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Introduction

Montgomery Modular Multiplication Algorithm

Implementation Considerations

© What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer x,y € Zp;, R = 2"
Mont(x,y) = x -y - R~1 mod M
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Montgomery Modular Multiplication Algorithm

Implementation Considerations

© What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer x,y € Zp;, R = 2"
Mont(x,y) = x -y - R~1 mod M

@ Why Use Montgomery Modular Multiplication Algorithm?
Use Normal Multiplication Use MMM

Z=A-B mod M Z=A-B mod M
o C=A-B 0 A = Mont(A,R*) =A-R mod M
@ Z=C-|&| M @ Z = Mont(A',B) = A-B mod M
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Introduction

Montgomery Modular Multiplication Algorithm

Implementation Considerations

© What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm
Given n-bit modulo M, integer x,y € Zp;, R = 2"
Mont(x,y) = x -y - R~1 mod M

@ Why Use Montgomery Modular Multiplication Algorithm?
Use Normal Multiplication Use MMM

Z=A-B mod M Z=A-B mod M
o C=A-B 0 A = Mont(A,R*) =A-R mod M
@ Z=C-|&| M @ Z = Mont(A',B) = A-B mod M

© Widely used in RSA, ECC, Diffie-Hellman...
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Introduction

Montgomery Modular Multiplication Algorithm

Implementation Considerations

Radix-2" Montgomery Modular Multiplication Algorithm
Input: integers M = (Ms_1, .., Mo),, X = (Xs=1, .., X0)r,
Y = (Ys—1,.., Y0)r, where 0 < X, Y < M, r =2%, s =[], R=r® with
gcd(M,r)=1and M = —M~1mod r.
Output: X - Y- R 1 modM
Z = (Zs-1,...,2)r <0
fori=0tos—1do
T<—(ZO+X0'\/,')'MI mod r
Z—((Z+X-Yi+M-T)/r

end for

if Z > M then
Z—7Z—-—M

end if

return Z
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Introduction
Montgomery Modular Multiplication Algorithm

Implementation Considerations

Hardware Implementations Software Implementations

@ Fast, Power efficient @ Cheap, flexible
@ special data-path @ Sharing CPU with other
@ multiple processing applications

elements (PE) @ Easy to modify

@ expensive, fixed functions Q Slow
@ Cost extra hardware @ General purpose data-path
@ Hard to update @ Normally single core
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Introduction
Montgomery Modular Multiplication Algorithm

Implementation Considerations

Hardware Implementations Software Implementations
@ Fast, Power efficient @ Cheap, flexible
@ special data-path @ Sharing CPU with other
@ multiple processing applications
elements (PE) @ Easy to modify
@ expensive, fixed functions Q Slow
@ Cost extra hardware @ General purpose data-path
@ Hard to update @ Normally single core
The question is:
How about using multi-core systems? J
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Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

In the real world, a multi-core system can be
@ A processor with multiple cores: shared cache

@ A system with multiple processors: shared memory
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Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture
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Memory Memory
l f Instruction Bus
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Our prototype processor
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@ Shared single-port data E?Z?
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Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

Opecode | Operand 1| Operand 2| Operand 3| Description

4-bit 4-bit 4-bit 4-bit

Nop No operation

Load Ri #Addr Load the data from location Addr
of the data memory into register
Ri

Store Ri #Addr Store the data of register Ri to lo-
cation Addr or the data memory

Mul Ri Rj Rk R(i+1),Ri = Rj- Rk

Add Ri Rj Rk Ca,Ri = Rj + Rk, Ca is the carry
out and is stored in the status reg-
ister

Adc Ri Rj Rk Ca,Ri = Rj + Rk + Ca

Sub Ri Rj Rk Ri = Rj - Rk
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Multi-Core Systems
Design Platform A Prototype Processor

Instruction Set Architecture

The question is:
How to map the Montgomery Modular Multiplication to this platform?
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Data dependency in one loop

fori=0tos—1do
T— (Zo+Xo-Y;)-M mod r
Z—(Z+X -Yi+M-T)/r
end for
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Basic considerations
@ Number of Mul and Add are almost constant
@ Data transfers are expensive
© Carry should be used in the local core
We propose
@ Instruction scheduling method-I: Each core performs one iteration

@ Instruction scheduling method-Il: Multiple cores perform one iteration
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Data Dependency
Scheduling Method-1

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison
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Data Dependency
Scheduling Method-1

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

@ Carry is always used in the local core

core-2 core-3} core-4

@ Data transfers cause a heavy overhead

@ Suppose Z has s words, one
multiplication requires s(s — 1) data X,
transfers : iz, iff:ﬂ:f
@ For example, when performing 256-bit
MMM, 240 data transfers are needed AT+ 2,

XYyt MT+2,

Q@ Xs_1,..,X0 and Ms_1,.., My are loaded : " o .
to each core in each iteration

I
S
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-11
Performance Comparison
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-11
Performance Comparison

@ Carry is always used in the local core
@ Less data transfers are required

@ Suppose Z has s words and a p-core core-1
system is used, one multiplication
requires 3ps — 2s data transfers

@ For example, when performing 256-bit
MMM on a 4-core system, 96 data
transfers are needed

© Only [%} words of Xs_1,.., Xo and
Ms_1, .., Mg are loaded to each core in
each iteration
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Compared to the method-I, the method-Il has two major advantages.

@ Operands and intermediate data are distributed in the register file of
each core, thus less registers are required in each core.

@ Less data transfers reduce memory accesses, as a result, a single-port
data memory can support more cores before becoming the bottleneck.
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Table: Number of memory accesses required for one Montgomery multiplication
for various Register File size (S,).

Processor type Sif Nioad — opr Nioad —tr Nstore —tr Niotal
S;f > 3s 3s 0 0 3s
25 < Sy < 3s 52+ 2s 0 0 s? +2s
Single-core s < 55 <2s 257 +s 0 0 257 1 s
Sf<s 257 +s s(s—1)* s° 457
Multi-core S, > 2s 2ps + s s(s—1) 2 252 + 2ps
Method-I s < 55 <2s s 4+ ps+s s(s — 1) 5% 352 + ps
St <s 257 + s s(s —1) 5% 452
S > % 2s + ps 2(p—1)s ps 5ps
Multi-core % <S¢ < % 24+ ps+s 2(p — 1)s ps s+ 4ps —s
Method-11 % <S¢ < 27; 2s% + ps 2(p — 1)s ps 2s% + 4ps — 2s
S < 2 25° +s 2+ (2p—3)s ¥ 245 4s° + 2ps — s

*Including store and load operations caused by calculating intermediate data.
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Data Dependency
Scheduling Method-I

Instruction Scheduling Methods Scheduling Method-I1
Performance Comparison

Figure: Number of data memory accesses for various operand bit-length.
(w =16, S;r = 16).
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Scalability
Performance Comparison

Implementation Results

Figure: Performance of 256-bit Montgomery modular multiplication on a
multi-core system. (n = 256, w = 16, S, = 16).
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The performance of 256-bit MMM can be improved by a factor of 1.87
and 3.68 when using 2-core and 4-core systems, respectively.[Method-11]
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Scalability

Performance Comparison

Implementation Results

Table: Performance comparison of modular multiplication.

Reference Description Platform Area Freq. 256-bit 1024-bit
(Slices) (MHz) | time(us) time( )

This work 4-cores/4 16x16 mults Xilinx 2029 125 6.8 131.0

(method-I) 4-cores/4 32x32 mults XC2VP30 3173 93 2.6 44.0

This work 4-cores/4 16x16 mults Xilinx 2029 125 5.5 134.7

(method-I1) 4-cores /4 32x32 mults XC2VP30 3173 93 2.2 33.0

Tenca et al. Software ARM - 80 43 570

Itoh et al. Software DSP(TMS320C6201)| - 200 2.68% —

Brown et al. Software Pentium Il - 400 1.57 —

Kelley et al. [[ 4-PEs/8 16x16 mults XC2V2000 [ 360 ] 135 ] 0.68 [ 83 |

130 16x16 mults XC2VP30 [ 7244 [ 64 [ 0.31 [ 1.07 ]
* Author’s estimation from the original paper.
1 239-bit Montgomery modular multiplication.
§ Using fixed modulo for fast reduction.

Mentens |

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede Montgomery Modular Multiplication Algorithm for Multi-Core



Future Work

© Hardware implementations

@ Use specific data-path
@ Use specific Register Files

@ Software implementations

o VLIW DSP
@ Intel quad-core processors
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