x^2+y^2=c^2*(1+d*x^2*y^2)
Squared YZ coordinates with square d [database entry] make the additional assumptions
c=1
d=r^2
and
represent
x
y
as
Y
Z
satisfying the following equations:
r*y^2=Y/Z
The following formulas are the outcome of a discussion in 2009 among Daniel J. Bernstein, David Kohel, and Tanja Lange. The core ideas were published by Pierrick Gaudry in 2006.
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| doubling | Z1=1 and s=(1+r)/(1-r) | 3S + 1*r + 1*s | |
| doubling | s=(1+r)/(1-r) | 4S + 1*r + 1*s | |
| diffadd | Z1=1 and s=(1+r)/(1-r) | 3M + 2S + 1*s | |
| diffadd | s=(1+r)/(1-r) | 4M + 2S + 1*s | |
| ladder | Z1=1 and s=(1+r)/(1-r) | 3M + 6S + 1*r + 2*s | |
| ladder | Z1=1 and s=(1+r)/(1-r) | 3M + 6S + 1*r + 2*s | |
| ladder | s=(1+r)/(1-r) | 4M + 6S + 1*r + 2*s | |
| ladder | s=(1+r)/(1-r) | 4M + 6S + 1*r + 2*s | |
| scaling | 1I + 1M |
W = (1+Y1)^2
V = s*(W-4*Y1)
Y3 = (W-V)^2
Z3 = r*(W+V)^2
V = s*(Z1-Y1)^2
W = (Z1+Y1)^2
Y3 = (W-V)^2
Z3 = r*(W+V)^2
V = s*(Z2-Y2)*(Z3-Y3)
W = (Z2+Y2)*(Z3+Y3)
Y5 = (W-V)^2
Z5 = Y1*(W+V)^2
V = s*(Z2-Y2)*(Z3-Y3)
W = (Z2+Y2)*(Z3+Y3)
Y5 = Z1*(W-V)^2
Z5 = Y1*(W+V)^2
A = Z2-Y2
B = Z2+Y2
V2 = s*A^2
W2 = B^2
Y4 = (W2-V2)^2
Z4 = r*(W2+V2)^2
V = s*A*(Z3-Y3)
W = B*(Z3+Y3)
Y5 = (W-V)^2
Z5 = Y1*(W+V)^2
V2 = s*(Z2-Y2)^2
W2 = (Z2+Y2)^2
Y4 = (W2-V2)^2
Z4 = r*(W2+V2)^2
V = s*(Z2-Y2)*(Z3-Y3)
W = (Z2+Y2)*(Z3+Y3)
Y5 = (W-V)^2
Z5 = Y1*(W+V)^2
A = Z2-Y2
B = Z2+Y2
V2 = s*A^2
W2 = B^2
Y4 = (W2-V2)^2
Z4 = r*(W2+V2)^2
V = s*A*(Z3-Y3)
W = B*(Z3+Y3)
Y5 = Z1*(W-V)^2
Z5 = Y1*(W+V)^2
V2 = s*(Z2-Y2)^2
W2 = (Z2+Y2)^2
Y4 = (W2-V2)^2
Z4 = r*(W2+V2)^2
V = s*(Z2-Y2)*(Z3-Y3)
W = (Z2+Y2)*(Z3+Y3)
Y5 = Z1*(W-V)^2
Z5 = Y1*(W+V)^2
Y3 = Y1/Z1
Z3 = 1