Outline Introduction Design Platform Instruction Scheduling Methods Implementation Results Future Work

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede

Katholieke Universiteit Leuven,ESAT/SCD-COSIC, Kasteelpark Arenberg 10 B-3001 Leuven-Heverlee, Belgium

June 12, 2007

- Outline
 - Outline
- 2 Introduction
 - Montgomery Modular Multiplication Algorithm
 - Implementation Considerations
- Oesign Platform
 - Multi-Core Systems
 - A Prototype Processor
 - Instruction Set Architecture
- 4 Instruction Scheduling Methods
 - Data Dependency
 - Scheduling Method-I
 - Scheduling Method-II
 - Performance Comparison
- Implementation Results
 - Scalability
 - Performance Comparison
- 6 Future Work

• What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given *n*-bit modulo
$$M$$
, integer $x, y \in \mathbb{Z}_M$, $R = 2^n$
 $Mont(x, y) = x \cdot y \cdot R^{-1} \mod M$

• What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given *n*-bit modulo
$$M$$
, integer $x, y \in \mathbb{Z}_M$, $R = 2^n$
 $Mont(x, y) = x \cdot y \cdot R^{-1} \mod M$

Why Use Montgomery Modular Multiplication Algorithm?

Use Normal Multiplication

$$Z = A \cdot B \mod M$$

$$Z = C - |\frac{C}{M}| \cdot M$$

Use MMM

$$Z = A \cdot B \mod M$$

$$2 = Mont(A', B) = A \cdot B \mod M$$

• What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given *n*-bit modulo
$$M$$
, integer $x, y \in \mathbb{Z}_M$, $R = 2^n$
 $Mont(x, y) = x \cdot y \cdot R^{-1} \mod M$

Why Use Montgomery Modular Multiplication Algorithm?

Use Normal Multiplication

 $Z = A \cdot B \mod M$

$$Z = C - |\frac{C}{M}| \cdot M$$

Use MMM

 $Z = A \cdot B \mod M$

$$2 = Mont(A', B) = A \cdot B \mod M$$

Widely used in RSA, ECC, Diffie-Hellman...

Radix-2^w Montgomery Modular Multiplication Algorithm

Input: integers
$$M=(M_{s-1},..,M_0)_r, \ X=(X_{s-1},..,X_0)_r, \ Y=(Y_{s-1},..,Y_0)_r, \ \text{where } 0\leq X, Y< M, \ r=2^w, \ s=\lceil\frac{n}{w}\rceil, \ R=r^s \ \text{with} \ gcd(M,r)=1 \ \text{and} \ M'=-M^{-1} \text{mod} \ r.$$
Output: $X\cdot Y\cdot R^{-1} \ \text{mod} M$

$$Z=(Z_{s-1},...,Z_0)_r\leftarrow 0 \ \text{for} \ i=0 \ \text{to} \ s-1 \ \text{do} \ T\leftarrow (Z_0+X_0\cdot Y_i)\cdot M' \ \text{mod} \ r$$

$$Z\leftarrow (Z+X\cdot Y_i+M\cdot T)/r \ \text{end for} \ \text{if} \ Z>M \ \text{then} \ Z\leftarrow Z-M \ \text{end if} \ \text{return} \ Z$$

Hardware Implementations

- Fast, Power efficient
 - special data-path
 - multiple processing elements (PE)
- expensive, fixed functions
 - Cost extra hardware
 - Output
 <p

Software Implementations

- Cheap, flexible
 - Sharing CPU with other applications
 - Easy to modify
- Slow
 - General purpose data-path
 - Normally single core

Hardware Implementations

- Fast, Power efficient
 - special data-path
 - multiple processing elements (PE)
- expensive, fixed functions
 - Cost extra hardware
 - @ Hard to update

Software Implementations

- Cheap, flexible
 - Sharing CPU with other applications
 - Easy to modify
- Slow
 - General purpose data-path
 - Normally single core

The question is:

How about using multi-core systems?

In the real world, a multi-core system can be

- A processor with multiple cores: shared cache
- 2 A system with multiple processors: shared memory

Our prototype processor

- Very Long Instruction Set (VLIW)
- Shared single-port data memory

Opecode	Operand 1	Operand 2 Operand 3		Description		
4-bit	4-bit	4-bit	4-bit	-		
Nop				No operation		
Load	Ri	#Addr		Load the data from location Addr		
				of the data memory into register		
				Ri		
Store	Ri	#Addr		Store the data of register Ri to lo-		
				cation Addr or the data memory		
Mul	Ri	Rj	Rk	$R(i+1),Ri = Rj \cdot Rk$		
Add	Ri	Rj	Rk	Ca,Ri = Rj + Rk, Ca is the carry		
				out and is stored in the status reg-		
				ister		
Adc	Ri	Rj	Rk	Ca,Ri=Rj+Rk+Ca		
Sub	Ri	Rj	Rk	Ri = Rj - Rk		

Multi-Core Systems A Prototype Processor Instruction Set Architecture

The question is:

How to map the Montgomery Modular Multiplication to this platform?

Data dependency in one loop

for
$$i = 0$$
 to $s - 1$ do
$$T \leftarrow (Z_0 + X_0 \cdot Y_i) \cdot M' \mod r$$

$$Z \leftarrow (Z + X \cdot Y_i + M \cdot T)/r$$
end for

Basic considerations

- 1 Number of Mul and Add are almost constant
- Data transfers are expensive
- Orry should be used in the local core

We propose

- Instruction scheduling method-I: Each core performs one iteration
- Instruction scheduling method-II: Multiple cores perform one iteration

- Carry is always used in the local core
- Data transfers cause a heavy overhead
 - Suppose Z has s words, one multiplication requires s(s-1) data transfers
 - For example, when performing 256-bit MMM, 240 data transfers are needed
- **3** $X_{s-1},...,X_0$ and $M_{s-1},...,M_0$ are loaded to each core in each iteration

- Carry is always used in the local core
- 2 Less data transfers are required
 - Suppose Z has s words and a p-core system is used, one multiplication requires 3ps — 2s data transfers
 - For example, when performing 256-bit MMM on a 4-core system, 96 data transfers are needed
- **3** Only $\lceil \frac{s}{p} \rceil$ words of $X_{s-1},...,X_0$ and $M_{s-1},...,M_0$ are loaded to each core in each iteration

Compared to the method-I, the method-II has two major advantages.

- Operands and intermediate data are distributed in the register file of each core, thus less registers are required in each core.
- 2 Less data transfers reduce memory accesses, as a result, a single-port data memory can support more cores before becoming the bottleneck.

Table: Number of memory accesses required for one Montgomery multiplication for various Register File size (S_{rf}) .

	- c		• 1	• •	
Processor type	$ S_{rf} $	N _{load} — opr	$N_{load-tr}$	$N_{store-tr}$	N _{total}
	$S_{rf} > 3s$	3 <i>s</i>	0	0	3s
	$2s < S_{rf} \leq 3s$	$s^{2} + 2s$	0	0	$s^{2} + 2s$
Single-core	$s < S_{rf} \le 2s$	$2s^{2} + s$	0	0	$2s^{2} + s$
	$S_{rf} \leq s$	$2s^{2} + s$	$s(s-1)^*$	s ² *	4s ²
Multi-core	$S_{rf} > 2s$	2ps + s	s(s - 1)	s ²	$2s^{2} + 2ps$
Method-I	$s < S_{rf} \le 2s$	$s^2 + ps + s$	s(s - 1)	s ²	$3s^{2} + ps$
	$S_{rf} \leq s$	$2s^{2} + s$	s(s-1)	s ²	4s ²
	$S_{rf} > \frac{3s}{p}$	2s + ps	2(p-1)s	ps	5 <i>ps</i>
Multi-core	$\frac{2s}{p} < S_{rf} \le \frac{3s}{p}$	$s^2 + ps + s$	2(p-1)s	ps	$s^2 + 4ps - s$
Method-II	$\frac{s}{p} < S_{rf} \le \frac{2s}{p}$	$2s^{2} + ps$	2(p-1)s	ps	$2s^2 + 4ps - 2s$
	$S_{rf} \leq \frac{s}{p}$	$2s^{2} + s$	$s^2 + (2p - 3)s$ *	$s^2 + s^*$	$4s^2 + 2ps - s$

^{*}Including store and load operations caused by calculating intermediate data.

Figure: Number of data memory accesses for various operand bit-length. (w = 16, $S_{rf} = 16$).

Figure: Performance of 256-bit Montgomery modular multiplication on a multi-core system. (n = 256, w = 16, $S_{rf} = 16$).

The performance of 256-bit MMM can be improved by a factor of **1.87** and **3.68** when using 2-core and 4-core systems, respectively.[Method-II]

Table: Performance comparison of modular multiplication.

Reference	Reference Description		Area	Freq.	256-bit	1024-bit
			(Slices)	(MHz)	$time(\mu s)$	$time(\mu s)$
This work	4-cores/4 16x16 mults	Xilinx	2029	125	6.8	131.0
(method-I)	4-cores/4 32x32 mults	XC2VP30	3173	93	2.6	44.0
This work	4-cores/4 16×16 mults	Xilinx	2029	125	5.5	134.7
(method-II)	4-cores/4 32x32 mults	XC2VP30	3173	93	2.2	33.0
Tenca et al.	Software	ARM	=	80	43	570
Itoh et al.	Software	DSP(TMS320C6201)	-	200	2.68 [‡]	_
Brown et al.	Software	Pentium II	-	400	1.57 [§]	_
Kelley et al.	4-PEs/8 16×16 mults	XC2V2000	360*	135	0.68	8.3
Mentens	Mentens 130 16×16 mults		7244	64	0.31	1.07

^{*} Author's estimation from the original paper.

^{‡ 239-}bit Montgomery modular multiplication.

 $[\]S$ Using fixed modulo for fast reduction.

- Hardware implementations
 - Use specific data-path
 - Use specific Register Files
- Software implementations
 - VLIW DSP
 - Intel quad-core processors

Outline Introduction Design Platform Instruction Scheduling Methods Implementation Results Future Work

