x^3+y^3+1=3*d*x*y
Extended coordinates [database entry] represent x y as X Y Z XX YY ZZ XY YZ XZ satisfying the following equations:
x=X/Z y=Y/Z XX=X*X YY=Y*Y ZZ=Z*Z XY=2*X*Y XZ=2*X*Z YZ=2*Y*Z
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | Z2=1 | 5M + 6S | 5M + 6S |
| addition | 6M + 6S | 6M + 6S | |
| doubling | 3M + 6S | ||
| doubling | 3M + 6S | ||
| scaling | 1I + 3M + 2S |
X3 = YY1*XZ2-XZ1*YY2
Y3 = XX1*YZ2-YZ1*XX2
Z3 = ZZ1*XY2-XY1
XX3 = X3^2
YY3 = Y3^2
ZZ3 = Z3^2
XY3 = (X3+Y3)^2-XX3-YY3
XZ3 = (X3+Z3)^2-XX3-ZZ3
YZ3 = (Y3+Z3)^2-YY3-ZZ3
X3 = YY1*XZ2-XZ1*YY2
Y3 = XX1*YZ2-YZ1*XX2
Z3 = ZZ1*XY2-XY1*ZZ2
XX3 = X3^2
YY3 = Y3^2
ZZ3 = Z3^2
XY3 = (X3+Y3)^2-XX3-YY3
XZ3 = (X3+Z3)^2-XX3-ZZ3
YZ3 = (Y3+Z3)^2-YY3-ZZ3
X3 = (XY1-YZ1)*(XZ1+2*(XX1+ZZ1))
Y3 = (XZ1-XY1)*(YZ1+2*(YY1+ZZ1))
Z3 = (YZ1-XZ1)*(XY1+2*(XX1+YY1))
XX3 = X3^2
YY3 = Y3^2
ZZ3 = Z3^2
XY3 = (X3+Y3)^2-XX3-YY3
XZ3 = (X3+Z3)^2-XX3-ZZ3
YZ3 = (Y3+Z3)^2-YY3-ZZ3
X3 = (XY1-YZ1)*(XZ1+2*(XX1+ZZ1))
Y3 = (XZ1-XY1)*(YZ1+2*(YY1+ZZ1))
Z3 = (YZ1-XZ1)*(XY1+2*(XX1+YY1))
XX3 = X3^2
YY3 = Y3^2
ZZ3 = Z3^2
XY3 = (X3+Y3)^2-XX3-YY3
XZ3 = (X3+Z3)^2-XX3-ZZ3
YZ3 = (Y3+Z3)^2-YY3-ZZ3
A = 1/Z1
X3 = A*X1
Y3 = A*Y1
Z3 = 1
XX3 = X3^2
YY3 = Y3^2
ZZ3 = 1
XZ3 = 2*X3
YZ3 = 2*Y3
XY3 = XZ3*Y3