x^3+y^3+1=3*d*x*y
Projective coordinates [database entry] represent x y as X Y Z satisfying the following equations:
x=X/Z y=Y/Z
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | Z1=1 and Z2=1 | 8M | 7M |
| addition | Z2=1 | 10M | 10M |
| addition | 12M | 12M | |
| addition | 12M | 12M | |
| addition | 12M | 12M | |
| addition | X2=1 | 5M + 9S | 5M + 6S |
| addition | 6M + 12S | 6M + 6S | |
| addition | 12M + 6S | 9M + 3S | |
| doubling | Z1=1 | 3M + 3S | |
| doubling | 7M + 1S | ||
| doubling | 7M + 1S | ||
| doubling | 3M + 6S | ||
| doubling | 3M + 6S | ||
| doubling | 6M + 3S | ||
| doubling | 12M | ||
| doubling | 3M + 6^3 | ||
| tripling | 3*b*d=1 | 8M + 6S + 1*b | |
| tripling | a=3*d | 11M + 4S + 2*a | |
| tripling | 10M + 1S + 29^3 + 2*d | ||
| scaling | 1I + 2M |
X1Y2 = X1*Y2
Y1X2 = Y1*X2
X3 = Y1X2*Y1-Y2*X1Y2
Y3 = X1*X1Y2-Y1X2*X2
Z3 = Y2*X2-X1*Y1
X1Y2 = X1*Y2
Y1X2 = Y1*X2
Z1X2 = Z1*X2
Z1Y2 = Z1*Y2
X3 = Y1X2*Y1-Z1Y2*X1Y2
Y3 = X1*X1Y2-Y1X2*Z1X2
Z3 = Z1Y2*Z1X2-X1*Y1
T1 = X1
T2 = Y1
T3 = Z1
T4 = X2
T5 = Y2
T6 = Z2
T7 = T1*T6
T1 = T1*T5
T5 = T3*T5
T3 = T3*T4
T4 = T2*T4
T2 = T2*T6
T6 = T2*T7
T2 = T2*T4
T4 = T3*T4
T3 = T3*T5
T5 = T1*T5
T1 = T1*T7
T1 = T1-T4
T2 = T2-T5
T3 = T3-T6
X3 = T2
Y3 = T1
Z3 = T3
Y1X2 = Y1*X2
Y1Y2 = Y1*Y2
Z1Y2 = Z1*Y2
Z1Z2 = Z1*Z2
X1Z2 = X1*Z2
X1X2 = X1*X2
X3 = Z1Z2*Z1Y2-X1X2*Y1X2
Y3 = Y1Y2*Y1X2-Z1Z2*X1Z2
Z3 = X1X2*X1Z2-Y1Y2*Z1Y2
X1Y2 = X1*Y2
X1Z2 = X1*Z2
Y1Z2 = Y1*Z2
Y1X2 = Y1*X2
Z1X2 = Z1*X2
Z1Y2 = Z1*Y2
X3 = Y1X2*Y1Z2-Z1Y2*X1Y2
Y3 = X1Z2*X1Y2-Y1X2*Z1X2
Z3 = Z1Y2*Z1X2-X1Z2*Y1Z2
S0 = Y2^2
S1 = Z2^2
S2 = (Y2+Z2)^2-S0-S1
S3 = 2*Y2
S4 = 2*Z2
R0 = X1^2
R1 = Y1^2
R2 = Z1^2
R3 = X1+Y1
Y3 = Y1+Z1
Y3 = Y3^2
Z3 = X1+Z1
Z3 = Z3^2
X3 = R3^2
R3 = Y3-R1
R3 = R3-R2
Y3 = R0*S2
Y3 = Y3-R3
R3 = X3-R0
R3 = R3-R1
Z3 = Z3-R0
Z3 = Z3-R2
X3 = R1*S4
R0 = Z3*S0
X3 = X3-R0
Z3 = R2*S3
R0 = R3*S1
Z3 = Z3-R0
XX1 = X1^2
YY1 = Y1^2
ZZ1 = Z1^2
XY1 = (X1+Y1)^2-XX1-YY1
XZ1 = (X1+Z1)^2-XX1-ZZ1
YZ1 = (Y1+Z1)^2-YY1-ZZ1
XX2 = X2^2
YY2 = Y2^2
ZZ2 = Z2^2
XY2 = (X2+Y2)^2-XX2-YY2
XZ2 = (X2+Z2)^2-XX2-ZZ2
YZ2 = (Y2+Z2)^2-YY2-ZZ2
X3 = YY1*XZ2-XZ1*YY2
Y3 = XX1*YZ2-YZ1*XX2
Z3 = ZZ1*XY2-XY1*ZZ2
X3 = Y1^2*Z2*X2-Y2^2*Z1*X1
Y3 = X1^2*Y2*Z2-X2^2*Y1*Z1
Z3 = Z1^2*X2*Y2-Z2^2*X1*Y1
A = X1^2
B = Y1^2
D = A+B
G = (X1+Y1)^2-D
X3 = (2*Y1-G)*(X1+A+1)
Y3 = (G-2*X1)*(Y1+B+1)
Z3 = (X1-Y1)*(G+2*D)
R0 = X1^2
R1 = X1+Y1
R1 = Y1*R1
R2 = Z1+X1
R2 = Z1*R2
R2 = R0+R2
R1 = R0+R1
R0 = X1-Y1
R0 = R1*R0
Z3 = R0*Z1
R1 = Z1-X1
R1 = R2*R1
X3 = R1*Y1
R2 = -(R0+R1)
Y3 = R2*X1
A = X1^2
B = Y1*(X1+Y1)
C = A+B
D = Z1*(Z1+X1)
E = A+D
F = C*(X1-Y1)
G = E*(Z1-X1)
Z3 = F*Z1
Y3 = -(F+G)*X1
X3 = G*Y1
A = X1^2
B = Y1^2
C = Z1^2
D = A+B
E = A+C
F = B+C
G = (X1+Y1)^2-D
H = (X1+Z1)^2-E
J = (Y1+Z1)^2-F
X3 = (J-G)*(H+2*E)
Y3 = (G-H)*(J+2*F)
Z3 = (H-J)*(G+2*D)
R0 = X1^2
R1 = Y1^2
R2 = Z1^2
R3 = R0+R1
R4 = R0+R2
R5 = R1+R2
R0 = X1+Y1
R0 = R0^2
R0 = R0-R3
R1 = X1+Z1
R1 = R1^2
R1 = R1-R4
R2 = Y1+Z1
R3 = 2*R3
R2 = R2^2
R4 = 2*R4
R2 = R2-R5
R5 = 2*R5
X3 = R2-R0
R4 = R1+R4
X3 = X3*R4
Y3 = R0-R1
R5 = R2+R5
Y3 = Y3*R5
Z3 = R1-R2
R0 = R0+R3
Z3 = Z3*R0
XX = X1^2
XXX = X1*XX
YY = Y1^2
YYY = Y1*YY
ZZ = Z1^2
ZZZ = Z1*ZZ
X3 = Y1*(ZZZ-XXX)
Y3 = X1*(YYY-ZZZ)
Z3 = Z1*(XXX-YYY)
T1 = Z1
T2 = X1
T3 = Y1
T4 = Y1
T5 = Z1
T6 = X1
T7 = T1*T6
T1 = T1*T5
T5 = T3*T5
T3 = T3*T4
T4 = T2*T4
T2 = T2*T6
T6 = T2*T7
T2 = T2*T4
T4 = T3*T4
T3 = T3*T5
T5 = T1*T5
T1 = T1*T7
T1 = T1-T4
T2 = T2-T5
T3 = T3-T6
X3 = T2
Y3 = T1
Z3 = T3
X3 = Y1*(Z1^3-X1^3)
Y3 = X1*(Y1^3-Z1^3)
Z3 = Z1*(X1^3-Y1^3)
R0 = X1^2
X3 = R0*X1
R0 = Y1^2
Y3 = R0*Y1
R0 = Z1^2
Z3 = R0*Z1
R0 = X3-Y3
R0 = R0^2
R1 = X3-Z3
R1 = R1^2
R2 = Y3-Z3
R2 = R2^2
Z3 = Z3+X3
Z3 = Z3+Y3
Z3 = b*Z3
R3 = R0+R2
R0 = R0+R1
R4 = R1+R3
Z3 = Z3*R4
R4 = R1-R3
R4 = R4*X3
R3 = R2-R0
R3 = Y3*R3
X3 = X3*R2
X3 = 2*X3
X3 = X3-R3
Y3 = Y3*R1
Y3 = 2*Y3
Y3 = Y3-R4
XX = X1^2
A = XX*X1
YY = Y1^2
B = YY*Y1
ZZ = Z1^2
C = ZZ*Z1
AB = A-B
BC = B-C
CA = C-A
U = B*CA
V = A*BC
X3 = a*(U*AB-V*BC)
Y3 = a*(V*AB-U*CA)
Z3 = (A+B+C)*(BC*CA-AB^2)
X3 = 3*d*(Y1^3*(Z1^3-X1^3)*(X1^3-Y1^3)-X1^3*(Y1^3-Z1^3)*(Y1^3-Z1^3))
Y3 = 3*d*(X1^3*(Y1^3-Z1^3)*(X1^3-Y1^3)-Y1^3*(Z1^3-X1^3)*(Z1^3-X1^3))
Z3 = (X1^3+Y1^3+Z1^3)*((Y1^3-Z1^3)*(Z1^3-X1^3)-(X1^3-Y1^3)^2)
A = 1/Z1
X3 = A*X1
Y3 = A*Y1
Z3 = 1