Montgomery Modular Multiplication Algorithm for
Multi-Core Systems

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede

Katholieke Universiteit Leuven, ESAT /SCD-COSIC,
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee, Belgium

June 12, 2007

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Outline

Outline

) Outline
@ Outline
© Introduction
@ Montgomery Modular Multiplication Algorithm
@ Implementation Considerations
e Design Platform
@ Multi-Core Systems
@ A Prototype Processor
@ Instruction Set Architecture
o Instruction Scheduling Methods
@ Data Dependency
@ Scheduling Method-I
@ Scheduling Method-I1
@ Performance Comparison
© Implementation Results
@ Scalability
@ Performance Comparison
e Future Work

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Introduction

Montgomery Modular Multiplication Algorithm

Implementation Considerations

© What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer x,y € Zp;, R = 2"
Mont(x,y) = x -y - R~1 mod M

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Introduction
Montgomery Modular Multiplication Algorithm

Implementation Considerations

© What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer x,y € Zp;, R = 2"
Mont(x,y) = x -y - R~1 mod M

@ Why Use Montgomery Modular Multiplication Algorithm?
Use Normal Multiplication Use MMM

Z=A-B mod M Z=A-B mod M
o C=A-B 0 A = Mont(A,R*) =A-R mod M
@ Z=C-|&| M @ Z = Mont(A',B) = A-B mod M

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Introduction

Montgomery Modular Multiplication Algorithm

Implementation Considerations

© What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm
Given n-bit modulo M, integer x,y € Zp;, R = 2"
Mont(x,y) = x -y - R~1 mod M

@ Why Use Montgomery Modular Multiplication Algorithm?
Use Normal Multiplication Use MMM

Z=A-B mod M Z=A-B mod M
o C=A-B 0 A = Mont(A,R*) =A-R mod M
@ Z=C-|&| M @ Z = Mont(A',B) = A-B mod M

© Widely used in RSA, ECC, Diffie-Hellman...

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Introduction

Montgomery Modular Multiplication Algorithm

Implementation Considerations

Radix-2" Montgomery Modular Multiplication Algorithm
Input: integers M = (Ms_1, .., Mo),, X = (Xs=1, .., X0)r,
Y = (Ys—1,.., Y0)r, where 0 < X, Y < M, r =2%, s =[], R=r® with
gcd(M,r)=1and M = —M~1mod r.
Output: X - Y- R 1 modM
Z = (Zs-1,...,2)r <0
fori=0tos—1do
T<—(ZO+X0'\/,')'MI mod r
Z—((Z+X-Yi+M-T)/r

end for

if Z > M then
Z—7Z—-—M

end if

return Z

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Introduction
Montgomery Modular Multiplication Algorithm

Implementation Considerations

Hardware Implementations Software Implementations

@ Fast, Power efficient @ Cheap, flexible
@ special data-path @ Sharing CPU with other
@ multiple processing applications

elements (PE) @ Easy to modify

@ expensive, fixed functions Q Slow
@ Cost extra hardware @ General purpose data-path
@ Hard to update @ Normally single core

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Introduction
Montgomery Modular Multiplication Algorithm

Implementation Considerations

Hardware Implementations Software Implementations
@ Fast, Power efficient @ Cheap, flexible
@ special data-path @ Sharing CPU with other
@ multiple processing applications
elements (PE) @ Easy to modify
@ expensive, fixed functions Q Slow
@ Cost extra hardware @ General purpose data-path
@ Hard to update @ Normally single core
The question is:
How about using multi-core systems? J

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

In the real world, a multi-core system can be
@ A processor with multiple cores: shared cache

@ A system with multiple processors: shared memory

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular M

ication Algorithm for Multi-Core

Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

Instruction Main Controller Data
Memory Memory
l f Instruction Bus
1 I IR 4 I
I [y 1§ el]
core-1 core-2 core-3 | TTTTTTC core-m

Our prototype processor

@ Very Long Instruction Set T
(vLiwv) e

@ Shared single-port data E?Z?

memory Decoder
!

16-bit
Register
File
0000

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

Opecode | Operand 1| Operand 2| Operand 3| Description

4-bit 4-bit 4-bit 4-bit

Nop No operation

Load Ri #Addr Load the data from location Addr
of the data memory into register
Ri

Store Ri #Addr Store the data of register Ri to lo-
cation Addr or the data memory

Mul Ri Rj Rk R(i+1),Ri = Rj- Rk

Add Ri Rj Rk Ca,Ri = Rj + Rk, Ca is the carry
out and is stored in the status reg-
ister

Adc Ri Rj Rk Ca,Ri = Rj + Rk + Ca

Sub Ri Rj Rk Ri = Rj - Rk

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

The question is:
How to map the Montgomery Modular Multiplication to this platform?

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Data dependency in one loop

fori=0tos—1do
T— (Zo+Xo-Y;)-M mod r
Z—(Z+X -Yi+M-T)/r
end for

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Basic considerations
@ Number of Mul and Add are almost constant
@ Data transfers are expensive
© Carry should be used in the local core
We propose
@ Instruction scheduling method-I: Each core performs one iteration

@ Instruction scheduling method-Il: Multiple cores perform one iteration

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-1

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

1 1 1
core-1 ' core-2 jcore-3, core-4
1 1 1
T 1 1 1
1 1 1
XY, MT+2Z, [. .
Bl XY, tMT+2Z ' 1
(]
ol XY, + MT+ 2, ' :
< XYy T MT+2, [:
= h
XY, +MT+2z, [1
S X .Y, + M. T+2, a 1 . .
XY, + M,T + 2, T
Z, 1 1
1 1 X0Y3 + MoT + Zo
[74
X15Y1 + MlST + 215

X, Y5+ MT+ 2,

=
X5+ M,T + 2,

XY, + MT + 2,
XY, + MT + 2,

216
XysYs + M T+ Z,,
z

16

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-1

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

@ Carry is always used in the local core

core-2 core-3} core-4

@ Data transfers cause a heavy overhead

@ Suppose Z has s words, one
multiplication requires s(s — 1) data X,
transfers : iz, iff:ﬂ:f
@ For example, when performing 256-bit
MMM, 240 data transfers are needed AT+ 2,

XYyt MT+2,

Q@ Xs_1,..,X0 and Ms_1,.., My are loaded : " o .
to each core in each iteration

I
S
°©
g

IS

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-11
Performance Comparison

1 1 1
core-1 ' core-2 jcore-3, core-4
||] |
T 1 i I i
XY, +MT+z [xy +MT+2z [-
c 0o'0 0 0 1 410 4 4 1 1
8 XYo+ MT+2, Kl 7+ W 3 2 - T Ll X,Yo T M,T+2),
© I
o 1 i 1
g T X,,Yo+ MT+ Z,,
B XYt MT+2Z, Yot M7+ 7,
1 1
© Z,+7, Z,+2, TR X,oYo + MyoT + 2,
| |
T | | | |
'R
XYy + M,T + 2, XY, +MT+2z, [Y T M T+
1 1 121 12 12
1 1
1 1
1 1

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-11
Performance Comparison

@ Carry is always used in the local core
@ Less data transfers are required

@ Suppose Z has s words and a p-core core-1
system is used, one multiplication
requires 3ps — 2s data transfers

@ For example, when performing 256-bit
MMM on a 4-core system, 96 data
transfers are needed

© Only [%} words of Xs_1,.., Xo and
Ms_1, .., Mg are loaded to each core in
each iteration

core-2 core-3

XYotMT +2, '

['
' '
T]
' '
N o
. El <Mtz
1 '
1 '
N Yo 2
3 '
" 7 '
N 1
]]
' '
' '
' '
] '
' '

ki ¥
XY+ MT+2,

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Compared to the method-I, the method-Il has two major advantages.

@ Operands and intermediate data are distributed in the register file of
each core, thus less registers are required in each core.

@ Less data transfers reduce memory accesses, as a result, a single-port
data memory can support more cores before becoming the bottleneck.

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Table: Number of memory accesses required for one Montgomery multiplication
for various Register File size (S,).

Processor type Sif Nioad — opr Nioad —tr Nstore —tr Niotal
S;f > 3s 3s 0 0 3s
25 < Sy < 3s 52+ 2s 0 0 s? +2s
Single-core s < 55 <2s 257 +s 0 0 257 1 s
Sf<s 257 +s s(s—1)* s° 457
Multi-core S, > 2s 2ps + s s(s—1) 2 252 + 2ps
Method-I s < 55 <2s s 4+ ps+s s(s — 1) 5% 352 + ps
St <s 257 + s s(s —1) 5% 452
S > % 2s + ps 2(p—1)s ps 5ps
Multi-core % <S¢ < % 24+ ps+s 2(p — 1)s ps s+ 4ps —s
Method-11 % <S¢ < 27; 2s% + ps 2(p — 1)s ps 2s% + 4ps — 2s
S < 2 25° +s 2+ (2p—3)s ¥ 245 4s° + 2ps — s

*Including store and load operations caused by calculating intermediate data.

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Figure: Number of data memory accesses for various operand bit-length.
(w =16, S;r = 16).

18000 -

@ Single core

OMethod-I: p=4 T
16000 ® Method-I: p=8

E Method-11: p=4
14000 W Method-I1: p=8

12000

10000 +
8000 -
6000 -

4000 -

Number of memory accessesin one
Montgomery modular multiplication

2000

128 256 512 768 1024
Operational size of Montgomery modular multiplication (n)

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Scalability
Performance Comparison

Implementation Results

Figure: Performance of 256-bit Montgomery modular multiplication on a
multi-core system. (n = 256, w = 16, S, = 16).

mMethod-
mMethod-1

g

g

g

g

Cycles reqired by one 256-bit Montgomery
modular multiplication

o

Number of cores (p)

The performance of 256-bit MMM can be improved by a factor of 1.87
and 3.68 when using 2-core and 4-core systems, respectively.[Method-11]

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Scalability

Performance Comparison

Implementation Results

Table: Performance comparison of modular multiplication.

Reference Description Platform Area Freq. 256-bit 1024-bit
(Slices) (MHz) | time(us) time()

This work 4-cores/4 16x16 mults Xilinx 2029 125 6.8 131.0

(method-I) 4-cores/4 32x32 mults XC2VP30 3173 93 2.6 44.0

This work 4-cores/4 16x16 mults Xilinx 2029 125 5.5 134.7

(method-I1) 4-cores /4 32x32 mults XC2VP30 3173 93 2.2 33.0

Tenca et al. Software ARM - 80 43 570

Itoh et al. Software DSP(TMS320C6201)| - 200 2.68% —

Brown et al. Software Pentium Il - 400 1.57 —

Kelley et al. [[4-PEs/8 16x16 mults XC2V2000 [360] 135] 0.68 [83 |

130 16x16 mults XC2VP30 [7244 [64 [0.31 [1.07]
* Author’s estimation from the original paper.
1 239-bit Montgomery modular multiplication.
§ Using fixed modulo for fast reduction.

Mentens |

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core

Future Work

© Hardware implementations

@ Use specific data-path
@ Use specific Register Files

@ Software implementations

o VLIW DSP
@ Intel quad-core processors

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular M

ication Algorithm for Multi-Core

Kazuo Sakiyama and Ingrid Verbauwhede gomery Modular Multi ion Algorithm for Multi-Core

	Outline
	Outline

	Introduction
	Montgomery Modular Multiplication Algorithm
	Implementation Considerations

	Design Platform
	Multi-Core Systems
	A Prototype Processor
	Instruction Set Architecture
	

	Instruction Scheduling Methods
	Data Dependency
	Scheduling Method-I
	Scheduling Method-II
	Performance Comparison

	Implementation Results
	Scalability
	Performance Comparison

	Future Work
	

