ◦

◦
◦

◦
◦
◦

◦

◦

◦

◦ ◦ ◦

◦ ◦

◦

◦
◦

◦
◦

◦ ◦

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

* = ad-hoc routines for each field
◦ = generic state-of-the-art routines

= quadratic complexity
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Approach of F2d library

I Library written in C.

I For GF(2) arithmetic only logic and shift operations.

I Purpose: make fairer comparisons for more complex objects,
not pure performance. Yet also performance is there.

I Portable. Hence, no vector extensions – the results would be
similar, only with bigger granularity.

I Provide as many fields as possible (15 fields hand optimised).

I wc -l *.c *.h outputs: 47,843 lines of code.

I But, some parts generated automatically.

Roberto Avanzi : Trace Zero Varieties 23/ 56
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Multiplications, and Multiplications in F2d

I Optimal routines for each operand size.

I Multiplication - Lopez-Dahab’s comb method.

I For extensions of F2d : As degrees increase, we find more
products of many elements time a (locally) fixed element.

I Separate precomputation from shift-and-xor loop in
Lopez-Dahab, reuse them for several multiplications.
Call this serial multiplications.

I 2 muls cost ≈ 1.50 – 1.90 single muls (1.75 avg.)
I 3 muls cost ≈ 2.05 – 2.50 single muls (2.35 avg.)
I 4 muls cost ≈ 2.55 – 3.25 single muls (3.00 avg.)
I 5 muls cost ≈ 3.05 – 4.00 single muls (3.65 avg.)

I Adapt comb width to amount of mults to be performed.
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Example: F283 on 64-bit cpu
void bf_mul_83( limb_t * r , const limb_t * a , const limb_t * b )

{

int i, idx;

limb_t tab[16][2];

limb_t r2, r1, r0;

/* Compute the entries for the table tab[16][2] */

for (i = 0; i < 16; i++) tab[i] = i * a; /* view i as a polynomial over GF(2) */

/* Do the actual multiplication */

idx = b[0] >> 60; [r0,r1] = tab[idx][0,1]; r2 = 0; r3 = 0;

for (i = 56; i >= 20; i -= 4) {

[r1,r0] <<= 4; /* shift left by 4 bits */

idx = (b[0] >> i) & 0xf; [r0,r1] ^= tab[idx][0,1]; /* accumulate */

}

for ( ; i >= 0; i -= 4) {

[r2,r1,r0] <<= 4; /* shift left by 4 bits */

idx = (b[0] >> i) & 0xf; [r0,r1] ^= tab[idx][0,1]; /* accumulate */

idx = (b[1] >> i) & 0xf; [r1,r2] ^= tab[idx][0,1]; /* accumulate */

}

bf_mod_83(r2,r1,r0); /* reduce */

r[1] = r1; r[0] = r0; /* write back */

}
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And MONGO ?

If you have seen the output of mpfq or some of the innards of
Miracl, you get the idea. But code original.

For intel compatible CPUs there are hand crafted asm sections, but
some generic code is also provided.

For (n+ 1
2)-limbs moduli, some time and memory accesses are

saved by taking this into account (also the REDC is defined in a
non-standard way).

Important feature: delayed reduction. Also in Montgomery
representation you can add unreduced products to each other.
If there is an overflow into a third register, we can still subtract the
modulus and the final result will be correct (see A. CHES 2004).
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Arithmetic in Extension Fields I
Example: r = 3 (r = 5 is just a bit different), binary field.

Fq3 = Fq[α], where α is a root of X3 + X+ 1 irreducible, q = 2d.
(For r = 5 use X5 + X2 + 1 or X5 + X3 + 1.)

Elements of Fq3 represented by polynomials.

Multiplication/Squaring Karatsuba-like

(a0 + a1α+ a2α
2)(b0 + b1α+ b2α

2) =

= a0b0 +
(
(a0 + a1)(b0 + b1) − a0b0 − a1b1

)
α

+
(
(a0 + a2)(b0 + b2) − a0b0 − a2b2 + a1b1

)
α2

+
(
(a1 + a2)(b1 + b2) − a1b1 − a2b2

)
α3 + (a2b2)α

4 .
Now observe

α3 = α+ 1 and α4 = α2 + α .

6 Mults in Fq and a few adds (5-mult Toom-Cook seemed not faster for
our field sizes at first. Giving now a second try with Bodrato.)
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Arithmetic in Extension Fields II

Multiplication of elements of Fpr split into multiplication of the
corresponding polynomials in X and then reduction modulo Xr − c
with root α and c small integer (2, 3 or 5).

Multiplication in degree r = 3 extensions as before

(a0 + a1α+ a2α
2)(b0 + b1α+ b2α

2) =

= a0b0 +
(
(a0 + a1)(b0 + b1) − a0b0 − a1b1

)
α

+
(
(a0 + a2)(b0 + b2) − a0b0 − a2b2 + a1b1

)
α2

+
(
(a1 + a2)(b1 + b2) − a1b1 − a2b2

)
α3
︸︷︷︸
c

+(a2b2) α
4

︸︷︷︸
cα

.

By delaying all modular reductions and using incomplete reduction
(A. and Mihailescu SAC 2003) we need just 3 modular reductions.

Toom-Cook with just 5 Fp-mults not more efficient (because of the
small divisions involved and the increased number of mod reds).
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Arithmetic in Extension Fields III
To compute the inverse of a ∈ Fq3 we use linear algebra.

Let b = b0+b1α+b2α
2 (b0,b1,b2 ∈ Fq) = a−1 with a = a0+a1α+a2α

2 ∈ Fq3 .
Now ab = 1, w.r.t. basis {1,α,α2} can be written as:a0 a2 a1

a1 a0 + a2 a1 + a2
a2 a1 a0 + a2


︸ ︷︷ ︸

A

b0b1
b2

 =

1
0
0

 .

b0b1
b2

 =

a0 a2 a1
a1 a0 + a2 a1 + a2
a2 a1 a0 + a2

−1 1
0
0

 = (detA)−1

a20 + a21 + a22 + a1a2a22 + a0a1
a21 + a

2
2 + a0a2


where detA = (a0(a

2
0 + a

2
1 + a

2
2 + a1a2) + a

3
1 + a2(a1a2 + a

2
2))

We need only one inversion (that of detA).

Inversion in Fq3 is fast. In fact, affine coordinates are the fastest over binary fields.

The case r = 5 uses Itoh-Tsuji inversion. Very fast.
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Choice of Coordinate Systems
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More Details

Choice of coordinate systems:

I For curves over prime fields:

I Mixed coordinates for EC (order prime, no Edwards, but
performance very close), and HEC in genus 2 (Lange’s
collection of formulas).

I Affine, Projective, Jacobian (+ modified) and compressed
Jacobian (+ modified) for TZV.

I For curves over binary fields:

I In F2d inversion costs ≈ 5-7 multiplications, hence we are
using affine coordinates for EC, HEC.
For genus 2 HEC use Lange-Stevens wicked doubling.

I In F2rd inversion costs ≈ 3 multiplications.
Affine is thus a no brainer for TZV.
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Compressed Jacobian Coordinates

The equation of E(Fpr) in Compressed Jacobian Coordinates is

Y2 = X3 + a4Xz
4 + a6z

6 .

[X : Y : z] ∈ Fpr × Fpr × Fp corresponds to affine point (X/z2, Y/z3).

Due to Hoshino, Kobayashi and Aoki (Vietcrypt 2006).
We use it for TZV over prime fields.

Many multiplications in explicit formulae for Jacobian coordinates become
multiplications in Fp or multiplications of elements of Fpr by elements of Fp.

We need pseudo-inversion, essentially almost-inverse by another name.
We compute the inverse in Fpr up to a constant in Fp – essentially saving
the inversion in Fp.

We also “compress” Cohen’s modified Jacobian coordinates (keep a4z
4).

Open question: “compressed” Edwards?
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Performance Results: Scalar Multiplication

Timings (µsec) of ordinary binary curves and TZV at 160 bit level, 32 bit code

EC TZV g1 TZV g1 HEC g2 TZV g2
d(×r) = 163 83× 3 41× 5 83 41× 3

2 3.757 3.652 3.483 1.660 2.329
+ 3.825 3.652 3.483 3.513 6.664

o
p

er
at

io
n

σ – 0.029 0.032 – 0.036

bin 1130.5 961.2 872.5 640.4 960.2
NAF 1029.3 869.1 784.5 545.3 779.2

fu
ll

sc
al

ar

w-NAF 933.1 788.8 709.2 466.6 639.7

bin – 569.2 427.4 – 601.7
NAF – 517.2 349.0 – 523.3
JSF – 505.4 – – 496.2

sp
lit

sc
al

ar

w-NAF – 467.6 278.5 – 445.5

2 Ghz Quad Core Xeon running 32-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of ordinary binary curves and TZV at 192 bit level, 32 bit code

EC TZV g1 TZV g1 HEC g2 TZV g2
d(×r) = 191 97× 3 47× 5 97 47× 3

2 4.781 4.401 3.921 2.010 2.519
+ 4.817 4.446 3.913 4.132 7.188

o
p

er
at

io
n

σ – 0.033 0.036 – 0.036

bin 1694.2 1487.0 1119.2 968.9 1182.3
NAF 1530.2 1354.8 1020.4 820.1 959.6

fu
ll

sc
al

ar

w-NAF 1380.1 1209.6 913.1 689.6 786.1

bin – 880.6 582.7 – 777.0
NAF – 787.0 439.7 – 646.8
JSF – 767.7 – – 609.7

sp
lit

sc
al

ar

w-NAF – 712.9 347.1 – 538.5

2 Ghz Quad Core Xeon running 32-bit code

Roberto Avanzi : Trace Zero Varieties 30/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Performance Results: Scalar Multiplication

Timings (µsec) of ordinary binary curves and TZV at 160 bit level, 64 bit code

EC TZV g1 TZV g1 HEC g2 TZV g2
d(×r) = 163 83× 3 41× 5 83 41× 3

2 2.267 2.732 2.327 1.227 1.729
+ 2.316 2.742 2.351 2.577 4.485

o
p

er
at

io
n

σ – 0.019 0.019 – 0.020

bin 704.4 734.5 603.5 467.4 680.1
NAF 618.4 649.5 534.7 402.8 560.8

fu
ll

sc
al

ar

w-NAF 562.7 588.0 481.9 340.6 461.6

bin – 425.1 312.2 – 431.7
NAF – 387.3 230.5 – 375.2
JSF – 373.1 – – 356.7

sp
lit

sc
al

ar

w-NAF – 349.5 188.9 – 318.1

2 Ghz Quad Core Xeon running 64-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of ordinary binary curves and TZV at 192 bit level, 64 bit code

EC TZV g1 TZV g1 HEC g2 TZV g2
d(×r) = 191 97× 3 47× 5 97 47× 3

2 2.714 3.149 2.686 1.415 1.955
+ 2.714 3.160 2.713 2.927 5.125

o
p

er
at

io
n

σ – 0.019 0.021 – 0.020

bin 975.6 987.1 795.2 632.6 868.7
NAF 868.6 888.1 706.9 531.5 714.9

fu
ll

sc
al

ar

w-NAF 783.8 800.0 637.4 450.5 590.7

bin – 583.8 401.8 – 553.6
NAF – 522.5 319.7 – 480.1
JSF – 496.7 – – 455.9

sp
lit

sc
al

ar

w-NAF – 467.7 252.4 – 403.6

2 Ghz Quad Core Xeon running 64-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of curves and TZV over prime fields and TZV at 160 bit level, 32 bit code

EC HEC g2 HEC g3 TZV TZV TZV g2
log2 p(×r) = 160 80 54 80× 3 40× 5 40× 3

bin 1106.7 913.8 1203.8 660.3 644.8 1586.0
NAF 974.6 809.1 1035.4 616.4 617.8 1473.6
JSF – – – 563.4 – 1274.8

affi
n

e
co

or
d

in
at

es

w-NAF 893.3 733.6 930.8 539.0 481.3 1223.1

bin 529.2 833.7 – 568.8 668.3 –
NAF 442.0 739.5 – 529.5 637.8 –
JSF – – – 479.8 – –

o
th

er
co

or
d

in
at

es

w-NAF 400.1 672.9 – 467.6 491.6 –

scalar always split for TZV

2 Ghz Quad Core Xeon running 32-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of curves and TZV over prime fields and TZV at 192 bit level, 32 bit code

EC HEC g2 HEC g3 TZV TZV TZV g2
log2 p(×r) = 192 96 64 96× 3 48× 5 48× 3

bin 1949.2 1163.3 1524.6 924.2 807.0 1926.5
NAF 1740.9 1043.4 1370.9 850.5 768.3 1763.1
JSF – – – 788.0 – 1559.2

affi
n

e
co

or
d

in
at

es

w-NAF 1569.8 944.2 1238.9 750.8 586.9 1531.8

bin 870.4 1065.6 – 824.5 810.0 –
NAF 742.5 948.1 – 754.7 769.5 –
JSF – – – 692.3 – –

o
th

er
co

or
d

in
at

es

w-NAF 655.3 849.5 – 660.8 584.2 –

scalar always split for TZV

2 Ghz Quad Core Xeon running 32-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of curves and TZV over prime fields and TZV at 256 bit level, 32 bit code

EC HEC g2 HEC g3 TZV TZV TZV g2
log2 p(×r) = 256 128 84 128× 3 64× 5 64× 3

bin 4365.3 2453.8 3210.9 1920.6 1166.1 2726.3
NAF 3892.8 2199.5 2850.2 1779.8 1097.4 2516.5
JSF – – – 1638.1 – 2572.6

affi
n

e
co

or
d

in
at

es

w-NAF 3486.6 1974.3 2561.1 1541.0 831.2 2192.5

bin 1977.4 2151.6 – 1738.4 1175.0 –
NAF 1674.2 1910.6 – 1638.9 1102.7 –
JSF – – – 1500.9 – –

o
th

er
co

or
d

in
at

es

w-NAF 1452.7 1712.6 – 1397.6 826.1 –

scalar always split for TZV

2 Ghz Quad Core Xeon running 32-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of curves and TZV over prime fields and TZV at 160 bit level, 64 bit code

EC HEC g2 HEC g3 TZV TZV TZV g2
log2 p(×r) = 160 80 54 80× 3 40× 5 40× 3

bin 631.6 501.2 446.1 360.7 280.7 660.9
NAF 567.3 428.7 399.2 338.9 269.9 617.1
JSF – – – 310.2 – 565.8

affi
n

e
co

or
d

in
at

es

w-NAF 514.8 387.2 366.9 300.6 215.0 505.8

bin 197.2 422.8 – 303.8 246.5 –
NAF 167.6 377.9 – 286.6 238.1 –
JSF – – – 259.3 – –

o
th

er
co

or
d

in
at

es

w-NAF 155.8 343.8 – 258.5 191.0 –

scalar always split for TZV

2 Ghz Quad Core Xeon running 64-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of curves and TZV over prime fields and TZV at 192 bit level, 64 bit code

EC HEC g2 HEC g3 TZV TZV TZV g2
log2 p(×r) = 192 96 64 96× 3 48× 5 48× 3

bin 920.4 628.0 619.0 462.2 347.4 832.3
NAF 804.4 547.1 556.3 434.7 334.4 766.1
JSF – – – 397.9 – 723.1

affi
n

e
co

or
d

in
at

es

w-NAF 729.8 495.8 505.4 385.9 258.8 641.0

bin 295.5 502.2 – 365.2 312.1 –
NAF 251.4 446.4 – 342.4 288.7 –
JSF – – – 311.3 – –

o
th

er
co

or
d

in
at

es

w-NAF 232.0 403.5 – 301.6 224.1 –

scalar always split for TZV

2 Ghz Quad Core Xeon running 64-bit code
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Performance Results: Scalar Multiplication

Timings (µsec) of curves and TZV over prime fields and TZV at 256 bit level, 64 bit code

EC HEC g2 HEC g3 TZV TZV TZV g2
log2 p(×r) = 256 128 84 128× 3 64× 5 64× 3

bin 1891.4 1043.4 2098.7 812.4 628.9 1401.6
NAF 1700.9 901.2 1775.6 757.7 586.0 1307.9
JSF – – – 696.0 – 1182.1

affi
n

e
co

or
d

in
at

es

w-NAF 1523.2 773.8 1537.3 654.9 431.7 1015.0

bin 565.5 756.0 – 600.7 543.1 –
NAF 486.6 640.9 – 560.6 508.2 –
JSF – – – 511.9 – –

o
th

er
co

or
d

in
at

es

w-NAF 435.8 568.9 – 491.2 401.8 –

scalar always split for TZV

2 Ghz Quad Core Xeon running 64-bit code
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Pairing in cryptography

A (no longer so) new tool for cryptographers:

I e : G1 ×G2 → GT
I Bilinear: e(aP,bQ) = e(P,Q)ab

I Non degenerate: there exists P,Q: e(P,Q) 6= 1
I Efficiently computable
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Why Pairing on Trace Zero Varieties?

Main observation from Karl Rubin and Alice Silverberg, 2002:

I Allow to obtain higher MOV security per bit than EC

I Boost the security parameter by a factor r/φ(r)

I Application to pairing-based cryptography...

Supersingular EC over Fq, q = 2d

E : y2 + y = x3 + x+ b , b ∈ F2

I #E = 2d ± 2(d+1)/2 + 1

I embedding degree k = 4

I 1200-bit security: take d ≈ 1200/k ≈ 307
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Why Pairing on Trace Zero Varieties?

Main observation from Karl Rubin and Alice Silverberg, 2002:

I Allow to obtain higher MOV security per bit than EC

I Boost the security parameter by a factor r/φ(r)

I Application to pairing-based cryptography...

Supersingular TZV over Fq, q = 2d

E : y2 + y = x3 + x+ b , b ∈ F2

I #E3 = 22d ∓ 2(3d+1)/2 + 2d ∓ 2(d+1)/2 + 1

I embedding degree k = 3 · 4 = 12

I 1200-bit security: take d ≈ 1200/12 ≈ 103
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How to compute a pairing?

Compute fP(Q):

I Recall fP ∈ Fq(E), with divisor ` (P) − `O

I Rational function of degree ≈ `

I Storing coefficients, evaluate it: unfeasible!
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Miller function

Idea: combine simple functions with small support to “build” fP.

Miller function: is a function fn,P ∈ Fq(E) with divisor:

(fn,P) = n (P) − ([n]P) − (n− 1)O

Properties:

1. fλ+µ,P = fλ,P · fµ,P · l[λ]P,[µ]Pv[λ+µ]P

2. fλµ,P = fµλ,P · fµ,[λ]P




fn+1,P = fn,P ·

=1
f1,P · l[n]P,Pv[n+1]P

f2n,P = f2n,P ·
l[n]P,[n]P
v[2n]P

where lP,P ′ is the line through P and P ′

v[λ+µ]P is the vertical line through [λ+ µ]P

Further: directly compute evaluation at Q.

Note that v[λ+µ]P(Q) = x(Q) − x([λ+ µ]P).
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Miller’s algorithm (elliptic curves)

Input: P,Q ∈ E[`] , N 3 n =
∑L
i=0 ni2

i,
with nj = 0, 1.

Output: fn,P(Q)

T ← P , f← 11

for j = L− 1 downto 0 do2

f← f2 · lT ,T (Q) /v[2]T (Q)3

T ← [2]T4

if nj = 1 then5

f← f · lT ,P(Q) /vT+P(Q)6

T ← T + P7

endif8

endfor9

return f10
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Many Improvements...

I Barreto et. al. [02–07]: η and ηT with supersingular (H)EC

I Rubin & Silverberg [02–08]: supersingular AV (notably TZV)

I Scott [05]: An EC endowed with an efficient endomorphism

I Hess et. al. [06]: Ate and twisted–Ate with ordinary (H)EC

I Vercauteren [08]: Optimal pairings

I Hess [08]: Pairing lattices

I ... and many more ...
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Towards a new algorithm for the Tate pairing

Recall:

Tate pairing

t(P,Q) = fP(Q)
qk−1
`

I fP(Q) = f`,P(Q)
I Miller’s algorithm to compute fn,P(Q)

Remark: t(P,Q) = f`,P(Q)
qk−1
` = fN,P(Q)

qk−1
N

I with ` | N | qk − 1
I N = #Er = O(q

2), lower Hamming weigth than ` in char 2,3
I ηT pairing (Barreto et. al.) N = O(q3/2)
I Promise: N = q
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One figure says it all!

r

k rk

P
Q̃

Q e(P,Q)
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The main result

Theorem (Theorem 2)

Let Er be a supersingular TZV. Suppose k is even and the
distortion map allows for denominator elimination.
Then the Tate pairing can be computed as:

t(P,Q) =

(
r−1∏

i=0

fq,P (Q
σi)q

i(r+1)

)Ma
r q

a−1

,

where σi = σ
ij, a = k/2 and M = qk/2 − 1.
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The new algorithm

Formula for t(P,Q):(
r−1∏

i=0

fq,P (Q
σi)q

i(r+1)

)Ma
r q

a−1

Parallelization:

I r processors
I loop on q

Serial version:

I Save intermediate T ’s
I Store O(logq) points

or interleave

Input: P ∈ G1 , Q ∈ G2

Output: tTZV(P,Q)

f← 11

for i = 0 to r− 1 do2

f← f ·
(
fq,P (Q

σi)
)qi(r+1)

3

endfor4

f← (f
a
r )
qa−1

5

return fM+1/f6

Without line 5: still bilinear
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The main result (proof)

Tate pairing

t(P,Q) = fP(Q)
qk−1
`

(
r−1∏

i=0

fq,P (Q
σi)q

i(r+1)

)Ma
r q

a−1

1. Arithmetic of the Miller function

2. Use of the qr-Frobenius π

3. Use of the q-Frobenius σ
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Endomorphisms and Miller’s function

If φ ∈ EndE is purely inseparable of degree T ,

fn,φ(P) ◦ φ = fTn,P

Dual of qr-Frobenius π

Let π̂ be the dual of the qr-Frobenius π

I purely inseparable of degree qr (supersingular curves)

I P ∈ Ker(π− [1]) π̂(P) = [qr]P

I Q ∈ Ker(π− [qr]) π̂(Q) = Q

fn,[qr]P(Q) = fn,π̂P(π̂Q) = fn,π̂P ◦ π̂(Q) = fn,P(Q)q
r
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Endomorphisms and Miller’s function

If φ ∈ EndE is purely inseparable of degree T ,

fn,φ(P) ◦ φ = fTn,P

Dual of q-Frobenius σ

Let σ̂ be the dual of the q-Frobenius σ.

I purely inseparable of degree q (supersingular curves)

I P ∈ Ker(π− [1]) σ̂(P) = [q/s]P

I Q ∈ Ker(π− [qr]) σ̂(Q) = [q1−Σ]Q (Σ = r2+1
2 )

fn,[q]P(Q) = fn,σ̂r+2(P)

(
(σ̂r+2 ◦ σj)(Q)

)
=

= fn,σ̂r+2(P) ◦ σ̂r+2
(
Qσ

j
)
= fn,P

(
Qσ

j
)qr+2
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The main result (proof)

Tate pairing

t(P,Q) = fP(Q)
qk−1
`

(
r−1∏

i=0

fq,P (Q
σi)q

i(r+1)

)Ma
r q

a−1

1. Arithmetic of the Miller’s function

2. Use of the qr-Frobenius π fn,[qr]P(Q) = fn,P(Q)q
r

3. Use of the q-Frobenius σ
fn,[q]P(Q) = fn,P

(
Qσ

j
)qr+2
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)Ma
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1. Arithmetic of the Miller’s function

2. Use of the qr-Frobenius π fn,[qr]P(Q) = fn,P(Q)q
r

3. Use of the q-Frobenius σ
fn,[q]P(Q) = fn,P

(
Qσ

j
)qr+2

t(P,Q) = f`,P(Q)(q
k−1)/` = fqk/2+1,P(Q)q

k/2−1 = fqk/2,P(Q)q
k/2−1 = fqa,P(Q)M

k even: qk − 1 = (qk/2 − 1)(qk/2 + 1); k minimal
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The main result (proof)

Tate pairing

t(P,Q) = fP(Q)
qk−1
`

(
r−1∏

i=0

fq,P (Q
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)Ma
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1. Arithmetic of the Miller’s function

2. Use of the qr-Frobenius π fn,[qr]P(Q) = fn,P(Q)q
r

3. Use of the q-Frobenius σ
fn,[q]P(Q) = fn,P

(
Qσ

j
)qr+2

t(P,Q) = f`,P(Q)(q
k−1)/` = fqk/2+1,P(Q)q

k/2−1 = fqk/2,P(Q)q
k/2−1 = fqa,P(Q)M

fN,P(Q) = fN−1,P(Q) · f1,P(Q) · l[N−1]P,P(Q)/v[N]P(Q)

I l[N−1]P,P is the vertical line through P (denom. elimination)
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2. Use of the qr-Frobenius π fn,[qr]P(Q) = fn,P(Q)q
r

3. Use of the q-Frobenius σ
fn,[q]P(Q) = fn,P

(
Qσ

j
)qr+2

fqa,P(Q)M =
(
fq,P(Q)q

a−1 · fq,[q]P(Q)q
a−2 · · · fq,[qa−1]P(Q)

)M
=

=
(
fq,P(Q)

a
r q

(a−1) · fq,[q]P(Q)
a
r q

(a−2) · · · fq,[qr−1]P(Q)
a
r q

(a−r)
)M

=

=
(
fq,P(Q) · fq,[q]P(Q)q

−1 · · · fq,[qr−1]P(Q)q
−(r−1)

)Ma
r q

a−1
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fq,[qi]P (Q)q
−i

)Ma
r q

a−1

=

(
r−1∏

i=0

fq,P (Q
σi)q

i(r+1)

)Ma
r q

a−1
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Table: Pairings on (µsec) EC and TZV (r = 3) over F2d (32 bit)

EC TZV EC TZV EC TZV
Pairing Loop Length d = 239 d = 79 d = 307 d = 103 d = 457 d = 157

tN N = O(q2) 1280.8 840.5 2231.7 1524.1 9006.5 3914.8
η q3 1226.9 1168.1 2141.9 2123.1 8589.1 5610.5

ηT 2(3d+1)/2 − 1 667.7 633.3 1163.0 1139.7 4692.5 2960.4

aopt 2(3d−1)/2 685.2 625.4 1185.5 1138.5 4889.9 2886.9
η (HLV) q3 1197.8 1239.2 2376.9 2359.6 8159.3 5757.0

ηT (HLV) 2(3d+1)/2 − 1 656.1 609.0 1120.2 1097.8 4403.5 2864.4
tTZV 3× q – 1062.6 – 1967.1 – 5086.4
tσ 2× s – 1336.8 – 2421.4 – 6028.8
tTZV (Par) 3× q – 435.0 – 807.2 – 1959.1
tE3 (Par) 2×O(q) – 501.0 – 867.5 – 2154.6

2 Ghz Quad Core Xeon running 32-bit code
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Table: Pairings (µsec) on EC and TZV (r = 3) over F2d (64 bit)

EC TZV EC TZV EC TZV
Pairing Loop Length d = 239 d = 79 d = 307 d = 103 d = 457 d = 157

tN N = O(q2) 617.9 699.1 1058.6 1111.4 3587.8 2816.9
η q3 580.0 949.1 1001.3 1527.4 3455.2 4028.2

ηT 2(3d+1)/2 − 1 326.2 526.8 563.6 861.5 1849.6 2157.4

aopt 2(3d−1)/2 333.9 512.9 573.6 817.4 1875.7 2104.4
η (HLV) q3 634.9 1022.3 1056.0 1615.8 3737.1 4066.3

ηT (HLV) 2(3d+1)/2 − 1 309.6 495.0 521.2 788.9 1771.1 2058.8
tTZV 3× q – 860.8 – 1392.1 – 3710.9
tσ 2× s – 1114.4 – 1702.9 – 4374.2
tTZV (Par) 3× q – 343.5 – 547.8 – 1424.9
tE3 (Par) 2×O(q) – 415.7 – 638.0 – 1565.8

2 Ghz Quad Core Xeon running 64-bit code
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Table: Scalar multiplication (µsec) on SS EC and TZV (r = 3) over F2d

(32 bit)

EC TZV EC TZV EC TZV
d = 239 d = 79 d = 307 d = 103 d = 457 d = 157

2 0.193 0.228 0.309 0.286 1.140 0.555
+ 8.013 3.341 12.515 4.709 27.510 8.254

o
p

er
at

io
n

σ – 0.029 – 0.033 – 0.039

bin 913.0 320.5 1720.4 509.1 6865.5 924.3
NAF 673.9 235.0 1218.6 363.6 4884.6 588.2

fu
ll

sc
al

ar

w-NAF 391.3 149.5 716.8 218.1 2871.9 420.1

bin – 277.8 – 363.6 – 756.3
NAF – 213.7 – 290.9 – 672.2
JSF – 213.7 – 254.5 – 504.2

sp
lit

sc
al

ar

w-NAF – 170.9 – 218.1 – 420.1

2 Ghz Quad Core Xeon running 32-bit code
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Table: Scalar multiplication (µsec) on SS EC and TZV (r = 3) over F2d

(64 bit)

EC TZV EC TZV EC TZV
d = 239 d = 79 d = 307 d = 103 d = 457 d = 157

2 0.167 0.236 0.259 0.280 0.341 0.421
+ 4.143 2.619 6.258 3.273 14.590 5.832

o
p

er
at

io
n

σ – 0.019 – 0.019 – 0.029

bin 522.1 226.8 1062.8 396.5 3747.0 734.7
NAF 369.8 164.7 725.3 280.1 2442.3 532.0

fu
ll

sc
al

ar

w-NAF 232.8 117.6 445.2 185.5 1408.1 346.2

bin – 164.7 – 283.7 – 532.0
NAF – 128.3 – 225.5 – 422.2
JSF – 119.8 – 203.7 – 388.5

sp
lit

sc
al

ar

w-NAF – 102.7 – 170.9 – 312.5

2 Ghz Quad Core Xeon running 64-bit code
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Security of Trace Zero Varieties

We now turn out attention to the security of TZV.

The case g = 1, r = 3 is simple: Dimension of TZV is 2. An
attacker could hope for it to be contained in the Jacobian of a
curve of genus at least 2.

This means that the best known attack has complexity not worse
than O(q) and this meets the square-root bound.
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The Fourth Dimension

Let us consider now the cases g = 1, r = 5 and g = 2, r = 3, i.e.
4-dimensional TZVs.

By the arguments by Lange; A. & Lange; Diem & Scholten; and
under the (pessimistic) assumption that these results can also be
adapted to fields of characteristic 2, we cannot exclude that G is
contained in the Jacobian of a hyperelliptic curve of genus 6.

In this case attacks have complexity Õ(q5/3), which means that
security is reduced by at most one sixth of the bit length (using
double LP IC).
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The Fourth Dimension

Let us consider now the cases g = 1, r = 5 and g = 2, r = 3, i.e.
4-dimensional TZVs.

Even worse, the group G may be also contained in the Jacobian of
a non-hyperelliptic curve (via Smith’s attack), the worst case being
a C3,5 curve. In this case one may want to apply Diem’s attack on
planar curves, that has a complexity Õ(q4/3) (with probability
O(1/q2) of actually finding a planar model).

Hence, for the DLP in the TZV the security is in fact reduced, but
for pairing applications we are using larger groups anyway.

Roberto Avanzi : Trace Zero Varieties 53/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

The Fourth Dimension

Let us consider now the cases g = 1, r = 5 and g = 2, r = 3, i.e.
4-dimensional TZVs.

Assume the Õ(q4/3) attacks is feasible.

Let us consider a (SS) TZV E5(F289). Pairing lands in a 1780-bit
field, offers about 160 bit EC security (broken in O(280) steps
remember Coppersmith’s attack has complexity Lq[

1
3 , 1.4]).

The order of E5(F289) has 356 bits (can use a small subgroup).
The attack has complexity Õ

(
(289)4/3) ≈ Õ(2118).

The complexity of attack is still more than complexity of attacking
the system in the finite field in which the pairing takes its values.

Other cases similar.
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The Fourth Dimension

Let us consider now the cases g = 1, r = 5 and g = 2, r = 3, i.e.
4-dimensional TZVs.

Pairing on E5(F343) lands in a 2044.6-bit field (F31290). Field not
binary, hence we have 233 bit EC security (broken in O(2116.6)
steps - attack has complexity Lq[

1
3 , 1.92]).

The group is a 272 bit group. There is no 2-torsion (hence no Ben
Smith). The best attack we can hope to mount is Diem’s attack
with complexity Õ(q8/5), hence Õ(2109). Note that there is a
logq in the Õ so we in fact have at least O(2114).

Roberto Avanzi : Trace Zero Varieties 53/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Outline

Curves

Trace Zero Varieties

Implementation of Trace Zero Varieties

Pairings

Supersingular Trace Zero Varieties
Pairing on Supersingular Abelian Varieties
A new efficient algorithm for the Tate pairing

Implementation of Supersingular Trace Zero Varieties
Pairings
Scalar Multiplication in Supersingular TZV

Security

Conclusions and future development

Roberto Avanzi : Trace Zero Varieties 54/ 56



Curves Trace Zero Varieties Implementation Pairings Supersingular TZV Implementation II Security Conclusion

Conclusions

Trace Zero Varieties offer good performance:
I Scalar multiplication, ordinary curves

I Binary TZV from EC 2 to 4 times faster than comparable EC.
I Binary TZV from HEC smaller gain over HEC (g = 2).
I Varieties over prime fields: performance in same ballpark as

corresponding curves, often faster.

I Pairing on (binary) supersingular curves:
I Serial versions, comparable performance to curves.
I New algorithm up to 30% faster in 32-bit code.
I But in these cases scalar multiplication much faster than on

the curves (up to 7 times faster).

On the algorithm for the Tate pairing with supersingular TZV:

I Easy parallelization with r processors, Miller loop on q
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Thank you for your attention! Any questions?

?????
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