a*x^2+y^2=1+d*x^2*y^2
Extended coordinates [database entry] represent x y as X Y Z T satisfying the following equations:
x=X/Z y=Y/Z x*y=T/Z
This representation was introduced in the Hisil–Wong–Carter–Dawson paper "Twisted Edwards curves revisited" (Asiacrypt 2008).
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | Z1=1 and Z2=1 | 7M + 1*a | 7M + 1*a |
| addition | Z1=1 and Z2=1 | 7M + 1S + 1*a + 1*d | 7M + 1S + 1*a |
| addition | Z2=1 | 8M + 1*a | 8M + 1*a |
| addition | Z2=1 | 8M + 1*a + 1*d | 8M + 1*a |
| addition | 9M + 1*a | 9M + 1*a | |
| addition | 9M + 1*a + 1*d | 9M + 1*a | |
| doubling | Z1=1 | 3M + 4S + 1*a | |
| doubling | 4M + 4S + 1*a | ||
| tripling | 11M + 3S + 1*a |
A = X1*X2
B = Y1*Y2
C = T2
D = T1
E = D+C
F = (X1-Y1)*(X2+Y2)+B-A
G = B+a*A
H = D-C
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = F*G
A = X1*X2
B = Y1*Y2
C = T1*d*T2
E = (X1+Y1)*(X2+Y2)-A-B
F = 1-C
G = 1+C
H = B-a*A
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = 1-C^2
A = X1*X2
B = Y1*Y2
C = Z1*T2
D = T1
E = D+C
F = (X1-Y1)*(X2+Y2)+B-A
G = B+a*A
H = D-C
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = F*G
A = X1*X2
B = Y1*Y2
C = T1*d*T2
D = Z1
E = (X1+Y1)*(X2+Y2)-A-B
F = D-C
G = D+C
H = B-a*A
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = F*G
A = X1*X2
B = Y1*Y2
C = Z1*T2
D = T1*Z2
E = D+C
F = (X1-Y1)*(X2+Y2)+B-A
G = B+a*A
H = D-C
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = F*G
A = X1*X2
B = Y1*Y2
C = T1*d*T2
D = Z1*Z2
E = (X1+Y1)*(X2+Y2)-A-B
F = D-C
G = D+C
H = B-a*A
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = F*G
A = X1^2
B = Y1^2
D = a*A
E = (X1+Y1)^2-A-B
G = D+B
H = D-B
X3 = E*(G-2)
Y3 = G*H
T3 = E*H
Z3 = G^2-2*G
A = X1^2
B = Y1^2
C = 2*Z1^2
D = a*A
E = (X1+Y1)^2-A-B
G = D+B
F = G-C
H = D-B
X3 = E*F
Y3 = G*H
T3 = E*H
Z3 = F*G
YY = Y1^2
aXX = a*X1^2
Ap = YY+aXX
B = 2*(2*Z1^2-Ap)
xB = aXX*B
yB = YY*B
AA = Ap*(YY-aXX)
F = AA-yB
G = AA+xB
xE = X1*(yB+AA)
yH = Y1*(xB-AA)
zF = Z1*F
zG = Z1*G
X3 = xE*zF
Y3 = yH*zG
Z3 = zF*zG
T3 = xE*yH